
Shortest Path Separators in Unit Disk Graphs
Elfarouk Harb #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Zhengcheng Huang #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Da Wei Zheng #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths
combined with the 1-hop neighbours of those paths and two other vertices. This answers an open
problem of Yan, Xiang and Dragan [CGTA ’12] and improves their result that requires removing the
3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay
triangulations and a generalization of the celebrated balanced separator theorem of Lipton and
Tarjan [J. Appl. Math. ’79] to systems of non-intersecting paths.
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1 Introduction

A geometric intersection graph is an undirected graph where each vertex corresponds to a
geometric object, and edges indicate which pairs of objects intersect each other. One common
type of geometric intersection graph is the unit disk graph, which are geometric intersection
graphs of disks with diameter 1. These graphs arise in modeling wireless communication.
Such graphs also appear in applications such as VLSI design. These graphs have been
extensively studied in the computational geometry community.

There have been many papers studying different optimization problems in unit disk
graphs [13, 44, 29, 8, 10], as they are one of the simplest types of geometric intersection
graph. As such, results for unit disk graphs are often used as a starting point to generalize to
more general geometric intersection graphs with more complicated objects [28, 18, 7, 27, 6].
Over the years, researchers have built up a toolbox of techniques that can be applied to unit
disk graphs. Some of the techniques have been inspired by the more geometric aspects of
these graphs, such as geometric data structures [7, 6], planar spanners [8], and well separated
pair decompositions [23]. Other techniques have been inspired by planar graph tools, such as
planar separators [40, 14], shortest path seperators [44], and more recently VC-dimension in
planar graphs [36, 34, 10]. Thus, there is much value in deepening our understanding of unit
disk graphs, and in particular further building up its toolbox, as we do in this paper.

Separator theorems. In graphs, a separator is a small set of vertices whose removal splits
the graph into smaller components. Separators are very useful for designing divide-and-
conquer algorithms. Planar graphs are well-known for admitting good separators. The first
separator theorem for planar graphs was due to Lipton and Tarjan [37], who proved that
every planar graph on n vertices admits a separator of size O(

√
n) that can be computed in

O(n) time. Since then, many variants of separator theorems have been proven for planar
graphs [37, 39, 21, 25, 42, 33, 11]. Some of these results can be naturally extended to graphs
with bounded genus [16, 24] or to minor-free graphs [2, 30, 43].
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66:2 Shortest Path Separators in Unit Disk Graphs

For unit disk graphs, many different separators exist, such as line separators [4] and
clique separators [14]. When the unit disks have low ply1, good separators are also known to
exist [40, 41]. Separators are also known for more general objects, such as fat objects [5] or
low-density objects [26]. Intersection graphs induced by arbitrary curves in the plane, also
known as string graphs, have been studied in a series of works [19, 20, 38, 35]. Remarkably,
Lee [35] proved that every string graph having m edges admits a balanced separator with
O(

√
m) vertices.

Shortest path separators. The usefulness of a separator does not necessarily only depend
on the number of vertices. An excellent example of good separators with large size are
shortest path separators, i.e. separators consisting of a constant number of shortest paths.
Thorup showed that every planar graph admits a separator consisting of at most two shortest
paths [42]. Similar results have been proven for minor-free graphs [1]. Shortest path separators
have been used extensively in distance-related problems in planar graphs, such as distance
oracles [42, 32], planar emulators [11], and even network design problems [31, 22].

A natural question to ask is whether shortest path separator theorems can be adapted to
unit disk graphs. Naively, such separators cannot exist, as the clique on n vertices is realizable
as a unit disk graph for which no such separator can exist. However, we can strengthen the
separator by also removing vertices in the k-neighborhood of the shortest path, i.e. vertices
that are at a distance of at most k from the shortest path. Yan, Xiang and Dragan [44]
proved that every unit disk graph admits a shortest path 3-neighborhood separator, that is,
by removing two shortest paths and all vertices in the 3-hop neighborhood of any vertex on
the shortest paths, the remaining graph is disconnected with every component having size at
most 2/3 of the vertices of the original graph. They left open the question of whether there
exists a shortest path 1-neighborhood separator.

Our results. We answer the open question of Yan, Xiang and Dragan [44] in the affirmative.
We show that every unit disk graph has a 1-neighborhood separator. In particular, it suffices
to only remove the 1-neighborhood of two shortest paths plus the 1-neighborhood of two other
vertices. While the proof of Yan, Xiang, and Dragan manipulates crossings in the intersection
graph, our proof uses very different ideas involving paths in Delaunay triangulations and
a generalization of the shortest path separators of Lipton and Tarjan to sets of weakly
non-crossing paths in a triangulated planar graph that may be of independent interest. This
result is optimal since as mentioned earlier, a shortest path 0-neighborhood separator does
not exist for a clique, which is realizable as a unit disk graph.

▶ Theorem 1. Every unit disk graph admits a shortest path 1-neighborhood separator.

A first attempt. To illustrate the difficulty and to fully appreciate our contribution, let us
consider one approach to construct shortest path 1-neighborhood separators for a unit disk
graph G = (V, E). To do so, we will make two overly wishful assumptions (that would be
great if they always held).

Let T be a shortest path tree of G starting at a fixed vertex s ∈ V . We will wishfully
assume that the induced drawing of T in the plane has no crossings (assumption 1). Next,
we will assume that we can triangulate T to get a graph GT (assumption 2) such that every
edge of the triangulated graph GT is an edge in G. Now, we can use the shortest path
separator theorem of Lipton and Tarjan [37], on GT with spanning tree T to get a Jordan

1 the number of disks intersecting any given point
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Figure 1 (Left) The points u, v, x, y ∈ S are drawn with circles of radius 1/2. The unique
shortest path tree in G with starting vertex u has a crossing edge. (Right) Two reflected copies
results in a graph where no plane shortest path tree exists, regardless of starting vertex.

curve C that is a separator for GT . We can prove (and do so in Lemma 3) that all edges
uv ∈ E have the property that for all other edges crossing the line segment between u and v

the crossing edge has at least one end point adjacent to either u or v (we call this property
cross-dominating or crominating2 for short). Thus the cycle C is in fact also a shortest path
1-neighborhood separator of G.
1. Our first assumption was that we could find a shortest path tree T of G whose natural

embedding has no crossings. This is not always the case, there are examples (see Figure 1)
of unit disk graphs G where no such shortest path tree exists. Instead, we will construct
a non-crossing path system Π consisting of pseudo-shortest paths, i.e., for every vertex
u ∈ V we will find a path Π[u] to s such that Π[u] consists only of vertices on the shortest
path between u and s and 1-neighbors of the shortest path. We show an extension of the
planar separator algorithm to find a balanced separator in path systems of planar graphs.

2. Our second assumption was that we could triangulate the tree T to get a graph GT such
that every edge of the triangulation is an edge in G. We instead prove that all edges of
the Delaunay triangulation have the crominating property, and furthermore, we show
that we can construct Π using only edges of the Delaunay triangulation of the centers of
the disk.3

2 Preliminaries

Crossings.4 For two line segments uv and pq, we say that uv crosses pq if there is a point
on both line segments that is not an endpoint of either uv or pq. Given two simple polygonal
chains P = [p0, p1, . . . , pℓ] and Q = [q0, q1, . . . , qℓ], we say that P and Q have a forward
crossing if the following hold:
1. pi = qi for all 1 ≤ i ≤ ℓ − 1
2. The cyclic order of p0, q0, p2 around p1 is the same as the cyclic ordering of pℓ, qℓ, pℓ−2

around pℓ−1.

2 This is a perfectly cromulent portmanteau to use.
3 In fact, it is possible to show that there exists a triangulation (specifically the edge constrained Delaunay

triangulation of Chew [12]) of any plane tree such that all edges are crominating. However, we will not
discuss this further since the edge constrained Delaunay triangulation of a spanning subset of edges of a
Delaunay triangulation is the original Delaunay triangulation.

4 Our definitions of crossing are special cases of the definition from [17].
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Figure 2 An example of a forward crossing between the red and blue chain. The cloud obscures
the shared middle part of the polygonal chains.

See Figure 2 for an example of a forward crossing. The polygonal chains have a backwards
crossing if P and the reversal of Q have a forward crossing. Finally, we say that P and Q

cross if subpaths of P and Q have a forward crossing, a backwards crossing, or two edges
pipi+1 and qjqj+1 that cross. Equivalently P and Q do not cross if and only if there exists
a small local perturbation of the vertices of each polygonal chain such that the two chains
share no point in common (this is true as we only consider paths without spurs or forks [9,
Section 3.1]). If a collection Π of polygonal chains are non-crossing (i.e. no pair of paths
P, Q ∈ Π cross), then we can also perturb the vertices of all the chains so that no two chains
intersect (even at end points). We note that all chains that we will discuss are fairly nice, and
amenable to these two characterizations of crossing. We encourage the interested reader to
see the discussion in Chang, Erickson, and Xu [9] for a thoroughly comprehensive discussion
of crossing and non-crossing polygonal chains.

Let G be a given graph with a straight-line embedding in R2. Then each edge of G

embeds onto a line segment and each path in G embeds onto a polygonal chain. We say that
two edges of G cross if their corresponding line segments cross. Similarly, two paths in G

cross if their corresponding polygonal chains cross.

Shortest path separators. Lipton and Tarjan [37] showed that a connected triangulated
planar graph on n vertices with arbitrary weights on the vertices has a balanced shortest
path separator which is a Jordan curve consisting of two shortest paths and one edge such
that the interior and exterior of the curve each have at most 2/3 of the total weight of the
vertices of the graph.

▶ Theorem 2 (Balanced shortest path separator of Lipton-Tarjan [37]). Let G = (V, E) be a
maximally triangulated planar graph with n vertices and let T be a spanning shortest path
tree of G rooted at s. Suppose that each vertex of the graph has a weight, and let W be the
total weight of all the vertices. Then there exists an edge uv ∈ E such that the Jordan curve
C defined by the edge uv along with the path between u and v in T separates the graph into
an interior A and exterior B that each have weight at most 2W/3.

Path systems. Given a graph G = (V, E) and a fixed vertex s ∈ V , we define a path system
to s as a function Π defined on some vertex set V ′ ⊆ V that maps each vertex u ∈ V ′ to a
directed path Π[u] from u to s in G. For this paper, we will always assume that our paths
are simple, that is no vertex is visited more than once on the path. We will abuse notation
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and use Π to refer to the collection of paths to s. When G is planar, we say that the path
system is non-crossing if for every pair of vertices u, v ∈ V (G), the paths Π[u] and Π[v] are
non-crossing. A path system is a spanning path system if every vertex in V is on at least
one path of Π.

Pseudo-shortest paths. Given a graph G, a pseudo-shortest path P from u to v for two
vertices u, v ∈ V is a path that starts at u, ends at v, contains all vertices of a shortest path
P ′ in G, and that every vertex on P but not on P ′ is adjacent to some vertex on P ′. Note
that pseudo-shortest paths are closed under concatenations, i.e. if we have a pseudo-shortest
path from u to v, and a pseudo-shortest path from v to w, and a shortest path from u to w

goes through v, then the concatenation of the paths is a pseudo-shortest path from u to w.

Unit disk graphs. Given a set S of points in R2, a unit disk graph G = G(S) = (V, E) is a
graph with vertices V = S, and edges between every pair of points u, v ∈ S with distance
less than 1, i.e. |u − v| ≤ 1. Note that by this definition, a unit disk has diameter 1. Observe
that unit disk graphs have a natural embedding in the plane, albeit with potentially many
crossing edges. The following simple lemma about paths that cross the interior of a disk
has been discovered in previous works (e.g. [44]); we include a proof here for the sake of
completeness.

▶ Lemma 3. Let G = (V, E) be a unit disk graph, and let u, v, x ∈ V be three distinct vertices
with the edge uv ∈ E where the straight line edge defining uv intersects the unit disk centered
at x. Then x has an edge with at least one of u or v.

Proof. Consider a point p on uv that lies in the unit disk centered at x. Since the edge uv

has length at most 1, p is also in the unit disk of either u or v, so x has an edge with either
u or v. ◀

3 Path systems of pseudo-shortest paths in unit disk graphs

In this section, we prove the existence of a path system Π of pseudo-shortest paths consisting
of Delaunay triangulation edges for a unit disk graph G, and a fixed starting vertex s. We let
Wa denote the set of vertices at distance a from a root vertex s. We will show how to build
the paths Π[u] for a vertex u ∈ Wa by first a pseudo-shortest path to the nearest neighbor
w ∈ Wa−1, then extending it to a pseudo-shortest path to s from w.

3.1 Nearest neighbors, Voronoi cells, and Delaunay paths
Consider an edge uw ∈ E. Either u and w are in adjacent Voronoi cells, or the line segment
uw crosses a sequence of Voronoi cells of the points u = v1, v2, . . . , vℓ = w for some ℓ. As the
Voronoi diagram is dual to the Delaunay triangulation, between each pair of Voronoi cells
there is a Delaunay edge. This induces a path in the Delaunay triangulation DT(G) between
u and w, which we call the Delaunay path between u and w. Such paths were first considered
by Dickerson and Drysdale [15], and also later by Cabello and Jejčič [3].

▶ Lemma 4 (Dickerson-Drysdale [15]; Cabello-Jejčič [3]). Let uw ∈ E. Let P = [u =
v1, v2, . . . , vℓ = w] be the Delaunay path between u and w. Then the following holds:
1. |vi − vj | ≤ 1 for all 1 ≤ i < j ≤ ℓ, i.e. all pairs of vertices of P are connected to each

other in the unit disk graph.
2. All vertices of P lie inside the disk with uw as diameter.
3. For all 1 ≤ i < j < k ≤ ℓ, we have |vi − vj | < |vi − vk|.

ESA 2024
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Figure 3 The points x1, z1, z2, x2 are clockwise around the Voronoi cell, leading to z1 and z2

having positive y-coordinates. The cloud covers the intermediate vertices on the Delaunay paths.

In particular, if u ∈ Wa and w is the nearest5 neighbor of u in Wa−1, then we denote by
∆[u] the Delaunay path between u and w, and call it the Delaunay path for u. In this case,
it follows immediately from Lemma 4 that for all i < ℓ, we have vi ∈ Wa. Furthermore, ∆[u]
is a pseudo-shortest path from u to w.

3.2 Non-crossing property of Delaunay paths
We now prove that the Delaunay paths do not cross.

▶ Lemma 5. Let u1, u2 ∈ Wa and w1, w2 be the corresponding nearest neighbors in Wa−1.
Then the Delaunay paths for u1 and u2 do not cross.

Proof. See Figure 3 throughout this proof. Consider the line segments u1w1 and u2w2. Note
that these two line segments don’t cross as if they did, then either w1 would be closer to
u2 or w1 would be closer to u2. By rotating the plane and a suitable shift, we may assume
that u1w1 is horizontal line on the x axis. Now let’s consider the Delaunay paths P = ∆[u1]
from u1 to w1 and Q = ∆[u2] from u2 to w2. We assume for sake of contradiction that P

and Q cross. Since P and Q consists of edges in a Delaunay triangulation, there can be no
simple crossings, thus there is some subpath P ′ = [p0, p1, . . . , pℓ] of P and (possibly reversed)
subpath Q′ = [q0, q1, . . . qℓ] of Q that form a forward crossing.

Consider the Voronoi cell of p = p1 = q1. Let x1 and x2 be the intersection of the line
segment u1w1 with the Voronoi cell p, and z1 and z2 be the intersection of the line segment
u2w2 with the Voronoi cell of p. Without loss of generality, we may assume the cyclic ordering
p0, q0, p2 around p1 is clockwise (or we can reflect everything about the x axis). This implies
that the Voronoi edges between p1 and p0, p1 and q0, p1 and p2 are also ordered clockwise
about the Voronoi cell for p1. As P ′ and Q′ are parts of Delaunay paths, we know that x1
lies on the Voronoi edge between p1 and p0, z1 lies on the Voronoi edge between p1 and q0,
and both z2 and x2 lie on the Voronoi edge between x2 and p2. Furthermore, since x1x2 and
z1z2 don’t intersect (as they are subsets of u1w1 and u2w2), we can conclude that x1, z1, z2,
x2 is the cyclic ordering in the clockwise direction on the Voronoi cell of p1. Since x1 and x2
are on the x axis, we can thus conclude that z1 and z2 have positive y-value.

Now let’s consider the Voronoi cell of p′ = pℓ−1 = qℓ−1, and define x′
1, x′

2, z′
1, z′

2 analogously
for this cell as we did before for the Voronoi cell of p. Since P ′ and Q′ form a forward crossing,
this implies pℓ, qℓ, pℓ−2 are oriented clockwise as well. By the same argument as before about

5 In this section, nearest refers to distances in the Euclidean metric, not in the graph metric.
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w1

w2

u

Figure 4 The paths Π[w1] (in blue) and Π[w2] (in red) for w1, w2 ∈ Wa−1 don’t cross. However,
the Delaunay path ∆[u] consisting of u ∈ Wa to w1 (in green) concatenated with Π[w1] forms a
path that crosses Π[w2].

cyclic orderings, this implies that z′
1 and z′

2 must have a negative y value. However, z2 had a
positive y-value and z′

1 had a negative y-value. This implies that the ray r⃗(z1, z2) from z1 to
z2 and the ray r⃗(z′

2, z′
1) from z′

2 to z′
1 intersect the line between x1 and x′

2. By symmetry, we
can also show that the ray r⃗(x1, x2) and the ray r⃗(x′

2, x′
1) intersects the line between z1 and

z′
2. Thus we conclude that the line segment between z1 and z′

2 intersect the line segment
between x1 and x′

2, a contradiction. ◀

We can also show that Delaunay paths between different levels do not cross either.

▶ Lemma 6. Let u1 ∈ Wa and u2 ∈ Wb for some postive integers a and b with a < b. Then
the Delaunay paths ∆[u1] and ∆[u2] do not cross.

Proof. Let w1 be the nearest neighbor of u1 in Wa−1, and w2 be the nearest neighbor
of u2 in Wb−1. We consider the Delaunay paths ∆[u1] = [p1 = u1, p2, . . . , pk = w1] and
∆[u2] = [q1 = u2, q2, . . . qℓ = w2]. First observe that since ∆[u1] and ∆[u2] are Delaunay
paths, they contain subsets of edges in the Delaunay triangulation. They can only have
forward or backwards crossings. However, by Lemma 4, qi for i < ℓ is on Wb and qℓ is in
Wb−1, while all of the vertices of ∆[u1] are on level a or level a − 1. Since a < b, ∆[u1] and
∆[u2] can share at most one vertex in common, namely when b − 1 = a and qℓ is the common
vertex. Since qℓ is an endpoint of ∆[u1], a forward (or backward) crossing between ∆[u1]
and ∆[u2] is not possible. ◀

3.3 Constructing pseudo-shortest paths from Delaunay paths
We have shown via Lemma 5 and Lemma 6 that no two Delaunay paths cross. This naturally
suggests an intuitive way to inductively build Π[u] based on distance from s. Suppose we
have constructed a non-crossing path system Π≤a−1 of pseudo-shortest paths of vertices at
distance at most a − 1 from s by finding paths Π[v] for all v ∈

⋃a−1
i=0 Wi, and we wanted to

construct Π[u] for u ∈ Wa. The natural method is to define Π[u] to be the concatenation of
the Delaunay path ∆[u] that goes from u to a vertex w ∈ Wa−1 with the path Π[w]. Clearly
this is a pseudo-shortest path, as it is the concatenation of a pseudo-shortest path from u to
w and from w to s.

Unfortunately, carelessly extending paths in this manner may in fact create crossings!
Consider two vertices w1, w2 ∈ Wa−1 that have non-crossing paths Π[w1] and Π[w2] where
w1 ∈ Π[w2]. If we attach the Delaunay path ∆[u] for a vertex u ∈ Wa that has nearest
neighbor w1, then this might induce a crossing as pictured in Figure 4. Thankfully, with
a little more care, we show that there is a way to extend the Delaunay path ∆[u] for all
u ∈ Wa into full paths that don’t cross each other or Π≤a−1 with the following lemma.

ESA 2024



66:8 Shortest Path Separators in Unit Disk Graphs

Figure 5 (Left) Step 1: The yellow disk represent the node w; blue paths represent paths in Π
that goes through w (Πw in the case of Lemma 8); red paths represent a non-crossing collection of
paths that end at w (∆w in the case of Lemma 8). (Middle) Step 2: Snapping every red path to
the vertex corresponding to the first blue path clockwise around the boundary. (Right) Step 3:
Extending every red path by the continuation of the blue path marked in purple.

▶ Lemma 7 (Path Extension Lemma). Let G = (V, E) be a planar graph, and Π be a non-
crossing path system to s ∈ V that contains a path Π[w] from w to s for some v ∈ V . Suppose
we had a non-crossing collection of paths P that end at w where no path in P crosses any of
the paths of Π. Then we can extend each path of P to end at s without creating any crossing.

Proof. The extension proceeds as follows and is illustrated in Figure 5:
1. Consider a fixed perturbation to the paths of Π and P such that none of the paths

share any point in common, and all end points of w lie in a small ball of radius ε for an
arbitrarily small ε > 0. This is possible because all paths are non-intersecting. See [9,
Section 4] for discussions of algorithms for constructing the perturbation.

2. For every path P ∈ P, snap the end point of the path to the end point of the path of Π
that is clockwise around the ε-radius ball. We omit the formal description of this step, as
it is more instructive to observe the illustration in Figure 5.

3. Extend all paths P ∈ P by the forward continuation of the path of Π we have snapped to.
Observe that by construction, our extended (perturbed) paths are non-crossing. ◀

This gives us a way to construct our path system Π≤a−1 to Π≤a with Delaunay paths.

▶ Lemma 8. Given a set of non-crossing pseudo-shortest paths Π≤a−1, we can extend each
∆[u] for all u ∈ Wa to a pseudo-shortest path Π[u] in a way such that no two paths intersect
each other or paths of Π≤a−1.

Proof. Fix a vertex w ∈ Wa−1 and consider the pseudo-shortest paths

Πw = {Π[v] ∈ Π≤a−1 | Π[v] passes through w}.

Also consider the following Delaunay paths.

∆w = {∆[u] | u ∈ Wa and the nearest neighbor of u in Wa−1 is w}.

Note that no path of Πw crosses any path of ∆w, and both are non-crossing path systems.
We repeatedly apply Lemma 7 to each w ∈ Wa−1. Doing so, we construct a path Π[u]

for each u ∈ Wa that is crossing free with all paths of Π≤a−1. ◀

By induction on distance from s the lemma below follows.

▶ Lemma 9 (Spanning non-crossing path systems of psuedo-shortest paths). Let G be a unit
disk graph on the point set S and let s be a fixed source vertex. There exists a spanning
non-crossing path system Π of pseudo-shortest paths rooted at s using only edges in the
Delaunay triangulation of S.
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s s s

Figure 6 (Left) A path system Π to a vertex s in a Delaunay triangulation. (Middle) A
perturbation of all points on all paths at vertices other than s by at most ε such that no two paths
intersect except at s. (Right) A triangulation of the perturbation of the paths using only previously
existing edges.

4 Shortest path separators in non-crossing spanning path systems

In this section we show how to find the shortest path separators on embedded triangulated
planar graphs G = (V, E) when given a spanning non-crossing path systems Π to s ∈ V . We
aim to apply the lemma of Lipton and Tarjan albeit onto a triangulated graph G′ containing
a slightly perturbed version of Π. Formally we define a perturbation of a path system Π
rooted at s as the collection of all paths with vertices except s perturbed within a small ball
of radius ε > 0 such that none of the paths are crossing. Observe that a single vertex u ∈ V

can be perturbed to many copies u1, ..., uk corresponding to the same vertex u ∈ V . See
Figure 6 for an example of this.

The following lemma shows that this graph can be constructed while ensuring the
additional edges we add are between vertices corresponding to edges in the original graph G.

▶ Lemma 10. Given a triangulated embedded planar graph G = (V, E), and a non-crossing
spanning path system Π to a vertex s ∈ V , there exists a planar graph G′ = (V ′, E′) that is
the triangulation of the perturbation of Π such that every edge e ∈ E′ belongs to one of the
following categories:

Edges Epath between vertices ui, vj ∈ V ′ that correspond to u, v ∈ V where uv ∈ Π.
Edges Evertex between vi, vj ∈ V ′ that correspond to the same vertex v ∈ V .
Edges Etri between vertices ui, vj ∈ V ′ that correspond to u, v ∈ V where uv ∈ E.

Proof. We describe a construction of G′. Let V ′ be the vertices of the perturbation of Π,
consisting of all vertices u ∈ V with u ̸= s that are perturbed to Qu = {u1, u2, ..., uℓ(u)}
where ℓ(u) is the number of paths using vertex u in Π. We say an edge ui, vj ∈ V ′ is faithful
if ui ∈ Qu and vj ∈ Qv and uv ∈ G. Let Epath denote the edges that correspond to the
perturbed paths of Π. Observe that the edges of Epath are faithful.

For all perturbations of the same vertex u ∈ V to Qu = {u1, u2, ..., uℓ(u)} ⊂ V ′, add a
maximal set of planar edges that do not cross the edges of Epath (i.e. a restricted triangulation
in the local neighborhood of the perturbation), and let Eu

vertex denote these added edges.
Define Evertex =

⋃
u∈V Eu

vertex.
Now let’s consider an edge uv ∈ E with no path in Π using uv. We claim that there exists

a perturbed vertex ui ∈ Qu and vj ∈ Qv such that the edge uivj does not intersect edges of
Evertex ∪ F where F is any non-crossing collection of faithful edges. Thus it is possible to
add a collection of non-crossing faithful edges E1

tri that do not intersect Evertex ∪ Epath so
that every edge uv ∈ E has a faithful edge.
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Now consider the faces in the graph (V ′, Epath ∪ Evertex ∪ E1
tri), they are either: (1) a

face that consists of three faithful edges corresponding to a triangle uvw in G joined by
chains of vertices of V ′ corresponding to vertices u, v, or w (2) a face with two faithful edges
corresponding to the same edge uv ∈ E. Either case is easy to triangulate with an additional
set of non-crossing faithful edges E2

tri since any non-crossing triangulation can only consist
of faithful edges. Let Etri = E1

tri ∪ E2
tri. ◀

With this lemma we present our result for any non-crossing spanning path system of a
triangulated planar graph.

▶ Lemma 11 (Balanced separators for non-crossing path systems). Given a triangulated
embedded planar graph G = (V, E), and a non-crossing spanning path system Π to a vertex
s ∈ V , there exists a Jordan curve C with the following properties:
1. There are at most 2n/3 vertices in Vinside(C) and Voutside(C).
2. C is defined by two paths Pu from u to s and Pv from v to s and either one edge uv ∈ E

or u = v.
3. Pu is the suffix of a path Π[u′] and Pv is a suffix of a path Π[v′] for some u′, v′ ∈ V .

Proof. Begin by constructing the triangulated perturbed graph G′ = (V ′, E′) from G and Π
with Lemma 10. Let T be the tree defined by the perturbed paths of Π in G′ rooted at s.

Observe that T is spanning and the fundamental cycles of T contain s. For vertices
u1, ..., uℓ(u) ∈ V ′ that correspond to the vertex u ∈ V , we arbitrarily choose one vertex (say
u1) and give it weight 1, and give all other vertices weight 0. We do this for all vertices
of V . Now we can apply the weighted separator theorem of Theorem 2 to G′ with this
weight function, and spanning tree defined by the perturbed paths of Π to get a balanced
separator C satisfying condition 1. Observe that C corresponds to a fundamental cycle of
the perturbed paths, which is an edge uivj ∈ E′, and two paths that end at s and correspond
to paths of Π satisfying condition 3. Finally observe that the ui and vj correspond either to
two vertices u, v ∈ V with uv ∈ E or to the same vertex u ∈ V . In either case condition 2 is
satisfied. ◀

5 Constructing the shortest path 1-neighborhood separator

5.1 Delaunay edges are crominating
Recall that a pair of vertices u, v ∈ V is crominating if for all edges of G intersecting the
line segment between u and v has one end point adjacent to u or v. We will first show that
Delaunay edges are crominating.

▶ Lemma 12. For a unit disk graph G = (V, E), all edges in the Delaunay triangulation
DT (G) are crominating.

Proof. For the sake of contradiction, suppose that there exists Delaunay edge uv ∈ DT (G)
and edge xy ∈ E, such that uv crosses but does not dominate xy. Without loss of generality,
we may assume that the unit disk centered at x intersects uv, uv is horizontal, and x lies
above uv. Consider if |u − v| ≤ 1 so that uv ∈ E. This would mean that xy would need
to intersect either the unit disk at u or v. By Lemma 3, this implies that one of x or y is
adjacent to either u or v, a contradiction. Thus we will focus on the case where |u − v| > 1.

Let D↑
uv (resp. D↓

uv) be the semidisk above (resp. below) uv with diameter uv. Since
|x − u|, |x − v| > 1 and the distance between x and line segment uv is at most 1/2, we have
x ∈ D↑

uv. Now, let Dx be the disk with center x and radius 1, and let D↓
x be the part of Dx

that lies below uv. Clearly y ∈ D↓
x. Since |x − u|, |x − v| > 1, it follows that D↓

x ⊂ D↓
uv, and

thus y ∈ D↓
uv. (See Figure 7.)
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Figure 7 Suppose an edge xy ∈ E intersects but is not dominated by a Delaunay edge uv.
Without loss of generality assume that disk x intersects edge uv and lies above uv. We show that
x ∈ D↑

uv and y ∈ D↓
x ⊂ D↓

uv.

Let z ∈ S be the point above uv such that u, z, v share the same face in DT (S). Let
Duvz be the circumcircle through u, v, z. There are two cases to consider.
1. If z ∈ D↑

uv, then Duvz ⊃ D↓
uv, and thus must contain y. However, this is forbidden by

the definition of Delaunay triangulation, a contradiction.
2. If z /∈ D↑

uv, then Duvz ⊃ D↑
uv, and thus must contain x, which is a contradiction. ◀

5.2 Putting everything together

We finally have all the pieces we need to prove that unit disk graphs have a shortest path
1-neighborhood separator.

Let G = (V, E) be a unit disk graph on n points. Fix an arbitrary source vertex s ∈ V .
By Lemma 9, there exists a spanning non-crossing path system Π of pseudo-shortest paths
rooted at s using only the edges in the triangulation of DT(G)6. Let C be a Jordan curve
according to Lemma 11, and let Pu, Pv be the paths defining C as in Lemma 11. Consider
an edge xy ∈ E that intersects C. There are a few cases:
1. xy intersects the Delaunay edge uv.
2. xy intersects an edge wz of the triangulated outer face.
3. xy intersects an edge wz in either Π[u] or Π[v].
In the first case, xy is crominated by uv, thus, removing the 1-neighborhood of u and v

removes the edge xy. In the second case, note that the edge wz in the triangulated outer
face is outside of the Delaunay triangulation and thus outside the convex hull of the point
set, so it is impossible for an edge xy ∈ E to cross. In the third case, assume without loss of
generality that wz ∈ Π[u]. The edge wz is part of a Delaunay path between two vertices w∗

and z∗ which are two vertices on the shortest path from u to s. By Lemma 4, this entire
edge is covered by the disk centered at w∗ and the disk centered at z∗. In particular that
means that xy intersects at least one of the disks centered at w∗ or z∗, and thus applying
Lemma 3 shows that either x or y is a neighbor of w∗ or z∗. We can now conclude that
removing the 1-neighborhood of u, v, Pu and Pv removes all edges that cross C.

▶ Theorem 13. Every unit disk graph admits a shortest path 1-neighborhood separator.

6 Note that DT(G) may not be triangulated as a planar graph, the outer face is typically not a triangle.
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Remarks. We have omitted discussions of runtimes related to the construction of our
1-neighborhood separator, but we note that we can construct the separator in O(n2) time.
Finding the path system takes O(n2) time. Indeed, the path system has O(n2) size, although
more compact representations of the path system are possible. Furthermore, it can be shown
that performing the perturbation can be done in O(n2 log n) time by the algorithm of [9],
and the separator construction of Lemma 11 can be done in O(n2). We leave as an open
problem as to whether it is possible to construct the separator faster. To contrast, finding
shortest path separators in planar graphs can be done in O(n) time using the dual co-tree.
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