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Abstract
The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there
exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many
parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which
generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional
linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes
fractional matching and linear matroid intersection. Our algorithm builds upon the connection of
fractional matroid matching to non-commutative Edmonds’ problem recently revealed by Oki and
Soma (2023). As a corollary, we also solve black-box non-commutative Edmonds’ problem with
rank-two skew-symmetric coefficients.
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1 Introduction

Algebraic algorithms play an important role in designing parallel algorithms because of the
existence of highly parallelizable algorithms to perform basic matrix operations such as matrix
multiplication and determinant computation. One of the earliest results in this direction can
be attributed to Lovász [23], where the problem of testing the existence of a perfect matching
in a graph is reduced to non-singularity testing of the corresponding Tutte matrix [29]. A
(randomized) algorithm is called an (R)NC algorithm if it takes poly-logarithmic time and
requires polynomially many parallel processors in terms of the input size. By assigning small
integral values chosen randomly to the variables, we can efficiently test the non-singularity
of a linear symbolic matrix, which is a matrix with linear forms in its entries. Using this,
Lovász [23] gave an RNC algorithm to decide the existence of a perfect matching in a graph.

In the same work, he also reduced the more general linear matroid matching problem
(also known as the linear matroid parity problem) to non-singularity testing of an associated
symbolic matrix. In this problem, a set L of two-dimensional vector subspaces, called lines,
of a vector space Fn over a field F is given as an input. A subset M of L is called a matroid

© Rohit Gurjar, Taihei Oki, and Roshan Raj;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rgurjar@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~rgurjar/
mailto:oki@mist.i.u-tokyo.ac.jp
https://www.opt.mist.i.u-tokyo.ac.jp/~oki/
https://orcid.org/0000-0002-6862-9484
mailto:roshanraj@cse.iitb.ac.in
https://homepages.iitb.ac.in/~194054001/
https://doi.org/10.4230/LIPIcs.ESA.2024.63
https://arxiv.org/pdf/2402.18276
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


63:2 Fractional Linear Matroid Matching Is in Quasi-NC

matching if the dimension of the sum space of the lines in M is 2|M |, i.e., dim(
∑

l∈M l) = 2|M |.
A matroid matching of size n/2 is called perfect. Then, the (perfect) linear matroid matching
problem asks for a perfect matroid matching. This problem generalizes the problems of
finding a perfect matching in graphs as well as finding a common base of two linear matroids.
For a set of lines L = {l1, l2, . . . , lm}, where li = span(ai, bi) with ai, bi ∈ Fn for i ∈ [m],
Lovász [23] defined the following symbolic matrix A in variables x1, x2, . . . , xm:

A =
m∑

i=1
(aib

⊤
i − bia

⊤
i )xi. (1)

Lovász showed that the determinant of A is non-zero if and only if a perfect matroid matching
exists, which in turn implies an RNC algorithm for linear matroid matching.

Lovász’s above algorithms only solve the decision problems, i.e., only check the existence
of a solution. Some years later, Karp, Upfal, and Wigderson [22] and Mulmuley, Vazirani,
and Vazirani [24] gave RNC algorithms to find a perfect matching in graphs. The algorithm
of Mulmuley, Vazirani, and Vazirani [24] introduces weights on the edges of the graph and
then finds a maximum-weight perfect matching with respect to the assigned weights. They
observed that this can be efficiently performed in parallel if the weight assignment is isolating,
i.e., there exists a unique maximum-weight perfect matching. They showed that a weight
assignment with weights chosen randomly from a small set of integers is isolating with high
probability in their famous isolation lemma. Interestingly, the isolation lemma works not
just for perfect matchings but for arbitrary families of sets. Later on, Narayanan, Saran, and
Vazirani [25] obtained an RNC algorithm to find a common base of two linear matroids and
a perfect matroid matching for linear matroids using the isolation lemma, along the same
lines as [24].

In the deterministic setting, however, obtaining an NC algorithm is an outstanding open
question even for the simplest of the cases, that is, deciding whether a bipartite graph
has a perfect matching. Fenner, Gurjar, and Thierauf [9] made significant progress in
the direction of derandomization. They provided a quasi-NC algorithm (i.e., deterministic
polylogarithmic time with quasi-polynomially many parallel processors) for the bipartite
matching problem, derandomizing the work of [24]. Later, Svensson and Tarnwaski [27] and
Gurjar and Thierauf [15] gave quasi-NC algorithms for perfect matching and linear matroid
intersection, respectively. All these results go via constructing an isolating weight assignment
for their respective problems in quasi-NC. The deterministic construction of isolating weight
assignments in [9, 27, 15] relies on the linear program (LP) description of the associated
polytope. For perfect matching and linear matroid intersection, the matching polytope and
the matroid intersection polytope are defined as the convex hulls of indicator vectors of all
the perfect matchings of the graph and all the common bases of two matroids, respectively.
Unfortunately, for linear matroid matching, an LP description of the linear matroid matching
polytope (the convex hull of indicator vectors of perfect matroid matchings) is still unknown,
hindering us from building a quasi-NC algorithm for linear matroid matching.

In this paper, we work with a relaxation of linear matroid matching polytopes, called
fractional linear matroid matching polytopes, introduced by Vande Vate [30] and Chang,
Llewellyn, and Vande Vate [7]. The linear fractional matroid matching polytope is defined
for a set of lines L = {l1, l2, . . . , lm} as follows. Let E be a (multi)set of 2m vectors
{a1, b1, . . . , am, bm} such that li = span(ai, bi) for i ∈ [m]. A subset S of E is called a flat if
e /∈ span(S) holds for every e ∈ E \ S. Then, a fractional matroid matching polytope is a
collection of non-negative vectors y ∈ Rm, called fractional matroid matchings, such that

m∑
i=1

yi · dim(span(S) ∩ li) ≤ dim(span(S)) (2)
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holds for all flats S of E. This polytope is a subset of [0, 1]m and the vertices are half-
integral [14]. The polytope is a relaxation of the matroid matching polytope in the sense that
the set of its integer vertices for L is exactly the integer vertices of the matroid matching
polytope for L [30]. The fractional matching polytope for a loopless graph and the matroid
intersection polytope for two linear matroids coincide with the fractional matroid matching
polytope for an appropriately chosen set of lines [30]. The size of a fractional matroid
matching y ∈ Rm is defined as

∑m
i=1 yi. The (perfect) fractional linear matroid matching

problem is to find a perfect fractional matroid matching, which is a fractional matroid
matching of size n/2. A polynomial-time algorithm for fractional linear matroid matching
was given by Chang, Llewellyn, and Vande Vate [6, 7] and this result was extended to
weighted fractional linear matroid matching by Gisjwijt and Pap [14].

If the ground field F is the complex field, perfect fractional matroid matching polytopes
are of particular interest with the connection to rank-two Brascamp–Lieb (BL) polytopes.
BL polytopes, originated from functional analysis [3], are defined from tuples of matrices
and coincide with base polytopes of linear matroids if the ranks of matrices are one and
with perfect fractional matroid matching polytopes if the ranks are two. The computational
complexity of BL polytopes is gaining recent attention due to its importance in diverse
mathematical areas such as invariant theory and quantum information [5, 10, 11, 19].

Recently, Oki and Soma [26] gave a relationship between fractional linear matroid matching
and non-commutative Edmonds’ problem. (Commutative) Edmonds’ problem is to test the
non-singularity of a given linear symbolic matrix A =

∑m
i=1 Aixi. Here, Ai’s are given

n × n matrices over a field F, and A is regarded as a matrix over the rational function
field F(x1, . . . , xm). While the random substitution yields an efficient randomized algorithm,
it is a long-standing open problem whether it can be derandomized. In non-commutative
Edmonds’ problem, the variables x1, . . . , xm are regarded as pairwise non-commutative, that
is, xixj ̸= xjxi if i ̸= j. Then, non-commutative Edmonds’ problem asks to decide if the
non-commutative rank, denoted as nc-rank(A), of A is n or not. Here, the non-commutative
rank is defined as the rank of A as a matrix over the free skew field F<( x1, x2, . . . , xm>) ,
which is the quotient of the non-commutative polynomial ring F⟨x1, x2, . . . , xm⟩ [1]. The
non-commutative rank can also be characterized by the (commutative) rank of the blow-up of
A defined as follows. For d ≥ 1, the dth-order blow-up of A, denoted by A{d}, is the dn× dn

linear symbolic matrix in md2 variables given by

A{d} =
m∑

i=1
Xi ⊗Ai,

where Xi is a d × d matrix with a distinct indeterminate in each entry for i ∈ [m] and ⊗
denotes the Kronecker product. Then, nc-rank(A) is equal to maxd

1
d rank(A{d}) [21] and the

inequality is attained for d ≥ n− 1 [8]. Unlike the commutative problem, non-commutative
Edmonds’ problem is known to be solvable in deterministic polynomial time [12, 21, 18] in the
white-box setting, i.e., the coefficient matrices A1, . . . , Am are given as input. The white-box
setting is weaker than the black-box setting, in which we need to construct a set H, called a
non-commutative hitting set, of tuples of m matrices such that for all A =

∑m
i=1 xiAi with

nc-rank(A) = n, there exists a tuple (T1, T2, . . . , Tm) ∈ H such that det(
∑m

i=1 Ti⊗Ai) is non-
zero. Similar to the commutative setting, a hitting set of exponential size can be constructed
trivially using Shwartz-Zippel Lemma and the polynomial dimension bounds of [8]. For
non-commutative Edmonds’ problem under the black-box setting, even a subexponential-time
deterministic algorithm is unknown [13].

Oki and Soma [26] proved that the non-commutative rank of a linear symbolic matrix (1)
with rank-two skew-symmetric coefficient matrices Ai = aib

⊤
i − bia

⊤
i is n if and only if

there is a perfect fractional matroid matching in the corresponding fractional linear matroid
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matching polytope, analogous to Lovász’ correspondence [23] of commutative rank and
matroid matching. They further showed that nc-rank(A) = 1

2 rank A{2} holds for this A.
That is, the second-order blow-up is sufficient to attain nc-rank(A) if the coefficient matrices
are rank-two skew-symmetric. Based on their results, Oki and Soma developed a randomized
sequential algorithm for fractional linear matroid matching. Their result can be seen as
a reduction from the search version to the decision version for the problem of fractional
linear matroid matching. Then, the randomized algorithm decides the existence of a perfect
fractional matroid matching, which can also be made to run in RNC. However, it is not clear
how to parallelize their reduction.

Contribution

In this paper, we present a quasi-NC algorithm for fractional linear matroid matching,
showing the following main theorem.

▶ Theorem 1.1. Fractional linear matroid matching is in quasi-NC.

Our algorithm comprises two parts: (i) constructing an isolating weight assignment and
(ii) finding the unique maximum-weight fractional matroid matching. This generalizes the
result of [15] as the linear matroid intersection polytope coincides with the fractional linear
matroid matching polytope for an appropriately chosen set of lines.

In the former part of our algorithm, we develop a quasi-NC algorithm to output a quasi-
polynomially large set W of weight assignments such that at least one weight assignment is
isolating for a given fractional linear matroid matching polytope. To this end, we employ a
parallel algorithm by Gurjar, Thierauf, and Vishnoi [16]. For a polytope, they associate a
lattice to each of its faces. Then, they show that if the lattice associated with each face of a
polytope has polynomially bounded near-shortest vectors (lattice vectors whose length is at
most c times the length of the shortest lattice vector for some c > 1), then we can construct a
quasi-polynomially large set of weight assignments such that at least one of them is isolating
for the polytope (for details see Theorem 3.6). In their work, they show that a polytope for
which each face lies in an affine space defined by a totally unimodular matrix satisfies this
property. However, the faces of fractional linear matroid matching polytope do not lie in
affine spaces defined by totally unimodular matrices. Hence, their work does not directly
imply an isolating weight assignment for a fractional linear matroid matching polytope. To
show that the lattice associated with each face of the fractional linear matroid matching
polytope satisfies the above-mentioned property, we characterize the near shortest vectors
of these lattices in terms of cyclic walks of a related graph. Finally, we show a polynomial
bound on the number of near-shortest vectors using known results on near-shortest cyclic
walks in graphs.

The latter part of our algorithm uses the non-commutative matrix representation of
fractional linear matrix matching by Oki and Soma [26]. For matching and linear matroid
intersection, the parallel algorithm almost immediately follows using an isolating weight
assignment. There is a one-to-one correspondence between the monomials of the pfaffian
or determinant of the symbolic matrix and the perfect matchings or common bases of the
matroids. After substituting the indeterminates of the symbolic matrix with univariate
monomials with degrees as weights from the weight assignment, a monomial corresponding
to a matching or a common base is mapped to a univariate monomial with degree equal
to the weight of that matching or common base. So, isolating a matching or a common
base is equivalent to isolating a monomial of the pfaffian or the determinant of the symbolic
matrix, respectively. However, for fractional linear matroid matching, it is not immediately
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clear how an isolating weight assignment implies isolating a monomial in the pfaffian of the
second-order blow-up of the symbolic matrix after the substitution. To show this, we use
the expansion formula of the pfaffian of blow-up of the symbolic matrix and properties of
extreme points of the fractional matroid matching polytope of [26].

Using our algorithm, we further derive an algorithm to construct a non-commutative
hitting set of quasi-polynomial size for non-commutative Edmonds’ problem where each
Ai is restricted to a rank-two skew-symmetric matrix, solving black-box non-commutative
Edmonds’ problem under this constraint in deterministic quasi-polynomial time. Precisely,
we get the following theorem.

▶ Theorem 1.2. For m ∈ Z+ and a field F of sufficiently large size, we can construct
in time quasi-poly(m) a set H of size quasi-poly(m) that consists of m-tuples of 2 × 2
matrices over F such that, for all n × n symbolic matrix A =

∑m
i=1 xiAi with rank-two

skew-symmetric matrix Ai and nc-rank(A) = n, there exists a tuple (T1, T2, . . . Tm) ∈ H that
satisfies det (

∑m
i=1 Ti ⊗Ai) ̸= 0.

Organization

The rest of this paper is organized as follows. Section 2 provides preliminaries on fractional
linear matroid matching and some results and definitions from linear algebra. The proposed
algorithm is described in Sections 3 and 4. Section 3 describes how we can construct an
isolating weight assignment and Section 4 gives an algorithm for finding a perfect fractional
linear matroid matching. Finally, we present a black-box algorithm for non-commutative
Edmonds’ problem with rank-two skew-symmetric coefficients in Section 5.

2 Preliminaries and Notations

We give the notations and definitions that we are going to use. Let R, Z, and Z+ represent
the set of real numbers, integers, and non-negative integers, respectively. For a positive
integer n, we denote by [n] the set of integers {1, 2, . . . , n}.

Let F denote the ground field of sufficient size. For a vector v ∈ Fn and i ∈ [n], vi

denotes the ith component of v. For vectors a, b ∈ Fn, let a ∧ b := ab⊤ − ba⊤. Let A be an
n×m matrix over F. For S ⊆ [n] and T ⊆ [m], A[S, T ] denote the submatrix of A obtained
by taking rows and columns of A indexed by S and T , respectively. If S is all the rows,
we write A[S, T ] as A[T ]. If S and T are singletons, say S = {i} and T = {j}, we simply
write A[{i}, {j}] as A[i, j]. For vector spaces V, W ⊆ Fn, we mean by V ≤ W that V is a
subspace of W . For vectors a1, . . . , ak ∈ Fn, ⟨a1, . . . , ak⟩ denotes the vector space spanned
by a1, a2, . . . , ak.

For two real vectors x, y ∈ Rm, we mean by x ≤ y that xi ≤ yi holds for all i ∈ [m]. The
cardinality of a non-negative vector v ∈ Rm, denoted by |v|, is the L1 norm

∑m
i=1 |vi|. Let 1

denote the all-one vector of appropriate dimension.

2.1 Linear Algebra Toolbox
Here, we present some definitions and results of linear algebra that we use later. The following
result relates to the parallel computation of determinants, assuming that field operations
take unit time.

▶ Theorem 2.1 ([4]). For an n × n matrix A with entries as polynomials in a constant
number of variables with individual degree at most d, det(A) can be computed in polylog(n, d)
time using poly(n, d) parallel processors.

ESA 2024
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For an n×m matrix A = (ai,j)i,j and a p× q matrix B, the Kronecker product, denoted
by A⊗B, is the np×mq matrix defined as

A⊗B =

a1,1B a1,mB

an,1B an,mB

.

For a 2n× 2n skew-symmetric matrix A = (ai,j)i,j , its Pfaffian is defined as

pf(A) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

i=1
aσ(2i−1),σ(2i)

where S2n is the set of permutations σ : [2n] −→ [2n]. The Pfaffian is defined to be zero for
skew-symmetric matrices with odd sizes, and it satisfies (pf(A))2 = det(A).

2.2 Fractional linear matroid matching
Oki and Soma [26] showed that the maximum cardinality of a fractional linear matroid
matching is equal to half the non-commutative rank of the linear symbolic matrix A given
in (1), analogous to Lovász’ result [23]. They further showed that only second-order blow-up
is sufficient to attain the non-commutative rank for A, summarized as follows.

▶ Theorem 2.2 ([26, Theorem 3.1]). Let P be a fractional linear matroid matching polytope
and A the associated linear symbolic matrix defined by (1). Then, it holds that

max
y∈P
|y| = 1

2 nc-rank(A) = 1
4 rank(A{2}).

We use the following refinement of Theorem 2.2. For a half-integral vector y ∈ {0, 1/2, 1}m,

let

A{2}(y) =
m∑

i=1
Yi ⊗Ai,

where Yi = UiU
T
i and Ui is a 2× 2yi matrix with indeterminates in its entries for i ∈ [m]. In

other words, A{2}(y) is the matrix obtained by substituting the 2× 2 symmetric matrix Yi

of rank 2yi into Xi in the second-order blow-up A{2} for i ∈ [m]. Note that rank A{2}(y) ≤
rank A{2}(1) ≤ rank A{2} always holds.

▶ Theorem 2.3 ([26, Lemma 4.5]). Let P be a fractional linear matroid matching poly-
tope and A the associated linear symbolic matrix defined by (1). For y ∈ {0, 1/2, 1}m, if
rank(A{2}(y)) = rank(A{2}) holds, then there exists z ∈ {0, 1/2, 1}m such that z ≤ y, z ∈ P ,
and |z| = maxx∈P |x|. Conversely, if there exists such a point z which is an extreme point of
P , then rank(A{2}(y)) = rank(A{2}) holds.

The matrix A{2}(y) is skew-symmetric because each Yi is symmetric. Oki and Soma also
gave the following expansion formula for the Pfaffian of A{2}(y) that we will use later. Let
Bi = [ai bi] for i ∈ [m].

▶ Theorem 2.4 ([26, Lemma 4.1]). For y ∈ {0, 1/2, 1}m, it holds that

pf(A{2}(y)) =
∑

z∈{0, 1
2 ,1}m,

|z|= n
2 , z≤y

∑
(J1,...,Jm)∈J y(z)

det([(U1 ⊗B1)[J1] · · · (Um ⊗Bm)[Jm]]), (3)
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where J y(z) is the family of m tuples (J1, J2, . . . , Jm) such that

Ji =


{1, 2, 3, 4} if zi = 1,
{1, 2}or{3, 4} if yi = 1, zi = 1/2,
{1, 2} if yi = zi = 1/2,
∅ if zi = 0.

The weighted fractional linear matroid matching problem is to find a fractional matroid
matching y that maximizes w · y for a non-negative weight assignment w : L −→ Z+. Gijswijt
and Pap [14] gave a polynomial time algorithm for weighted fractional linear matroid matching.
They also gave the following characterization for maximizing face of the polytope with respect
to a weight function. It is derived by showing the existence of a solution to the dual of the
linear program of maximizing w · y over the inequalities (2) such that the support of the
solution forms a chain.

▶ Theorem 2.5 (see [14, proof of Theorem 1]). Let L = {l1, l2, . . . , lm} be a set of lines with
li ≤ Fn and w : L −→ Z be a weight assignment on L. Let F denote the set of fractional
linear matroid matchings maximizing w and S ⊆ [m] such that every y ∈ F has ye = 0 for
e ∈ S. Then for some k ≤ n, there exists a k ×m matrix DF and bF ∈ Zk such that

the entries of DF are from {0, 1, 2},
the sum of the entries in any column of DF is exactly two, and
a fractional matroid matching y is in F if and only if ye = 0 for e ∈ S and DF y = bF .

3 Isolating Weight Assignment for Fractional Matroid Matching

In this section, we describe the construction of an isolating weight assignment for fractional
matroid matching with just the number of lines as input. Formally, we show the following.

▶ Theorem 3.1. There exists an algorithm that, given m ∈ Z+, outputs a set W ⊆ Zm
+ of

mO(log m) weight assignments with weights bounded by mO(log m) such that, for any fractional
linear matroid matching polytope P of m lines, there exists at least one w ∈ W that is
isolating for P , in time polylog(m) using mO(log m) many parallel processors.

To prove Theorem 3.1, we first define a set of lattices associated with the faces of the
fractional matroid matching polytope and then prove a polynomial upper bound on the
number of near-shortest vectors of these lattices. Then, we use a result by Gurjar, Thierauf,
and Vishnoi [16] to construct an isolating weight assignment.

For a face F of a polytope, let LF denote the lattice defined by

LF = {v ∈ Zm | v = α(x1 − x2) for some x1, x2 ∈ F and α ∈ R}.

Let λ(L) denote the length of the smallest non-zero vector of a lattice L ⊆ Zm.
Let DF x = bF be a system of equalities defining the affine space spanned by a face F .

Then, LF is exactly the set of integral vectors in the null space of DF , i.e.,

LF = {v ∈ Zm | DF v = 0}.

From Theorem 2.5, we can take DF such that its entries are in {0, 1, 2} and the sum of entries
of every column is 2. Now, we prove the following lemma about the size of the shortest
vectors of these lattices.

ESA 2024
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▶ Lemma 3.2. Let D ∈ {0, 1, 2}p×m be a matrix such that the sum of entries of each column
equals 2. Let LD denote the lattice {v ∈ Zm | Dv = 0}. Then, it holds that

|{v ∈ LD : |v| < 2λ(LD)}| ≤ mO(1).

To prove Lemma 3.2, we introduce additional notions from [28, Definition 3.1]. Let G

be a multigraph with loops and C = v0
e0−→ v1

e1−→ . . .
ek−2−−−→ vk−1

ek−1−−−→ v0 a closed walk of
even length in G with edge repetition allowed. The size of a closed walk C denoted by |C|
is the number of edges in the walk. The alternating indicator vector, denoted by (±1)C ,
of C is defined to be a vector (±1)C :=

∑k−1
i=0 (−1)i

1ei
, where 1e ∈ Rm is the elementary

vector having 1 on position e and 0 elsewhere. We say that C is an alternating circuit if its
alternating indicator vector is non-zero. Note that for an alternating circuit |(±1)C | ≤ |C|.
For x, y ∈ Rm, we say that x is conformal to y, denoted by x ⊑ y, if xiyi ≥ 0 and |xi| ≤ |yi|
holds for all i ∈ [m]. Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let GD be a multigraph with vertex set [p] and m edges defined
as follows. For every e ∈ [m], the eth edge of GD is drawn between vertices s and t if
D[s, e] = D[t, e] = 1 for some s, t ∈ [m] and it is a self-loop on vertex s if D[s, e] = 2 for
some s ∈ [m]. For any lattice vector x ∈ LD, we make the following claim. See Claim 3.5 of
the full version [17] for the proof.

▷ Claim 3.3. For any x ∈ LD, there exists alternating circuits C1, C2, . . . Ct in GD such
that x = (±1)C1

+ (±1)C2
+ · · ·+ (±1)Ct

, (±1)Ci
⊑ x, and |(±1)Ci

| = |Ci| for all i ∈ [t].

Now, we show that all the near-shortest vectors are alternating indicator vectors of an
alternating circuit.

▷ Claim 3.4. Any lattice vector x ∈ LD with |x| < 2λ(LD) is an alternating indicator vector
(±1)C of some alternating circuit C in GD such that |x| = |C|.

Proof. Suppose to the contrary that the claim is not true. From Claim 3.3, there exists
alternating circuits C1, C2, . . . Ct with t ≥ 2 such that x = (±1)C1

+ (±1)C2
+ · · ·+ (±1)Ct

with (±1)Ci
⊑ x and |(±1)Ci

| = |Ci| for all i ∈ [t]. We then have |x| =
∑t

i=1 |(±1)Ci
| ≥

tλ(LD) ≥ 2λ(LD), a contradiction. Hence, x = (±1)C for some alternating circuit C with
|x| = |C|. ◁

Claim 3.4 implies that λ(LD) is equal to the size of the smallest alternating circuit of GD.
It also implies that we just need a bound on the number of alternating indicator vectors that
correspond to alternating circuits of size at most 2λ(LD) to prove Lemma 3.2. The required
bound on the number of near-shortest alternating circuits is given by the following theorem
of Svensson and Tarnawski [28]. (The node-weight of an alternating circuit defined in [28] is
same as its size for our case.)

▶ Theorem 3.5 ([28, Lemma 5.4]). Let G be a graph on n vertices such that the size of the
smallest alternating circuit is λ. Then, the cardinality of the set

{(±1)C : C is an alternating circuit in G of size at most 2λ}

is at most n17.

This completes the proof of Lemma 3.2. ◀

Now, we can directly use the following theorem by Gurjar, Thierauf, and Vishnoi [16].
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▶ Theorem 3.6 ([16, Theorem 2.5]). Let k be a positive integer and P ⊆ Rm a polytope such
that its extreme points are in {0, 1/k, 2/k, . . . , 1}m and there exists a constant c > 1 with

|{v ∈ LF | |v| < cλ(LF )}| ≤ mO(1)

for any face F of P . Then, there exists an algorithm that, given k and m, outputs a set
W ⊆ Zm of mO(log km) weight assignments with weights bounded by mO(log km) such that
there exists at least one w ∈ W that is isolating for P , in time polylog(km) using mO(log km)

many parallel processors.

▶ Remark 3.7. It should be emphasized that the algorithm provided in Theorem 3.6 requires
only k and m and does not access the polytope P itself. Also, the result of [16, Theorem
2.5] gives an algorithm for a polytope with only integral extreme points. However, the proof
can be easily modified to show the above theorem.

Since a fractional matroid matching polytope P is half-integral [14] and from Lemma 3.2,
the number of near-shortest vectors in LF is polynomially bounded for any face F of fractional
matroid matching polytope, the Theorem 3.6 implies Theorem 3.1.

4 Finding Fractional Linear Matroid Matching via Isolation

In this section, we present an algorithm to find a fractional linear matroid matching to
show Theorem 1.1. Let W be a set of weight assignments provided by Theorem 3.1. Let
L = {l1, . . . , lm} be a set of lines with li = ⟨ai, bi⟩ for i ∈ [m] and A the associated matrix (1).
Recall that, for y ∈ {0, 1/2, 1}m, the matrix A{2}(y) is defined as

∑m
i=1 Yi ⊗ Ai, where

Yi = UiU
T
i and Ui is 2 × 2yi matrix with indeterminates in its entries for i ∈ [m]. The

following lemma plays a key role in our algorithm.

▶ Lemma 4.1. Let w ∈ Zm be an isolating weight assignment with distinct weights for a
fractional matroid parity polytope P . Let t1,1, t1,2, t2,1, t2,2 be indeterminates and Ãw be the
2n× 2n matrix obtained by substituting twi

p,q for the (p, q) entry of Ui in A{2}(1) for i ∈ [m]
and p, q ∈ [2]. Then, pf(Ãw) ̸= 0 if and only if there is a perfect fractional matroid matching.
Moreover, it holds that

deg(pf(Ãw)) = 4 max
y∈P, |y|= n

2

w · y,

where deg means the total degree as a polynomial in four indeterminates t1,1, t1,2, t2,1, t2,2.

Proof. Firstly, we show the backward direction: pf(Ãw) ̸= 0 =⇒ pf(A{2}(1)) ̸= 0. This
implies A{2}(1) has full rank, i.e., 2n. From Theorem 2.2, we have

max
y∈P
|y| = 1

2 nc-rank(A) = 1
4 rank(A{2}(1)) = n

2 .

Now, we show the other direction. From theorem 2.4,

pf(A{2}(1)) =
∑

z∈{0, 1
2 ,1}m,

|z|=n/2

∑
(J1,...,Jm)∈J (z)

det([(U1 ⊗B1)[J1] · · · (Um ⊗Bm)[Jm]])

where J (z) is the family of m tuples (J1, J2, . . . , Jm) such that

Ji =


{1, 2, 3, 4} if zi = 1,
{1, 2}or{3, 4} if zi = 1/2,
∅ if zi = 0.

Let Qz =
∑

(J1,...,Jm)∈J (z) det([(U1 ⊗ B1)[J1] · · · (Um ⊗ Bm)[Jm]]) and Q̃z denote Qz after
the substitution. Now, we show the following claim.
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▷ Claim 4.2. For z ∈ {0, 1/2, 1}m, if Q̃z ̸= 0 then, degree of any monomial in Q̃z is 4w · z.

Proof. Let (J1, J2, . . . , Jm) ∈ J (z) and B be the matrix [(U1 ⊗B1)[J1] . . . (Um ⊗Bm)[Jm]]
after the substitution. For i ∈ [m] with Ji ̸= ∅, each entry of (Ui ⊗ Bi)[Ji] has degree wi

after the substitution. This also implies that for a fixed column of B, all the non-zero entries
have the same degree. Hence, if det(B) ̸= 0, the degree of any of its monomials is equal
to the sum of the degrees of the non-zero entries of all the columns. This sum is equal to∑m

j=1 |Jj |.wj = 4w · z. Hence, degree of any monomial in Q̃z is 4w · z. ◁

From [26, Lemma 4.3], Qz ≠ 0 implies that z is a point in fractional matroid polytope. Let
z∗ be the unique fractional matroid matching maximizing w. Hence, using claim 4.2 we can
say that if Q̃z∗ ̸= 0, then pf(Ãw) ̸= 0 with deg(pf(Ãw)) = 4w · z∗ as for any other z in the
polytope deg(Q̃z) < deg(Q̃z∗).

Now, we show that Q̃z∗ ≠ 0. For J = (J1, . . . , Jm) ∈ J (z), let Bz(J) denote the
matrix [(U1 ⊗B1)[J1] . . . (Um ⊗Bm)[Jm]], Qz(J) denote det(Bz(J)) and Q̃z(J) denote the
four variate polynomial obtained by substitution. Let LD(y) = {i ∈ m | yi = a} where
y ∈ {0, 1/2, 1}m and a ∈ {0, 1/2, 1}. Let J = (J1, . . . , Jm) ∈ J (z∗) such that Ji = {1, 2} for
i ∈ L1/2(z∗). After substitution, for i ∈ [m] with Ji ̸= ∅, there are two columns in Bz(J)
such that each non zero entry in those columns has either twi

1,1 or twi
2,1. Hence, every monomial

of Qz∗(J) is mapped to a monomial such that the sum of the powers of t1,1 and t2,1 is∑
i∈L1/2(z∗)∪L1(z∗)

2wi. For any other tuple J ′ ∈ J (z∗), the sum of the powers of t1,1 and t2,1

in the mapping is strictly less. Hence, Q̃z∗ ̸= 0 iff Q̃z∗(J) ̸= 0.
Now, we show that Q̃z∗(J) ̸= 0. Without loss of generality, let z∗

i = 1 for 1 ≤ i ≤ p and
z∗

i = 1/2 for p < i ≤ p + q and 0 otherwise such that p = |L1(z∗)| and q = |L1/2(z∗)|. Then,

Qz∗(J) = det
[

x1
1,1B1 x1

1,2B1 . . . xp
1,1Bp xp

1,2Bp xp+1
1,1 Bp+1 . . . xp+q

1,1 Bp+q

x1
2,1B1 x1

2,2B1 . . . xp
2,1Bp xp

2,2Bp xp+1
2,1 Bp+1 . . . xp+q

2,1 Bp+q

]
.

z∗ is an extreme point of the fractional matroid polytope. From [26, proof of Lemma 4.4]
the above matrix can be transformed into the following matrix by changing the basis and
then permuting the rows and columns:

T ∗ ∗ ∗ ∗ ∗ ∗
Ui1 Ui′

1
∗ ∗ ∗ ∗

Ui2 Ui′
2

∗
Uiq Ui′

q




.

These operations can be done by multiplying it with matrices in GL(2n,R) from both sides.
Note that this does not affect the fact that the determinant of the matrix is non-zero. Here,
Uj is 2× 1 matrix [xj

1,1, xj
2,1]T and ik ̸= i′

k for k ∈ [q] and belong to {p + 1, . . . , p + q}. The
determinant is non-zero when T and [Uik

Ui′
k
] for k ∈ [q] are non-singular. After substitution,

we have [Uik
Ui′

k
] 7→

[
t
wik
1,1 t

wi′
k

1,1

t
wik
2,1 t

wi′
k

2,1

]
. Furthermore, since weights of w are distinct and ik ̸= i′

k,

the matrix is non-singular. The only thing left is to show that T is non-singular after the
substitution. From [26, proof of Lemma 4.4], T is a 4p× 4p matrix that can be defined as
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follows:

T =
[

x1
1,1a′

1 x1
1,1b′

1 x1
1,2a′

1 x1
1,2b′

1 xp
1,1a′

p xp
1,1b′

p xp
1,2a′

p xp
1,2b′

p

x1
2,1a′

1 x1
2,1b′

1 x1
2,2a′

1 x1
2,2b′

1 xp
2,1a′

p xp
2,1b′

p xp
2,2a′

p xp
2,2b′

p

]
.

Here, a′
i, b′

i ∈ F2p such that the matrix D = [a′
1, b′

1, . . . , a′
p, b′

p] is non-singular. Let T ′ denote
the matrix T after the substitution and W = 2

∑p
i=1 wi. By putting t1,2 and t2,1 to 0 in T ′,

the determinant of T ′ is det(D)2
tW
1,1tW

2,2 which is non-zero. In conclusion, we showed

Q̃z∗(J) ̸= 0 =⇒ Q̃z∗ ̸= 0 =⇒ pf(Ã) ̸= 0,

as required. ◀

The following observation, which can be easily verified, claims that we can construct an
isolating weight assignment with distinct weights by a polynomial blow-up in the weights.
Thus, from now on, we assume that the weight assignments have distinct weights.

▶ Observation 4.3. Let w ∈ Zm such that there is a unique z∗ in the fractional matroid
matching polytope maximizing w and N be an integer greater than m2. Then, w′ with
w′

i = Nwi + i is maximized uniquely by z∗ and w′
i ̸= w′

j for i ̸= j.

Algorithm 1 describes our algorithm to find a fractional matroid matching. In the
algorithm, for a fractional linear matroid matching instance given as m rank-two skew-
symmetric n × n matrices A1, . . . , Am, a weight assignment w on [m], and a half-integral
vector v ∈ {0, 1/2, 1}m, we let Ãw(v) =

∑m
i=1 Vi ⊗ Ai, where Vi is the 2 × 2 zero matrix

if vi is 0 otherwise Vi = TiT
T
i . Here, Ti is

[
twi
1,1 twi

1,2
twi
2,1 twi

2,2

]
if vi = 1 and [twi

1,1 twi
2,1]T otherwise.

For a weight assignment w ∈ Zm and e ∈ [m], we denote by we a new weight assignment
on [m] given by we

i = 4wi + 1 if i = e and 4wi otherwise. In addition, 1 and 0 denote the
m-dimensional vectors with all ones and all zeros, respectively. With an isolating weight
assignment for the fractional matroid matching polytope, Algorithm 1 utilizes Lemma 4.1 to
find a perfect fractional matroid matching by computing determinants of matrices whose
entries are polynomials in four variables with quasi-polynomially bounded degrees, which can
be done in quasi-NC. See Section 4 of the full version [17] for detailed proof of correctness
and time complexity of Algorithm 1 and for a brief discussion on how to modify it to solve
the problem of weighted fractional matroid matching.

5 Black-box Algorithm for Non-commutative Edmond’s Problem with
Rank-two Skew-symmetric Coefficients

In this section, we explain that our results can be used to solve black-box non-commutative
Edmonds’ problem with rank-two skew-symmetric coefficients.

We first review the black-box and white-box settings for (commutative) Edmonds’ problem
and polynomial identity testing. Recall that Edmonds’ problem is to test the non-singularity
of a given linear symbolic matrix A =

∑m
i=1 Aixi. Since the non-singularity of A is equivalent

to det(A) = 0, it is a special (and actually equivalent) class of the polynomial identity testing
(PIT) problem, which is to test if a given polynomial is zero. In the white-box setting, a
polynomial is given as an explicit formula such as an algebraic branching program or the
coefficient matrices A1, . . . , Am in Edmonds’ problem, and in the black-box setting, we just
have access to an oracle that gives evaluation of the polynomial at the input. While a random
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Algorithm 1 Quasi-NC algorithm to find a perfect fractional linear matroid matching.

Input: rank-two skew-symmetric matrices A1, . . . , Am ∈ Fn×n

Output: A perfect fractional matroid matching
1: y ← 0
2: Compute a family of weight assignments W as promised by Theorem 3.1.
3: for all w ∈ W do in parallel
4: W ← deg(det(Ãw(1))).
5: if W > 0 then
6: for all e ∈ [m] do in parallel
7: W e ← deg(det(Ãwe(1)))

8: ye ←


1 if W e = 4W + 8
1/2 if W e = 4W + 4
0 otherwise.

9: end for
10: if |y| = n/2 and det(Ãw(y)) ̸= 0 then
11: Output y

12: end for
13: Output “No perfect fractional matroid matching exists.”

substitution yields a randomized polynomial-time algorithm under the black-box setting, it
is a long-standing open problem whether it can be derandomized, even for the white-box
setting.

In the non-commutative Edmonds’ problem, a white-box algorithm requires explicit
matrices A1, . . . , Am as input, the same as the commutative problem. In the black-box setting,
recall from Section 1 that an algorithm is required to construct a non-commutative hitting
set H, that is, a set of m-tuples of square matrices over F such that for all A =

∑m
i=1 xiAi

with Ai ∈ Fn×n for i ∈ [m] and nc-rank(A) = n, there exists (T1, . . . , Tm) ∈ H such that
det (

∑m
i=1 Ti ⊗Ai) ̸= 0. Similar to the commutative setting, a random set H of polynomial

size consisting of tuples of matrices of size at least n − 1 works [8]. Deterministically
finding a hitting set, even of subexponential size, is still open [13]. Nevertheless, some
non-trivial results are known when we put some constraints on symbolic matrices. Gurjar
and Thierauf [15] construct a quasi-polynomial size hitting set when each Ai has rank
one. In this case, rank(A) = nc-rank(A). For a non-commutative algebraic formula with
addition, multiplication, and inversion gates, there exists a symbolic matrix that has full
non-commutative rank if and only if the non-commutative rational function computed by the
formula is “defined” [20]. For such symbolic matrices, Arvind, Chatterjee and Mukhopadhyay
[2] construct a quasi-polynomial size hitting set.

Here, we show Theorem 1.2 using Theorem 3.1 and Lemma 4.1, which deterministically
constructs a hitting set of quasi-polynomial size for the case where each Ai is restricted to a
rank-two skew-symmetric matrix, solving black-box non-commutative Edmonds’ problem
under this constraint in deterministic quasi-polynomial time.

Proof of Theorem 1.2. Let W be the set of weight assignments w : [m] −→ Z+ from The-
orem 3.1 that can be constructed in quasi-poly(m) time. Let D = max

w∈W,i∈[m]
wi and S ⊆ F of

size 2nD + 1. Then, for each w ∈ W and (a, b, c, d) ∈ S4, we put the tuple (T1, T2, . . . , Tm)
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in H such that Ti = ViV
T

i where,

Vi =
[
awi bwi

cwi dwi

]
Let A =

∑m
i=1 xiAi with nc-rank(A) = n and Ai as rank two skew-symmetric matrix for

i ∈ [m]. Note that n ≤ 2m. From Theorem 3.1, there exists an isolating weight assignment
w for fractional linear matroid matching polytope for A. From Lemma 4.1, Ãw is a 2n× 2n

matrix with entries as four variate polynomials with individual degree at most D and
det(Ãw) ̸= 0. It is a four variate polynomial with individual degree at most 2nD. Hence,
from the Schwartz–Zippel lemma, there exists a tuple (T1, T2, . . . , Tm) ∈ H corresponding to
weight assignment w such that det(

∑m
i=1 Ti⊗Ai) is non-zero. The size of H is |W|·|S|4, which

is quasi-polynomially bounded in m and hence can be constructed in time quasi-poly(m). ◀

6 Conclusion

We showed that the problem of fractional linear matroid matching is in quasi-NC. The parallel
complexity of linear matroid matching is still open. We also gave a black-box algorithm
for non-commutative Edmond’s problem for a symbolic matrix A =

∑m
i=1 xiAi where each

Ai is a rank two skew-symmetric matrix. A natural question is whether we can extend our
techniques to design a black-box algorithm when each Ai has rank at most two or some
larger positive integer constant.
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