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Abstract
An α-approximate vertex fault-tolerant distance sensitivity oracle (α-VSDO) for a weighted input
graph G = (V, E, w) and a source vertex s ∈ V is the data structure answering an α-approximate
distance from s to t in G − x for any given query (x, t) ∈ V × V . It is a data structure version
of the so-called single-source replacement path problem (SSRP). In this paper, we present a
new nearly linear-time algorithm of constructing a (1 + ϵ)-VSDO for any directed input graph
with polynomially bounded integer edge weights. More precisely, the presented oracle attains
Õ(m log(nW )/ϵ + n log2(nW )/ϵ2)∗ construction time, Õ(n log(nW )/ϵ) size†, and Õ(1/ϵ) query time,
where n is the number of vertices, m is the number of edges, and W is the maximum edge weight.
These bounds are all optimal up to polylogarithmic factors. To the best of our knowledge, this
is the first non-trivial algorithm for SSRP/VSDO beating Õ(mn) computation time for directed
graphs with general edge weight functions, and also the first nearly linear-time construction breaking
approximation factor 3. Such a construction has been unknown even for undirected and unweighted
graphs. In addition, our result implies that the known conditional lower bounds for the exact SSRP
computation does not apply to the case of approximation.
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1 Introduction

1.1 Background and Our Result
The fault of links and vertices is ubiquitous in real-world networks. In fault-prone networks,
it is important to develop an algorithm that quickly recompute the desired solution for a
given fault pattern. For example, suppose that a client wants to send information to all
guests in the network, but the shortest paths can be disconnected by faults. Then, it needs

∗ The Õ(·) notation omits polylogarithmic factors, i.e., Õ(f(n)) = O(f(n)polylog(n)).
† Throughout this paper, size is measured by the number of words. One word is O(log n) bits.
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to find the shortest paths avoiding all failed entities, so-called replacement paths. In this
paper, we consider the Single Source Replacement Path Problem (SSRP) for directed graph
G = (V (G), E(G)) with positive edge weights, which requires us to find the single-source
shortest paths for all possible single vertex-fault patterns. That is, its output is the distances
from a given source vertex s to any vertex t ∈ V (G) in graphs G − x for every x ∈ V (G).
This problem is known as one of the fundamental problems, not only in the context of
fault-tolerance, but also in the auction theory [21, 27]. While SSRP is also considered in the
edge-fault case, it is easily reduced to the vertex-fault case of SSRP. Hence this paper only
focuses on vertex faults.

A trivial algorithm for SSRP is to solve the single-source shortest path problem on G− x

for each failed vertex x ∈ V (G) \ {s}. The running time of this algorithm is Õ(mn), where n

is the number of vertices and m is the number of edges. While it is an intriguing question
whether non-trivial speedup of computing SSRP is possible or not, a variety of conditional
lower bounds has been presented (see Table 3). Focusing on directed graphs with arbitrary
positive edge weights, Ω(mn) time lower bound in the path comparison model [23] has been
proved by Hershberger, Suri, and Bhosle [22]. A similar fine-grained complexity barrier is
also provided by Chechik and Cohen [10], which exhibits Ω̃(mn1−δ) lower bound for any
small constant δ > 0 under the assumption that there exists no boolean matrix multiplication
algorithm running in O(mn1−δ) time for n×n matrices with a total number of m 1s. Due to
these results, the quest for much faster algorithms essentially requires some relaxation on the
problem setting. The research line considering undirected and/or unweighted graphs recently
yields much progress. For directed and unweighted graphs, a randomized SSRP algorithm
running in Õ(m

√
n + n2) time has been shown [12], which is also proved conditionally tight

under some complexity-theoretic hypotheses.
In this paper, we aim to circumvent the barriers above by admitting approximation.

While such an approximation approach is known and succeeded for the s-t replacement path
problem (RP) [3], there have been no results so far for SSRP. A trivial bottleneck of SSRP is
O(n2) term to output the solution containing the distances for all possible pairs of a failed
vertex and a target vertex. This bottleneck slightly spoils the challenge to approximate SSRP
algorithms of o(m

√
n)+O(n2) running time because it benefits only when m = ω(n3/2) holds.

Hence this paper focuses on the fast construction of the α-approximate vertex fault-tolerant
distance sensitivity oracle (α-VSDO), which is the compact (i.e. o(n2) size) data structure
answering an α-approximate distance from s to t in G − x for any query (x, t). This is
naturally regarded as the data structure version of SSRP, and due to its compactness, the
time for outputting the solution does not matter anymore. There are several results on the
construction of α-DSOs. However, in the case of α = (1 + ϵ), no construction algorithm
running faster than O(m

√
n) time is invented, even for undirected and unweighted graphs

(see Tables 1 and 2). The results explicitly faster than O(m
√

n) time are by Baswana and
Khanna [2] and Bilò, Guala, Leucci, and Proietti [8], which attain only 3-approximation
for undirected graphs. Our main contribution is to solve this open problem positively and
almost completely. The main theorem is stated as follows:

▶ Theorem 1. Given any directed graph G with edge weights in range [1, W ], a source vertex
s ∈ V (G), and a constant ϵ ∈ (0, 1], there exists a deterministic algorithm of constructing
a (1 + ϵ)-VSDO of size O(ϵ−1n log3 n · log(nW )). The construction time and the query
processing time are respectively O(ϵ−1 log4 n · log(nW )(m + nϵ−1 · log3 n · log(nW ))) and
O(log2 n · log(ϵ−1 log(nW ))).

For polynomially-bounded edge weights and ϵ = Ω(1/polylog(n)), one oracle attains Õ(m)
construction time, Õ(n) size, and Õ(1) query processing time, which are optimal up to
polylogarithmic factors. It also deduces an algorithm for (1 + ϵ)-approximate SSRP running
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in Õ(m + n2) trivially. To the best of our knowledge, this is the first non-trivial result
for SSRP/VSDO beating O(mn) computation time for directed graphs with polynomially-
bounded positive edge weights, and also the first nearly linear-time construction of breaking
approximation factor 3. Such a construction has been unknown even for undirected and
unweighted graphs.

We emphasize that nearly linear time construction of approximate DSOs inherently
faces the challenge that oracles must be built without explicitly computing SSRP. If poly(n)
construction time is admitted, one can adopt the two-phase approach which computes the
SSRP at first, and then compresses the computation result into a small-size oracle. In
fact, this approach is adopted by most of known (1 + ϵ)-approximate constructions. It is,
however, impossible in considering Õ(m)-time construction. The high-level structure of
our construction algorithm is the combination of the divide-and-conquer approach used in
Grandoni and Vassilevska Williams [18] and Chechik and Magen[12], and the progressive
Dijkstra algorithm by Bernstein [3] originally designed for solving the approximate s-t
replacement path problem. The crux of our result is to demonstrate that the progressive
Dijkstra provides much useful information for computing approximate SSRP beyond RP, by
carefully installing it into the approach of [12, 18]. In addition, as a by-product, we refine
the original progressive Dijkstra algorithm into a simpler and easy-to-follow form, which is
of independent interest and potentially useful for its future applications.

1.2 Related Work

The known results directly related to our algorithm are summarized in Tables 1, 2, and 3.
We explain some supplementary remark on these tables. The BCHR20 construction [1] is
only the (1 + ϵ)-approximation result which does not rely on the explicit SSRP computation.
However, the construction is based on the information hard to compute in Õ(m) time (the
information HDα(v) presented at Section 3 in [1]). While the BCHR20 does not state the
construction time explicitly, it requires O(mn) time following the authors’ observation. The
SSRP algorithm by Chechik and Magen [12] is referred to as the one for unweighted graphs,
but it can also cover bounded rational edge weights in the range [1, c] with a constant c > 1.
It is not easy to transform this algorithm into an approximate SSRP handling general edge
weights by scaling approaches, because edge weights are lower bounded by one. Some of the
results in Table 1 [4, 14, 20] actually provide the more stronger oracles which support all-pair
or multiple-source queries.

There are a variety of topics closely related to SSRP/DSO. A f -fault-tolerant (approximate)
shortest path tree is a subgraph of the input graph G which contains a (approximate) shortest
path tree in G−F for any faulty edge set F of size at most f [9, 28, 29]. Any 1-fault tolerant
shortest path tree can be seen as a graph representation of the output of (approximate)
SSRP, and its construction is closely related to the construction of DSOs. In fact, some of
the results in Table 1 also include the construction of fault-tolerant shortest path trees [1, 8].

The oracles and algorithms covering multiple failures are also investigated [5, 11, 13,
16, 17, 31]. The most general structure is the f-sensitivity all-pairs oracle, which returns
an exact or approximate length of the shortest replacement path avoiding a given faulty
edge set F such that |F | ≤ f holds. Currently, most of oracles covering general f faults
assume undirected graphs, and the construction time and the oracle size are essentially more
expensive than single-source 1-sensitivity oracles.

ESA 2024
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Table 1 Known Results for EDSO/VDSO. The column “problem” describes the target problem
of each result, where the first additional character V/E represents the fault model (vertex fault/edge
fault). The column “input” describes the type of graphs each result covers. In the notation X/Y ,
X is either D (directed) or U (undirected), and the Y is either U (unweighted), + (positive edge
weight), or ± (arbitrary edge weight). The column “apx.” represents approximation factors. The
symbol L is the shorthand of ϵ−1 log(nW ). The dagger mark † implies some additional features not
described in the table, which is explained in Section 1.2.

ref problem input apx. size construction query
DT02[14] EDSO† D/+ 1 O(n2 log n) Õ(mn2) Õ(1)
BK09[4] EDSO† D/+ 1 O(n2) Õ(mn) O(1)
BK13[2] VDSO U/+ 3 O(n log n) Õ(m) O(1)
BK13[2] VDSO U/U 1 + ϵ O( n

ϵ3 + n log n) O(m
√

n
ϵ

) O(1)
BGLP16[7] EDSO U/+ 2 O(n) Õ(mn) O(1)
BGLP16[7] EDSO U/+ 1 + ϵ O( n

ϵ
log 1

ϵ
) Õ(mn) O(log n · 1

ϵ
log 1

ϵ
)

GS18[20] ESDO† U/U 1 Õ(n3/2) Õ(mn) Õ(1)
BGLP18[8] EDSO U/+ 3 O(n) Õ(m) O(1)
BGLP18[8] EDSO U/U 1 + ϵ O( n

ϵ3 ) O(m
√

n
ϵ

) O(1)
BCHR20[1] VDSO D/+ 1 + ϵ O(nL) O(mn)† O(log L)
BCFS21[6] ESDO U/U 1 Õ(n3/2) Õ(m

√
n + n2) Õ(1)

DG22[15] ESDO U/U 1 Õ(n3/2) Õ(m
√

n) Õ(1)
This paper VDSO D/+ 1 + ϵ O(nL log3 n) Õ(mL + nL2) O(log2 n · log L)

Table 2 Known Upper Bounds for RP and SSRP, where ω is the matrix multiplication exponent,
and α(n, m) is the inverse of the Ackermann function.

ref problem input apx. time
MMG89 [24] ERP U/+ 1 O(m + n log n)
NPW03 [26] VRP U/+ 1 O(m + n log n)
NPW03 [25] ERP U/+ 1 O(mα(n, m))

Ber10 [3] ERP D/+ 1 + ϵ Õ(m log L)
Vas11 [32] ERP D/± 1 Õ(W nω)
GV12 [18] ESSRP D/± 1 Õ(W

1
4−ω n2+ 1

4−ω )
GV12 [18] ESSRP D/+ 1 Õ(W nω)
RZ12 [30] ERP D/U 1 O(m

√
n)

CC19 [10] ESSRP U/U 1 Õ(m
√

n + n2)
CM20 [12] ESSRP D/U† 1 Õ(m

√
n + n2)

GPWX21 [19] ESSRP D/± 1 Õ(M
5

17−4ω n
36−7ω
17−4ω )

2 Preliminary

Let V (H) and E(H) denote the vertex and edge set of a directed graph H respectively, and
wH(u, v) or wH(e) denote the weight of edge e = (u, v) in H. Let G be the input directed
graph of n vertices and m edges with integer edge weights within [1, W ]. We assume edge
weights are polynomially bounded, i.e., W = poly(n). Since we only consider approximate
shortest paths, the assumption of integer edge weights is not essential, because real weights
can be rounded with an appropriate precision.

For a vertex set U ⊆ V (H) of a graph H, H −U denotes the graph obtained by removing
the vertices in U and the edges incident to them from H. Similarly, for an edge set U ⊆ E(H),
H−U denotes the graph obtained by removing the edges in U . We often use the abbreviated
notation H − u when U consists of a single element u. Let NH(u) be the set of the neighbors
of u ∈ V (H) in H. For a vertex subset U ⊆ V (H), let Ψ(U) be the set of the edges incident
to a vertex u ∈ U . Note that Ψ(U) contains the edges whose endpoints are both in U . Given
a set X of vertices or edges of H, we define H[X] as the subgraph induced by X.
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Table 3 Known conditional lower bounds for RP and SSRP. All results apply to the case of exact
computation.

ref problem input time model/hypothesis
HSB07 [22] ERP D/+ Ω(m

√
n) Path comparison model

HSB07 [22] ESSRP D/+ Ω(mn) Path comparison model
VW18 [33] ERP D/± Ω(n3−δ) log W no subcubic APSP
VW18 [33] ERP D/U Ω(mn1/2−δ) no subcubic BMM
CC19 [10] ESSRP U/U Ω(mn1/2−δ + n2) no O(mn1−δ′

) BMM
CC19 [10] Comb. E-SSRP U/+ Ω(mn1−δ) no Comb. subcubic APSP
CC20 [12] ESSRP U/+ Ω(mn1/2−δ + n2) no subcubic APSP

A sequence of vertices A = ⟨a0, a1, . . . , ak−1⟩ such that (ai, ai+1) ∈ E(H) (0 ≤ i < k − 1)
is called a path from a0 to ak−1 in H. We use the terminology “path” for a simple path
(i.e., ai for 0 ≤ i ≤ k − 1 are all different). For simplicity, we often deal with a path A as
the path subgraph corresponding to A. We define A[i, j] as its sub-path ⟨ai, ai+1, . . . , aj⟩,
and w(A) as the weighted length of A. The (directed) distance distH(u, v) from u to v in
H is the length of the u-v shortest path in H. For any set Σ of paths, we define minL(Σ)
as minL(Σ) = min{w(Q) | Q ∈ Σ}. We also define MinP(Σ) as the path Q ∈ Σ of length
minL(Σ). If two or more paths have length minL(Σ), an arbitrary one of them is chosen as a
canonical path.

The problem considered in this paper is defined as follows.

▶ Definition 2 ((1 + ϵ)-VSDO). A (1 + ϵ)-VSDO for a directed graph G with positive weights,
a single source s ∈ V (G), and a positive constant ϵ ∈ (0, 1] is the data structure supporting
query dso-query(vf , x) for any failed vertex vf ∈ V (G) \ {s} and destination t ∈ V (G) which
returns a value satisfying distG−vf

(s, t) ≤ dso-query(vf , x) ≤ (1 + ϵ) · distG−vf
(s, t).

3 Technical Outline

In our construction, we recursively construct the oracle based on the centroid bipartition,
which is the approach also adopted in [18] and [12]. Given a tree T ′ of n vertices, a centroid
z ∈ V (T ′) of T ′ is the vertex in V (T ′) such that any connected component of T − z contains
at most n/2 vertices. Using the centroid z, one can split T ′ into two edge-disjoint connected
subtrees T ′

1 and T ′
2 of T ′ such that E(T ′

1) ∪ E(T ′
2) = E(T ′), V (T ′

1) ∩ V (T ′
2) = {z}, and

n
3 ≤ |V (T ′

1)|, |V (T ′
2)| ≤ 2n

3 , which we call the centroid bipartition of T ′. If T ′ is a rooted tree,
we treat both T ′

1 and T ′
2 also as rooted trees. The split tree containing the original root s is

referred to as T ′
1, whose root is s, and the other one is referred to as T ′

2, whose root is z′. It
is easy to find the centroid bipartition T ′

1 and T ′
2 from T ′ in O(n) time. We also denote the

s-z path in T ′ by PT ′ .
Given the input graph G and a source vertex s, our algorithm first constructs a shortest

path tree T rooted by s, and its centroid bipartition T1 and T2. The whole oracle for G and
s consists of three sub-oracles. Given a query (x, f) ∈ (V (G) \ {s})×V (G), they respectively
handle the three cases below (see Fig. 1).
1. x ∈ V (PT ) and t ∈ V (T2) \ {z}
2. x ∈ V (T2) \ {z} and t ∈ V (T2) \ {z}
3. x ∈ V (T1) and t ∈ V (T1)
Notice that, in the first case, we use x ∈ V (PT ) instead of x ∈ V (T1); this is only the
non-trivial situation because distG(s, t) = distG−x(s, t) obviously holds if x ̸∈ V (PT ). The

ESA 2024
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𝑇1

𝑠

𝑧

𝑇2

𝑃
𝑥

𝑡

(a) Case1

𝑇1

𝑠

𝑧

𝑇2

𝑃

𝑥

𝑡

(b) Case2

𝑇1

𝑠

𝑧

𝑇2

𝑃

𝑥

𝑡

(c) Case3

Figure 1 Three cases in the oracle construction.

sub-oracles for the second and third cases are recursively constructed for the graphs G2 and
G1 obtained by slightly modifying G[V (T2)] and G[V (T1)]. Since the modification does not
increase the sizes of G1 and G2 so much from G[V (T1)] and G[V (T2)], one can guarantee
that the recursion depth is logarithmic. Hence the total construction time is easily bounded
by Õ(m) if the times of constructing the first-case sub-oracle, G1, and G2 are all Õ(m).

3.1 Sub-oracle for the First Case
The precise goal for the first case is to develop a Q-faulty (1 + ϵ1)-VSDO, which is a (1 + ϵ1)-
approximate VSDO only supporting the faults on a given path Q, which is formally defined
as follows:

▶ Definition 3 (Q-faulty (1 + ϵ1)-VSDO). A Q-faulty (1 + ϵ1)-VSDO for a directed graph G

with positive weights, a source vertex s ∈ V (G), and a path Q from s is the data structure
supporting the query pf-queryQ(x, t) for any x ∈ V (Q) and t ∈ V (G) which returns a value
satisfying distG−x(s, t) ≤ pf-queryQ(x, t) ≤ (1 + ϵ1) · distG−x(s, t).

Obviously, the PT -faulty (1 + ϵ1)-VSDO for G is the sub-oracle covering the first case,
where we need to set ϵ1 = ϵ/(3 log n) to deal with the accumulation of approximation
error in the recursive construction (this point is explained later in more details). Let
PT = ⟨v0, v1, . . . , vp−1⟩ (s = v0, z = vp−1), and vf be the alias of the faulty vertex x ∈ V (PT ).
The construction of the PT -faulty (1 + ϵ1)-VSDO follows a generalized and simplified version
of the approximate s-t replacement path algorithm by Bernstein [3]. We first introduce two
types for s-t paths in G− vf (see also Fig. 2).

▶ Definition 4 (Jumping and departing paths). For any failed vertex vf ∈ V (PT ) \ {s} and
destination t ∈ V (G), a s-t path R in G − vf is called a departing path avoiding vf if it
satisfies the following two conditions (C1) and (C2):

(C1) The vertex subset V (R) ∩ V (PT [0, f − 1]) induces a prefix of R.
(C2) (V (R) \ {t}) ∩ V (PT [f + 1, p− 1]) = ∅.

A s-t path R in G− vf is called a jumping path avoiding vf if it satisfies the condition (C1)
and (C3) below:

(C3) (V (R) \ {t}) ∩ V (PT [f + 1, p− 1]) ̸= ∅.
We call the last vertex of the prefix induced by V (R) ∩ V (PT [0, f − 1]) the branching vertex
of R, which we refer to as b(R). In addition, for any jumping path R avoiding vf , we define
c(R) as the first vertex in V (R)∩ V (PT [f + 1, p− 1]) (with respect to the order of R), which
we refer to as the coalescing vertex of R. Given any failed vertex vf ∈ V (PT ) \ {s} and
destination t ∈ V (G), ddistG−vf

(s, t) and jdistG−vf
(s, t) respectively denote the lengths of the

shortest departing and jumping paths from s to t avoiding vf . Since any path satisfies either
(C2) and (C3), and one can assume that any shortest s-t path in G−vf satisfies (C1) without
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𝑇1

𝑠

𝑧

𝑇2

𝑃
𝑣𝑓

𝑡

𝑏 𝑅

(a) departing path

𝑇1

𝑠

𝑧

𝑇2

𝑃
𝑣𝑓

𝑡

𝑏 𝑅

𝑐 𝑅

(b) jumping path

Figure 2 Examples of departing and jumping paths. b(R) represents the branching vertex on
each path, and c(R) represents a coalescing vertex in (b).

loss of generality, distG−vf
(s, t) = min{ddistG−vf

(s, t), jdistG−vf
(s, t)} holds. Hence it suffices

to construct two data structures approximately answering the values of ddistG−vf
(s, t) and

jdistG−vf
(s, t) for any vf ∈ V (PT ) and t ∈ V (T2) respectively. For ddistG−vf

(s, t), we realize
it as an independent sub-sub-oracle:

▶ Definition 5 (DP-Oracle). A Q-faulty (1+ϵ1)-DPO (DP-oracle) for a graph G, a source ver-
tex s ∈ V (G), and a path Q from s is the data structure supporting the query dp-query(x, t) for
any x ∈ V (Q) and t ∈ V (G) which returns a value satisfying ddistG−x(s, t) ≤ dp-query(x, t) ≤
(1 + ϵ1) · ddistG−x(s, t).

It should be noted that our definition of PT -faulty (1 + ϵ1)-DPOs supports queries for all
t ∈ V (G), not limited to V (T2). This property is not necessary for addressing the first case,
but used in other cases.

The key technical ingredient of implementing DP-oracles is the progressive Dijkstra
algorithm presented in [3]. We first introduce several notations and terminologies for
explaining it: since V (R) ∩ V (PT [0, f − 1]) = V (R) ∩ V (PT ) necessarily holds for any
departing path avoiding vf , the branching vertex b(R) is the last vertex of the path induced
by V (R) ∩ V (PT ), i.e., b(R) is determined only by R, independently of vf . It allows us to
treat departing paths without association of avoiding vertex vf . That is, the sentence “a
departing path R with branching vertex b(R)” means that R is a departing path avoiding
some successor of b(R) (to which we do not pay attention). Assume that p = |V (PT )|
is a power of 2 for simplicity. Given 0 ≤ i ≤ log p and 0 ≤ j < 2i, we define Ii

j as
Ii

j = PT [p · j/2i, p · (j + 1)/2i − 1]. Intuitively, for each i, Ii
0, Ii

1, . . . Ii
2i−1 form a partition of

PT into 2i sub-paths of length p/2i (see Fig. 3). For any sub-path I of PT , let Γ(I, t) be
the set of all s-t departing paths R such that b(R) ∈ V (I) holds. Roughly, the progressive
Dijkstra provides a weaker form of the approximate values of minL(Γ(Ii

j , t)) for all i and
j in Õ(m/ϵ1) time, where “weaker form” means that it computes minL(Γ(Ii

j , t)) such that
(1 + O(ϵ1/ log n)) · minL(Γ(Ii

j , t)) < min0≤j′<j minL(Γ(Ii
j′ , t)) holds. The intuition of this

condition is that the progressive Dijkstra computes minL(Γ(Ii
j , t)) only when it is not well-

approximated by the length of the best departing path already found. Letting I be the set
of Ii

j for all i and j, for any failed vertex vf ∈ V (PT ), the prefix PT [0, f − 1] is covered by a
set C ⊆ I of at most O(log p) sub-paths in I (see the grey intervals of Fig. 3). Since the
branching vertex of the shortest s-t departing path avoiding vf obviously lies on PT [0, f − 1],
ddistG−vf

(s, t) = minI∈C minL(Γ(I, t)) holds. By a careful analysis, it is proved that this
equality provides a (1 + ϵ1)-approximation of ddistG−vf

(s, t) by using the outputs of the
progressive Dijkstra as approximation of minL(Γ(I, t))‡.

‡ The equality for computing ddistG−vf
(s, t) actually used in the DP-oracle is further optimized using

some additional properties of the progressive Dijkstra, which avoids the explicit construction of C (see
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𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

𝐼0
4 𝐼1

4 𝐼2
4 𝐼3

4 𝐼4
4 𝐼5

4 𝐼6
4 𝐼7

4 𝐼8
4 𝐼9

4 𝐼10
4 𝐼11

4 𝐼12
4 𝐼13

4 𝐼14
4 𝐼15

4

𝐼0
3 𝐼1

3 𝐼2
3 𝐼3

3 𝐼4
3 𝐼5

3 𝐼6
3 𝐼7

3

𝐼0
2 𝐼1

2 𝐼2
2 𝐼3

2

𝐼0
1 𝐼1

1

𝐼0
0

Figure 3 Example of partition of PT (p = 16). The set of grey intervals is an example of C, for
vertex v7.

We explain how jumping paths are handled. Let R be the shortest s-t jumping path
avoiding vf ∈ V (PT ). Since the path from the coalescing vertex c(b) to t in T (of length
distG(c(b), t)) is not disconnected by vf , one can assume that the suffix of R from c(b) is
the path in T without loss of generality. Then the suffix necessarily contains z, and thus
it seems that jdistG−vf

(s, t) = distG−vf
(s, z) + distT (z, t) holds. Unfortunately, it does not

always hold, because the shortest s-z replacement path avoiding vf and the shortest z-t path
in T might intersect. However, in such a case, ddistG−vf

(s, t) < jdistG−vf
(s, t) necessarily

holds and thus the value from the DP-oracle well approximates distG−vf
(s, t). Hence it is

safe to use the above equality in our case. For computing the approximate values of the
right side of the equality for any vf ∈ V (PT ) and t ∈ V (T2) \ {z}, it suffices to store the
values distG−vf

(s, z) for all vf ∈ V (PT ) approximately. We compute those values using the
Bernstein’s algorithm [3] which runs in Õ(m/ϵ1) time.

3.2 Construction of G2

The construction of G2 for case 2 is relatively simple. Let R be the shortest s-t replacement
path from s to t ∈ V (T2) avoiding a failed vertex x ∈ V (T2). A key observation is that one
can assume that R does not contain any backward edge from V (T2) \ {z} to V (T1): if R

goes back from V (T2) to V (T1) through an edge (u, v), one can replace the prefix of R up
to v by the shortest path from s to v in T1 (See Fig. 4), which never increases the length
of R because s-v path in T1 is the shortest path in G. Notice that the s-v path in T1 does
not contain the failed vertex since x ∈ V (T2) \ {z}. This fact implies that R consists of the
prefix contained in T1 and the suffix contained in G2 which are concatenated by a forward
edge from V (T1) to V (T2) \ {z}. This observation naturally yields our construction of G2,
where all the vertices in V (T1) \ {s} are deleted, and s and each vertex u ∈ V (T2) \ {z} is
connected by edge (s, u) of weight wG2(s, u) = distG[Ψ(V (T1))](z, u) (See Fig. 5). The weights
are computed just by running Dijkstra, which takes Õ(m) time. Intuitively, the added edge
(s, u) corresponds to the prefix of R up to the first vertex in V (R) ∩ V (T2). It should be
noted that the edges from s are safely usable, that is, the paths corresponding to the added
edges do not contain the failed vertex x as stated above. The precise construction of G2
follow the procedure below:
1. G2 ← G[V (T2) \ {z}]
2. Add s to G2.
3. Calculate the distance distG[Ψ(V (T1))](s, u) for each vertex u ∈ V (T2) \ {z} by running the

standard Dijkstra in G[Ψ(V (T1))].

Lemma 11 for the details).
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𝑇1

𝑠

𝑧

𝑇2

𝑥

𝑡

𝑢 𝑣

(a) The original R avoiding x

𝑇1

𝑠

𝑧

𝑇2

𝑥

𝑡

𝑢 𝑣

(b) A shorter path avoiding x

Figure 4 An Example of the Case that E(R) contains a backward edge from V (T2) to V (T1).

𝐺 𝜕 𝑉 𝑇1

𝑠

𝑧

𝐺 𝑉 𝑇2

(a) Graph G[Ψ(V (T2))] (blue subgraph)

𝐺 𝑉 𝑇2

𝑠

(b) Graph G2

Figure 5 Graph G[Ψ(V (T2))] and the construction of G2.

4. Add the edge (s, u) of weights distG[Ψ(V (T1))](s, u) to G2 for each vertex u ∈ V (T2) \ {z}
satisfying distG[Ψ(V (T1))](s, u) <∞.

The sub-oracle for G2 is a (1 + ϵ1)-VSDO for G2 and the newly added source s, which is
constructed recursively. The correctness of the constructed sub-oracle relies on the following
lemma.

▶ Lemma 6. For any failed vertex x ∈ V (T2) \ {z} and destination t ∈ V (T2) \ {z},
distG2−x(s, t) = distG−x(s, t) holds.

3.3 Construction of G1

We show the construction of G1 for case 3. If the shortest s-t replacement path avoiding x

does not cross G1 = G[V (T2) \ {z}], the recursive oracle for G[V (T1)] well approximates its
length. However, paths crossing G1 are obviously omitted in such a construction. To handle
those omitted paths, we augment G[V (T1)] with an edge set F , i.e G1 = G[V (T1)] + F . Let
R be the shortest s-t replacement path avoiding x, and assume that R crosses G1. The more
precise goal is to construct F such that, for any sub-path(s) R′ of R whose internal vertices
are all in V (G1), there exists a corresponding edge e ∈ F from the first vertex of R′ to the
last vertex of R′ with a weight approximately equal to w(R′). In our construction, the set F

is the union of the edge sets F1 and F2 provided by two augmentation schemes respectively
addressing the two sub-cases of x ̸∈ V (PT ) and x ∈ V (PT ).

Consider the first scheme which constructs F1 coping with the sub-case of x ̸∈ V (PT ).
We denote by (u, w) the last backward edge from G1 to G[V (T1)] in R (with respect to the
order of R). One can assume that the sub-path of R from s to u is the path of T without loss
of generality (recall that this sub-path does not contain x by the assumption of x ∈ V (T1)
and x ̸∈ V (PT )). Then R necessarily contains z. In addition, the length of the sub-path from
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𝐺 𝑉(𝑇1)

𝑠

𝑧

𝐺 𝜕 𝑉 𝑇2

(a) Graph G[Ψ(V (T2) \ {z})] (green subgraph)

𝐺 𝑉(𝑇1)

𝑠

𝑧

(b) Graph G[V (T1)] + F1

Figure 6 Construction of F1.

z to w is equal to distG[Ψ(V (T2))](z, w). Hence this case is handled by adding to G[V (T1)] the
edges (z, u) for each u ∈ V (T1) of weight w(z, u) = distG[Ψ(V (T2)\{z})](z, u) (See Fig. 6). The
weights of added edges are computed just by running Dijkstra with source z in G[Ψ(V (T2))],
which takes Õ(m) time. Since we call the recursive oracle for G1 only when the failed vertex
x lies in G1, the paths corresponding to the edges in F1 are safely usable.

In the sub-case of x(= vf ) ∈ V (PT ), we only have to consider the situation that R is a
jumping-path (i.e., jdistG−x(s, t) < ddistG−x(s, t)), because the DP-oracle constructed in the
first case supports the query for any destination t ∈ V (G), not only for t ∈ V (T2). Then
there are the following two possibilities:

The suffix from c(R) contains a vertex in V (G1).
The prefix of R up to c(R) contains a vertex in V (G1).

Note that these two possibilities are not exclusive, and thus both can simultaneously happen.
The first possibility is handled by the augmentation with F1. Let (u, w) be the last backward
edge from G1 to G[V (T1)] in R. Due to the case assumption of jdistG−x(s, t) < ddistG−x(s, t),
one can assume that the sub-path from c(R) to u is the path in T containing z (recall the
argument of handling jumping paths in Section 3.1). The edge from z to w corresponding to
the sub-path of R from z to w has been already added as an edge in F1. Hence it suffices to
construct F2 for coping with the second possibility. The baseline idea is to add the edges
corresponding to the sub-path of R from b(R) to c(R). Unfortunately, a straightforward
application of such an idea for all R (over all possible combinations of vf and t) results in
a too large cardinality of F2. Instead, we add only a few edges determined by the inside
data structure of the DP-oracle which “approximate” the sub-paths from b(R) to c(R) for all
possible R. The intuition behind this idea is the observation that the prefix of any jumping
path R up to c(R) is a shortest departing path from s to c(R) with branching vertex b(R).
That is, the b(R)-c(R) sub-path of R is the suffix of MinP(Γ(Ii

j , c(R))) from its branching
vertex for some i and j satisfying b(R) ∈ Ii

j . It naturally deduces the construction of F2 by
adding the edges corresponding to the suffixes of the paths computed by the progressive
Dijkstra, because those paths well approximate MinP(Γ(Ii

j , v)) for all possible triples (i, j, v).
The safe usability of the edges in F2 is slightly delicate. Assuming the second sub-case of

x ∈ V (PT ), any path Q′ corresponding to an edge in F2 is certainly safe because Q′ is the
suffix of a departing path Q from b(Q) and thus does not intersect V (PT ). However, in the
first sub-case of x ̸∈ V (PT ), Q′ might be unavailable, although the corresponding edge in F2
is still available. Then the recursive oracle for G1 = G[V (T1)] + F can return an erroneous
shorter length due to the existence of the edges in F2 if the failed vertex vf does not lie in
PT . Fortunately, such an error never happens, because if vf does not lie on PT , the whole of
PT is available, and using the sub-path from b(Q) to c(Q) of PT always benefits more than
using the added edge (b(Q), c(Q)). That is, one can assume that the shortest s-t replacement
path does not contain any edge in F2 without loss of generality if vf ̸∈ V (PT ) holds.
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In summary, the construction of G1 follows the procedure below.
1. G1 ← G[V (T1)].
2. Calculate the distance distG[Ψ(V (T2))](z, u) for each vertex u ∈ V (T1) by running the

standard Dijkstra in G[Ψ(V (T2))].
3. Add the edge (z, u) of weights distG[Ψ(V (T2))](z, u) to G1 for each vertex u ∈ V (T1)

satisfying distG[Ψ(V (T2))](z, u) <∞.
4. For each vertex vc ∈ V (PT ), 0 ≤ i ≤ log p and (·, ℓ, vb) ∈ upd(i, vc), add the edge (vb, vc)

of weights ℓ− distT (s, vb) to G1.

The sets of the edges added in step 3 and step 4 respectively correspond to F1 and F2.
If the constructed graph G1 has parallel edges, only the one with the smallest weight is
retained and the others are eliminated. However, for simplicity of the argument, we assume
that those parallel edges are left in G1 without elimination. The correctness of the sub-oracle
recursively constructed for G1 is guaranteed by the following lemma.

▶ Lemma 7. For any failed vertex x ∈ V (T1) and destination t ∈ V (T1), the following
conditions hold:

If x ̸∈ V (PT ), distG1−x(s, t) = distG−x(s, t).
If x ∈ V (PT ) and jdistG−x(s, t) < ddistG−x(s, t) holds, distG−x(s, t) ≤ distG1−x(s, t) ≤
(1 + ϵ1) · distG−x(s, t).
Otherwise, distG−x(s, t) ≤ distG1−x(s, t).

Notice that if neither of the first and second conditions are satisfied, the DP-oracle returns the
correct approximate distance (recall the discussion in Section 3.3). Then what the sub-oracle
for G1 must avoid is to output an wrongly smaller value. It is ensured by the third condition.

Finally, we remark on the accumulation of approximation factors. Since the weights of
edges in F2 (1 + ϵ1)-approximate the length of the sub-paths from b(R) to c(R), the graph G1
only guarantees that there exists a s-t path avoiding vf whose length is (1+ϵ1)-approximation
of wG(R). Hence even if we construct an (1 + ϵ1)-VSDO for G1, its approximation factor as
a oracle for G is (1 + ϵ1)2. Due to O(log n) recursion depth, the approximation factor of our
oracle finally obtained becomes (1 + ϵ1)O(log n) = 1 + O(ϵ1 log n), which is the reason why we
need to set up ϵ1 = ϵ/(3 log n).

4 Whole Construction and Query Processing

In this section, we summarize the whole construction of (1 + ϵ)-VSDO, and present the
details of the query processing. As mentioned in Section 3, we recursively construct the
sub-oracles for G1 and G2 (for their new sources s). The recursion terminates if the number
of vertices in the graph becomes at most 6. At the bottom level, the query is processed
by running the standard Dijkstra, which takes O(1) time. Let G1 be the input graph,
and G2i and G2i+1 be the graphs G1 and G2 for Gi. We denote the shortest path tree
of Gi by Ti, its centroid by zi, and the path from s to zi in Ti by Pi. We introduce the
recursion tree, where each vertex is a graph Gi, and G2i and G2i+1 are the children of Gi

(if they exist). We define Gh = {Gi | 2h ≤ i ≤ 2h+1 − 1}, i.e., Gh is the set of Gi with
depth h in the recursion tree. Since the centroid bipartition split Ti into two edge disjoint
subtrees of size at most 2n/3, the recursion depth is bounded by O(log n), and the total
number of recursive calls is O(n). Since one recursive call duplicates the centroid z (into G1
and G2), the number of vertices can increase. But the total increase is bounded by O(n),
and thus we have

∑
G′∈Gh

|V (G′)| = O(n). On the increase of edges, the number of edges
added to G1 is bounded by the number of forward edges from V (T1) to V (T2) \ {z}. The
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Algorithm 1 Gi. Query(x, t).

1: if x is not an ancestor of t in Ti then
2: return distTi(s, t)
3: if |V (Gi)| ≤ 6 then
4: return distGi−x(s, t)
5: if x ∈ V (Pi) and t ∈ V (G2i+1) then
6: return Gi.pf-query(x, t)
7: if x ∈ V (G2i) and t ∈ V (G2i) then
8: return min(G2i.dso-query(x, t), Gi.dp-query(x, t))
9: if x ∈ V (G2i+1) and t ∈ V (G2i+1) then

10: return G2i+1.dso-query(vf , t)

number of edges in F1 is also bounded by the number of backward edges from V (T2) \ {z}
to V (T1). Since those forward/backward edges are deleted by the partition, the actual
increase is bounded by |F2|, which satisfies |F2| = Õ(n/ϵ1) (see Lemma 14). Hence we have∑

G′∈Gh
|E(G′)| = Õ(m + n/ϵ1). It implies that the total time spent at each recursion level

is Õ(m/ϵ1 + n/ϵ2
1), and thus the total running time over all recursive calls is Õ(m/ϵ1 + n/ϵ2

1).
The size of the whole oracle is Õ(n/ϵ1) because at each recursion level the data structure of
size Õ(n/ϵ1) is created.

The implementation of dso-query(x, t) is presented in Algorithm 1, which basically follows
the recursion approach explained in Section 3. We use notations Gi.dso-query, Gi.pf-query,
and Gi.dp-query for clarifying the graph to which the algorithm queries. Since the query
processing traverses one downward path in the recursion tree unless x and t is separated by
the partition. If x ∈ V (G2i) and t ∈ V (G2i+1) happens, the case 1 of Section 3 (or the trivial
case of x ̸∈ V (Pi)) applies, and then no further recursion is invoked. The value returned
as the answer of Gi.dso-query(x, t) is the minimum of all query responses. It consists of at
most O(log n) calls of pf-query and dp-query. Since each call takes O(log n · log(ϵ−1 log(nW )))
time, the query time for dso-query(x, t) is O(log2 n · log(ϵ−1 log(nW ))). In summary, we have
the following three lemmas.

▶ Lemma 8. The construction time of the (1 + ϵ)-VSDO for G is O(ϵ−1 log4 n · log(nW )(m +
nϵ−1 · log3 n · log(nW ))) and the size of the constructed oracle is O(ϵ−1n log3 n · log(nW )).

▶ Lemma 9. For any x ∈ V (G) \ {s} and t ∈ V (G), the running time of G.dso-query(x, t)
is O(log2 n · log(ϵ−1 log(nW ))).

▶ Lemma 10. For any x ∈ V (G) \ {s} and t ∈ V (G), distG−x(s, t) ≤ dso-query(x, t) ≤
(1 + ϵ) · distG−x(s, t) holds.

The three lemmas above obviously deduce Theorem 1.

5 Concluding Remarks

We presented an algorithm which constructs a (1 + ϵ)-VSDO for directed weighted graphs.
The constructed oracle attains Õ(n log(nW )/ϵ) size and Õ(log(nW )/ϵ) query processing
time. The construction time is Õ(m log(nW )/ϵ + n log2(nW )/ϵ2). We conclude the paper
with a few open questions listed below:

Can we shave off the extra log factors of our oracle in size and query time, to match them
with the best known bounds by [1]?
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Can we extend our result for handling the dual failure model admitting two edge/vertex
failures? Very recently, the extension of Bernstein’s algorithm [3] to the dual failure
model has been proposed [13], which attains Õ(n2) running time. It is an intriguing open
question if there exists an (1 + ϵ)-approximate SSRP algorithm for dual failure model
running in Õ(n2) time or not.
Is it possible to break the known conditional lower bounds in the case of additive
approximation?
Can all-pairs and multi-source cases benefit from the relaxation to (1 + ϵ)-approximation?
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A Construction of DP-Oracle

Assume that p is a power of 2 for ease of presentation. To focus on the high-level idea,
the detailed proofs of all the lemmas are defferred to the next section. Let Π(vk, t) be
the set of all s-t departing paths avoiding vk, and ϵ2 = ϵ1/(2 log n) = O(ϵ/ log2 n). We
define Π(t) =

⋃
k∈[0,p−1] Π(vk, t), and introduce the notations Γ(I, t), Ii

j , and I as defined in
Section 3. We first present a key technical lemma:

▶ Lemma 11. Let Φ(i, j, t) be the predicate defined as follows.

Φ(i, j, t)⇔ (j = 0) ∨
(

(1 + ϵ2) ·minL(Γ(Ii
j , t)) < min

0≤j′<j
minL(Γ(Ii

j′ , t))
)

Assume a function r : N× N× V (G)→ R+ satisfying the following two conditions for any
t ∈ V (G) \ {s} and 0 ≤ i ≤ log p.
1. min0≤j′≤j minL(Γ(Ii

j′ , t)) ≤ r(i, j, t) ≤ r(i, j − 1, t) for j ≥ 1.
2. If Φ(i, j, t) is true, r(i, j, t) = minL(Γ(Ii

j , t)).
Let j(i, vf ) be the value satisfying vf ∈ Ii

j(i,vf ). Define r′(vf , t) as follows.

r′(vf , t) = min
0≤i≤log p

r(i, j(i, vf )− 1, t).

Then minL(Π(vf , t)) ≤ r′(vf , t) ≤ (1 + ϵ1) · minL(Π(vf , t)) holds for any vf ∈ V (PT ) and
t ∈ V (G).

The function r′ in Lemma 11 obviously works as a PT -faulty (1 + ϵ1)-DPO, and the value
r′(vf , t) is easily computed from the function r. Hence the remaining issue is to construct the
data structure of returning the value of r(i, j, t) for 0 ≤ i ≤ log p, 0 ≤ j < 2i, and t ∈ V (G).
The starting point is an algorithm of computing minL(Γ(Ii

j , v)) for all v ∈ V (G). Consider
the graph Gi,j obtained from G by the following operations (see Fig. 7):
1. Remove all the edges in PT , all incoming edges of vertices in V (Ii

0) ∪ V (Ii
1) ∪ · · · ∪ V (Ii

j),
and all outgoing edges of vertices in V (Ii

j+1) ∪ V (Ii
j+2) ∪ · · · ∪ V (Ii

2i−1).
2. Add a new source vertex s′ and edges (s′, u) of weights distPT

(s, u) for each u ∈ Ii
j .
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It is obvious that distGi,j (s′, v) = minL(Γ(Ii
j′ , v)) holds for any v ∈ V (G). If we define

r as r(i, j, v) = min0≤j′<j minL(Γ(Ii
j′ , v)), the condition of Lemma 11 is satisfied. Hence

running Dijkstra in Gi,j for all i and j and storing all computation results provides the
implementation of the data structure of r. However, the total running time of this approach
is expensive, and thus not applicable. For any fixed i, the progressive Dijkstra computes
the value r(i, j, v) for all j and v approximately (in the sense of Lemma 11) in Õ(m/ϵ)
time. Roughly, the progressive Dijkstra iteratively applies a slightly modified version of the
standard Dijkstra to Gi,j in the increasing order of j. The modified points are summarized
as follows:

When processing Gi,0, the distance vector d managed by the Dijkstra algorithm initially
stores ∞ for all vertices in V (G). When processing Gi,j for j > 0, the values d[u] for
u ∈ V (Ii

j) are reset to ∞. For all other u, d[u] keeps the results of processing Gi,j−1.
All the vertices u ∈ V (G) \ {s′} are inactive at the beginning of processing Gi,j . It
becomes active if the algorithm finds a s-u path of length at most d[u]/(1 + ϵ2) (i.e., the
algorithm finds a path in Gi,j whose length is substantially improved from the results for
Gi,0, Gi,1, . . . , Gi,j−1). The vertex u is added to the priority queue of the Dijkstra only
when it becomes active. After becoming active, the update of d[u] completely follows the
standard Dijkstra, i.e., it is updated if the algorithm finds a s′-u path of length less than
d[u].
When d[u] is updated by finding a shorter s′-u departing path Q, the algorithm stores its
branching vertex b(Q) into the entry b[u] of vector b.

The whole algorithm runs the above procedure for all 0 ≤ i < log p. The value d[v] at the
end of processing Gi,j is used as the value of r(i, j, v). Since it is costly to store those values
explicitly, our algorithm stores the value of r(i, j, v) only when r(i, j−1, v) > r(i, j, v) holds. If
it holds, v becomes active at processing Gi,j , and thus r(i, j−1, v)/(1+ϵ2) > r(i, j, v) necessary
holds. It implies that r(i, 0, v), r(i, 1, v), . . . , r(i, 2i − 1, v) store at most

⌈
log1+ϵ2(nW )

⌉
different values. Those values are stored in the list upd(i, v). The entry (j, ℓ, b) ∈ upd(i, v)
means that r(i, j − 1, v) > r(i, j, v) and r(i, j, v) = ℓ hold, and the branching vertex of
the corresponding s′-v path is b. Note that the information of the branching vertex is not
necessary for constructing the DP-oracle, but required for the construction of G1. The time
cost for accessing the value of r(i, j, v) is O(log log1+ϵ2(nW )), which is attained by a binary
search over upd(i, v). We present the lemma claiming the correctness of this algorithm.

▶ Lemma 12. For any vertex v ∈ V (G), 0 ≤ i ≤ log p and 0 ≤ j < 2i, let us define
r(i, j, v) as the value of d[v] after processing Gi,j . Then, r satisfies the conditions (i), (ii) of
Lemma 11.

The running time of the progressive Dijkstra is bounded by the following lemma.

▶ Lemma 13. The progressive Dijkstra processes Gi,j for all 0 ≤ j < 2i and 0 ≤ i < log p in
O(ϵ−1

2 · log n · log(nW ) · (m + n log n)) time.

The actual entity of the (1 + ϵ1)-DPO we construct is upd. For all i and v, upd(i, v) stores
at most

⌈
log1+ϵ2(nW )

⌉
different values. Hence the total size of the oracle is O(ϵ−1

2 n ·
log n · log(nW )). The computation of r′ (i.e., processing queries) takes O(log p) times of
accessing upd. Each access takes O(log(ϵ−1

2 log(nW ))) time, and thus the query time is
O(log n · log(ϵ−1

2 log(nW ))). By the fact of ϵ2 = O(ϵ1/ log n) = O(ϵ/ log2 n), the following
lemma is obtained.

▶ Lemma 14. There exists an algorithm of constructing a PT -faulty (1 + ϵ1)-DPO of size
O(ϵ−1

1 n · log2 n · log(nW )). The construction time is O(ϵ−1
1 · log2 n · log(nW ) · (m + n log n))

and the query processing time is O(log n · log(ϵ−1
1 log(nW ))).
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A.1 Proofs of Lemma 11 and Lemma 12
We first introduce an auxliliary lemma. For any sub-path I of PT , a set of sub-paths
C = {J0, J1, . . . , Jk−1} ⊆ I is called a partition of I if V (J0), V (J1), . . . , V (Jk−1) exactly
cover V (I). The lemma below is easily obtained.

▶ Lemma 15. For any b ∈ [0, f − 1], there exists a partition C of PT [0, b − 1] such that
|C| ≤ ⌈log b⌉.

Now we show the proof of Lemma 11.

Proof. Fix an arbitrary t ∈ V (G) \ {s} throughout the proof. By the condition 1, we have

r′(vf , t) ≥ min
0≤i≤log p

min
0≤j′<j(i,vf )

minL(Γ(Ii
j′ , t)). (1)

Since Γ(Ii
j , t) ⊆ Π(vf , t) holds for any 0 ≤ i ≤ log p and 0 ≤ j < j(i, vf ), we also have

min
0≤i≤log p

min
0≤j<j(i,vf )

minL(Γ(Ii
j , t)) ≥ minL(Π(vf , t)). (2)

Combining two expressions (1) and (2), we obtain r′(vf , t) ≥ minL(Π(vf , t)). Next, we
prove r′(vf , t) ≤ (1 + ϵ1) · minL(Π(vf , t)). If Φ(i, j, t) is true, we say that (i, j) is strict.
Let Q = MinP(Π(vf , t)) and vb = b(Q). From Lemma 15, there exists a partition C =
{J0, J1, . . . , J|C|−1} of PT [0, b− 1] with size at most ⌈log b⌉ ≤ log p. For any 0 ≤ k < |C|, let
Uk be the prefix V (J0) ∪ V (J1) ∪ . . . , V (Jk) of PT , and ik and jk be the values satisfying
Jk = Iik

jk
. We also define h as the largest index such that (ih, jh) is strict. Note that such h

necessary exists because (i0, j0) is always strict. By the condition 2, we have,

r(ih, jh, t) = minL(Γ(Iih
jh

, t)) ≤ minL(Γ(Uh, t)), (3)

where the right-side inequality comes from the fact that Φ(ih, jh, t) is true. Since Φ(ih′ , jh′ , t)
is false for any h′ > h, we also have

(1 + ϵ2) ·minL(Γ(Iih′
jh′ , t)) ≥ min

0≤j′<jh′
minL(Γ(Iih′

j′ , t)). (4)

Since V (Iih′
0 ) ∪ V (Iih′

1 ) ∪ · · · ∪ V (Iih′
jh′ −1) = V (Uh′−1) holds, we obtain

min
0≤j′<jh′

minL(Γ(Iih′
j′ , t)) = minL(Γ(Uh′−1, t)). (5)

By (4) and (5), we obtain (1 + ϵ2) ·minL(Γ(Iih′
jh′ , t)) ≥ minL(Γ(Uh′−1, t)). Further combining

this inequality and the fact of minL(Γ(Uh′ , t)) = min{minL(Γ(Uh′−1, t)), minL(Γ(Iih′
jh′ , t))}, we

have

minL(Γ(Uh′−1, t)) ≤ (1 + ϵ2) ·minL(Γ(Uh′ , t)). (6)

In addition, by the definition of Q, minL(Γ(U|C|−1, t)) = w(Q) holds. Utilizing this inequality,
(3), and (6), we conclude r(ih, jh, t) ≤ (1+ϵ2)log p·w(Q) ≤ (1+ϵ1)·w(Q). Since r(ih, j(ih, vf )−
1, t) ≤ r(ih, jh, t) holds by the condition 1, we obtain r′(vf , t) ≤ r(ih, jh, t). The lemma is
proved. ◀

Next, we provide the proof of Lemma 12.
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Proof. First, we consider the condition 1. At the end of processing Gi,j , all the graphs
Gi,0, Gi,1, . . . , Gi,j have been processed. Since r(i, j, v) is not less than the length of the
shortest s′-v path in any Gi,j′ of 0 ≤ j′ ≤ j, we have

r(i, j, v) ≥ min
0≤j′≤j

distGi,j′ (s′, v) = min
0≤j′≤j

minL(Γ(Ii
j′ , v)).

In addition, r is obviously non-increasing with respect to j. Hence the condition 1 is
satisfied. Consider the condition 2. For j = 0, the standard Dijkstra is executed to process
Gi,0. Hence the condition 2 obviously holds. For j ≥ 1, Φ(i, j, v) implies minL(Γ(Ii

j , v)) =
min0≤j′≤j minL(Γ(Ii

j′ , v)). Since r(i, j, v) ≥ min0≤j′≤j minL(Γ(Ii
j′ , v)) holds by the condition

1, Φ(i, j, v) ⇒ (r(i, j, v) = minL(Γ(Ii
j , v))) and Φ(i, j, v) ⇒ (r(i, j, v) ≤ minL(Γ(Ii

j , v))) are
equivalent. Hence what we show is

r(i, j, v) > minL(Γ(Ii
j , v))⇒ (1 + ϵ2) ·minL(Γ(Ii

j , v)) ≥ min
0≤j′<j

minL(Γ(Ii
j′ , v)), (7)

which deduces the condition 2. Let Ri,j,v = ⟨a0, a1, . . . , ak−1⟩ (s′ = a,v = ak−1) be the
shortest path from s′ to v in Gi,j . By the precondition of the predicate above, r(i, j, v)
is not equal to w(Ri,j,v). It implies that there exists a vertex aℓ on Ri,j,v which does not
become active in processing Gi,j , because d[v] is correctly updated with the value w(Ri,j,v) if
a0, a1, . . . , ak−1 are all active. Without loss of generality, we assume that aℓ is such a vertex
with the smallest ℓ. Since all the vertices u ∈ V (Ii

j) are necessarily active due to the reset of
d[u], aℓ is a vertex not on PT . At the end of processing Gi,j , (1 + ϵ2) · w(Ri,j,aℓ

) > d[aℓ] =
r(i, j, aℓ) holds. By definition, w(Ri,j,aℓ

) = distGi,j
(s′, aℓ) = minL(Γ(Ii

j , aℓ)) holds, and thus
we conclude r(i, j, aℓ) < (1 + ϵ2) ·minL(Γ(Ii

j , aℓ)). Let j′ < j be the largest value such that
aℓ becomes active in processing Gi,j′ . Then we have r(i, j, aℓ) = r(i, j′, aℓ) = w(Ri,j′,aℓ

).
We consider a new path Q obtained by concatenating Ri,j′,aℓ

and ⟨aℓ, aℓ+1, . . . , ak−1⟩. The
length of Q is bounded as follows:

w(Q) = r(i, j′, aℓ) + w(⟨aℓ, aℓ+1, . . . , ak−1⟩)
= r(i, j, aℓ) + w(⟨aℓ, aℓ+1, . . . , ak−1⟩)
≤ (1 + ϵ2) ·minL(Γ(Ii

j , aℓ)) + w(⟨aℓ, aℓ+1, . . . , ak−1⟩)
≤ (1 + ϵ2) ·minL(Γ(Ii

j , t)).

It is easy to check that Q also exists in Gi,j′ . Hence we have min0≤j′<j minL(Γ(Ii
j′ , v)) ≤

w(Ri,j,v) ≤ w(Q), i.e., the consequence side of the predicate (7) holds. The lemma is
proved. ◀
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