
Minimizing the Weighted Number of Tardy Jobs Is
W[1]-Hard
Klaus Heeger #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Danny Hermelin #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Abstract
We consider the 1 ||

∑
wjUj problem, the problem of minimizing the weighted number of tardy jobs

on a single machine. This problem is one of the most basic and fundamental problems in scheduling
theory, with several different applications both in theory and practice. Using a reduction from
the Multicolored Clique problem, we prove that 1 ||

∑
wjUj is W[1]-hard with respect to the

number p# of different processing times in the input, as well as with respect to the number w#

of different weights in the input. This, along with previous work, provides a complete picture for
1 ||
∑

wjUj from the perspective of parameterized complexity, as well as almost tight complexity
bounds for the problem under the Exponential Time Hypothesis (ETH).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Combinatorial optimization

Keywords and phrases single-machine scheduling, number of different weights, number of different
processing times

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.68

Related Version Full Version: https://arxiv.org/abs/2401.01740 [10]

Funding Supported by the ISF, grant No. 1070/20.

1 Introduction

In this paper, we consider the following fundamental scheduling problem: we are given a set
of n jobs {x1, . . . , xn}, where each job xj is defined by a three integer-valued characteristic
consisting of: a processing time p(xj) ∈ N, a weight w(xj) ∈ N, and a due date d(xj) ∈ N. We
have a single machine to process all jobs {x1, . . . , xn} non-preemptively. Thus, in this setting
a schedule for {x1, . . . , xn} is a permutation Π : {x1, . . . , xn} → {1, . . . , n} that specifies
the processing order of each job. In this way, we schedule in Π a job xj starting at time
R(xj) =

∑
Π(y)<Π(xj) p(y); that is, the total processing time of jobs preceding xj in Π. The

completion time C(xj) of xj is then defined by C(xj) = R(xj) + p(xj). Job xj is said to be
tardy in Π if C(xj) > d(xj), and early otherwise. Our goal is to find a schedule Π where the
total weight of tardy jobs, i.e.

∑
xj :C(xj)>d(xj) w(xj), is minimized. Following Graham [9],

we denote this problem by 1 ||
∑

wjUj .
The 1 ||

∑
wjUj problem models a very basic and natural scheduling scenario, and

is thus very important in practice. However, it also plays a prominent theoretical role,
most notably in the theory of scheduling algorithms. For instance, it is one of the first
scheduling problems shown to be NP-hard, already included in Karp’s famous initial list of 21
NP-hard problems [15]. The algorithm by Lawler and Moore [17] which solves the problem
in O(Pn) or O(Wn) time, where P and W are the total processing times and weights of all
jobs, is one of the first examples of pseudo-polynomial dynamic programming (see [13] for

© Klaus Heeger and Danny Hermelin;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heeger@post.bgu.ac.il
https://orcid.org/0000-0001-8779-0890
mailto:hermelin@bgu.ac.il
https://orcid.org/0000-0002-6379-0383
https://doi.org/10.4230/LIPIcs.ESA.2024.68
https://arxiv.org/abs/2401.01740
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

recent improvements on this algorithm). Sahni [24] used 1 ||
∑

wjUj as one of the three
first examples to illustrate the important concept of a fully polynomial time approximation
scheme (FPTAS) in the area of scheduling. To that effect, several generalizations of the
1 ||

∑
wjUj problem have been studied in the literature, testing the limits to which these

techniques can be applied [1].
Another reason why 1 ||

∑
wjUj is such a prominent problem is that it is a natural

generalization of two classical problems in combinatorial optimization. Indeed, the special
case of 1 ||

∑
wjUj where all jobs have a common due date (i.e. d(x1) = · · · = d(xn) = d)

translates directly to the dual version of Knapsack [15]: in 1 ||
∑

wjUj our goal is to
minimize the total weight of jobs that complete after d, where in Knapsack we wish to
maximize the total weight of jobs that complete before d. (Here d corresponds to the
Knapsack size, the processing times correspond to item sizes, and the weights correspond
to item values.) When in addition to d(x1) = · · · = d(xn) = d, we also have p(x) = w(x)
for each job x, the 1 ||

∑
wjUj problem becomes Subset Sum. The 1 ||

∑
pjUj problem,

a generalization of Subset Sum and a special case of 1 ||
∑

wjUj , has recently received
attention in the research community as well [2, 16, 25].

1.1 Parameterized complexity of 1 || ∑wjUj

In this paper, we focus on the 1 ||
∑

wjUj problem from the perspective of parameterized
complexity [4, 5]. Thus, we are interested to know whether there exists some algorithm solving
1 ||

∑
wjUj in f(k) · nO(1) time, for some computable function f and some problem-specific

parameter k. In parameterized complexity terminology, this equates to asking whether
1 ||

∑
wjUj is fixed-parameter tractable with respect to parameter k. If we take k to be the

total weight of tardy jobs in an optimal schedule, then 1 ||
∑

wjUj is trivially fixed-parameter
tractable by using the aforementioned pseudo-polynomial time algorithms that exist for the
problem. In fact, these pseudo-polynomial time algorithms show that the 1 ||

∑
wjUj is only

hard in the unbounded setting, i.e. the case where the processing times, weights, and due
dates of the jobs may be super-polynomial in the number n of jobs. This is the case we focus
on throughout the paper.

In the unbounded setting, the most natural first step is to analyze 1 ||
∑

wjUj through
the “number of different numbers” lens suggested by Fellows et al. [6]. In this framework,
one considers problem instances with a small variety of numbers in their input. Three
natural parameters arise in the context of the 1 ||

∑
wjUj problem: the number of differ-

ent due dates d# = |{d(x1), . . . , d(xn)}|, the number of different processing times p# =
|{p(x1), . . . , p(xn)}|, and the number of different weights w# = |{w(x1), . . . , w(xn)}|. Re-
garding parameter d#, the situation is rather clear. Since 1 ||

∑
wjUj is essentially equivalent

to the NP-hard Knapsack problem already for d# = 1 [15], there is no f(k) · nO(1) time
algorithm for the problem unless P=NP.

▶ Theorem 1 ([15]). 1 ||
∑

wjUj is not fixed-parameter tractable with respect to d# unless
P=NP.

What about parameters p# and w#? This question was first studied in [11]. There
it was shown 1 ||

∑
wjUj is polynomial time solvable when either p# or w# are bounded

by a constant. This is done by generalizing the algorithms of Moore [20] and Peha [21]
for the cases of w# = 1 or p# = 1. Moreover, the authors in [11] show that any instance
of 1 ||

∑
wjUj can be translated to an integer linear program whose number of variables

depends solely on d# + p#, d# + w#, or p# + w#. Thus, using fast integer linear program
solvers such as Lenstra’s celebrated algorithm [18], they proved that 1 ||

∑
wjUj is fixed

parameter tractable with respect to all possible combinations of parameters d#, p#, and w#.

K. Heeger and D. Hermelin 68:3

▶ Theorem 2 ([11]). The 1 ||
∑

wjUj problem is solvable in polynomial-time when p# = O(1)
or w# = O(1). Moreover, it is fixed-parameter tractable with respect to parameters d# + p#,
d# + w#, or p# + w#.

Thus, both the aforementioned Knapsack and Subset Sum problems are both fixed-
parameter tractable in the number of different numbers viewpoint. What about 1 ||

∑
wjUj?

The parameterized complexity status of 1 ||
∑

wjUj parameterized by either p# or w# was
left open in [11], and due to Theorem 1 and Theorem 2, these are the only two remaining
cases. Thus, the main open problem in this context is

“Is 1 ||
∑

wjUj fixed-parameter tractable with respect to either p# or w#?”

1.2 Our contribution
In this paper, we resolve the open question above negatively, by showing that 1 ||

∑
wjUj is

W[1]-hard with respect to either p# or w#. This means that unless the central hypothesis of
parameterized complexity (i.e. FPT̸=W[1]) is false, 1 ||

∑
wjUj is neither fixed-parameter

tractable with respect to p# nor with respect to w#.

▶ Theorem 3. 1 ||
∑

wjUj parameterized by either p# or w# is W[1]-hard.

Thus, Theorem 3 together with Theorem 1 and Theorem 2 provide a complete picture of the
parameterized complexity landscape of 1 ||

∑
wjUj with respect to parameters {p#, w#, d#},

and any of their combinations.
We prove Theorem 3 using an elaborate application of the “multicolored clique tech-

nique” [7] which we discuss later on. The proof gives one of the first examples of a single
machine scheduling problem which is hard by the number of different processing times or
weights. The only other example we are aware of is in [12] for a generalization of 1 ||

∑
wjUj

involving release times and batches. Indeed, there are several open problems regarding the
hardness of scheduling problems with a small number of different processing times or weights.
The most notable example is arguably the P | HM | Cmax problem, whose parameterized
complexity status is open for parameter p# (despite the famous polynomial-time algorithm
for the case of p# = O(1) [8]). Further, Mnich and van Bevern [19] list three scheduling
with preemption problems that are also open for parameter p#. We believe that ideas and
techniques used in our proof can prove to be useful for some of these problems as well.

Regarding exact complexity bounds for 1 ||
∑

wjUj , the best known algorithms for the
problem with respect to p# and w# have running times of the form O(nk+1) for either
k = p# or k = w# [11]. How much can we improve on these algorithms? A slight adaptation
of our proof which we discuss in the last part of paper gives an almost complete answer to
this question. In particular, we can show that the above upper bounds are tight up to a
factor of O(lg k), assuming the Exponential Time Hypotheses (ETH) of Impagliazzo and
Paturi [14].

▶ Corollary 4. 1 ||
∑

wjUj cannot be solved in no(k/ lg k) time, for either k = p# or k = w#,
unless ETH is false.

1.3 Technical overview
We next give a brief overview of the proof of Theorem 3. As the case of parameter p#
and w# are rather similar, let us focus on parameter p#. On a high level, our proof follows
the standard “multicolored clique technique” introduced in [7]. In this framework, one

ESA 2024

68:4 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

v1
1

v1
2

v1
3

v1
4V1

v2
1

v2
2

v2
3

v2
4 V2

v3
1 v3

2 v3
3 v3

4

V3

Figure 1 An example nice 3-partite graph (that is, each color class has the same size, and the
number of edges between any pair of color classes is the same) with n = 4 (the size of each color
class) and m = 4 (the number of edges between any pair of color classes). The selected vertices are
squared. Lexicographically larger or equal edges are dashed, while smaller or equal edges are in bold.

designs a parameterized reduction from k-Multicolored Clique, where we are given a
k-partite graph G = (V1 ⊎ · · · ⊎ Vk, E), and we wish to determine whether G contains a clique
that includes one vertex from each color class Vi of G (see Figure 1). Given an instance
of k-Multicolored Clique, our goal is to construct in f(k) · nO(1) time an equivalent
instance of 1 ||

∑
wjUj such that p# = g(k) for some computable functions f and g.

Our reduction essentially consists of three gadgets: one gadget for the vertices of G, and
two gadgets for the edges of G. The gadget for the vertices of G, which we refer to as the
vertex selection gadget, consists of a set of jobs whose role is to encode the selection of a
single vertex from each color class of G (that is, if G contains a multicolored clique, then the
selected vertices shall form such a multicolored clique). Since we may assume that each color
class of G includes exactly n vertices, we essentially need to encode the selection of k integers
n1, . . . , nk ∈ {1, . . . , n}. The crux is that we need to do this using jobs that have only f(k)
different processing times. This will be done as follows: For each color class, there are 2n

jobs with two different, very large processing times in total. As all these jobs have not only
a very large processing time but also a very large weight, we know that exactly n of these
jobs need to be scheduled for every color class. The jobs with larger processing time also
have slightly larger weight than the jobs with smaller processing times. Thereby, scheduling
the shorter jobs early results in the jobs from the edge gadgets being started earlier, while
selecting the larger jobs early results in a smaller weighted processing time of the late jobs
inside the vertex selection gadget. This trade-off between a smaller weighted number of tardy
jobs inside the vertex selection gadget and a smaller processing time of the early jobs in the
vertex selection gadget encodes the selection of a vertex: selecting ni jobs of the first kind
and n − ni jobs of the second kind encodes the selection of the i-th vertex of the color class.

The first edge gadget, called the large edge gadget, consists of a set of jobs whose role
is to count the number of edges that are lexicographically larger or equal to any selected
pair (ni, nj) ∈ {1, . . . , n}2. The second edge gadget, referred to as the small edge gadget,
counts all lexicographically smaller or equal edges. In this way, if the total number of edges
counted is |E| +

(
k
2
)
, then we know that the vertices indexed by n1, . . . , nk ∈ {1, . . . , n} form

a clique in G. If the total number of counted edges is smaller, then G contains no clique
with k vertices. Again, we need to ensure that the jobs in both gadgets have f(k) different
processing times.

K. Heeger and D. Hermelin 68:5

To ensure all jobs constructed have a small variety of different processing times, we
make heavy use of the fact that the processing times (and weights and due dates) can be
rather large. Thus, we choose some polynomially large N , and use integers in the range
of {0, . . . , Nf(k) − 1} for some function f . In this way, considering all integers in their base N

representation, allows us to use the different digits in the representation to encode various
numerical values such as the integers n1, . . . , nk ∈ {1, . . . , n}. We partition each integer
in {0, . . . , Nf(k) − 1} into blocks of m + 2 consecutive digits. Each digit in each block has
a function that will overall allow us to use the strategy discussed above, and selecting a
sufficiently large N ensures that no overflow can occur between adjacent digits. The devil, of
course, is in the details.

1.4 Roadmap
The rest of the paper is organized as follows. In Section 2 we briefly review all preliminary
results that are necessary for proving our main result, i.e. Theorem 3. Section 3 then contains
the proof of Theorem 3 for parameter p#, which is the main technical part of the paper. The
discussion of how to adapt the proof of Section 3 to parameter w# as well as the discussion
of our ETH-based lower bounds are deferred to the full version [10]. Further, all proofs of
statements marked with ⋆ are deferred to the full version [10].

2 Preliminaries

We use standard notation from graph theory and parameterized complexity. For more details
on parameterized complexity, we refer to [3]. Throughout the paper, we will use < to denote
the lexicographical order between ordered pairs of integers. Thus,

(i, j) < (i0, j0) ⇐⇒ (i < i0) or (i = i0 and j < j0)

for any pair of integers (i, j) and (i0, j0).

2.1 The multicolored clique problem
The source W[1]-hard problem in our parameterized reduction used for proving Theorem 3 is
the k-Multicolored Clique problem.

▶ Definition 5. Given a k-partite graph G = (V1 ⊎· · ·⊎Vk, E), the k-Multicolored Clique
problem asks to determine whether G contains a subset of k pairwise adjacent vertices (i.e.
a clique of size k).

For a given a k-partite graph G = (V1 ⊎ · · · ⊎ Vk, E), we let Ei,j denote the set of edges
between any vertex in Vi and any vertex in Vj , for all 1 ≤ i < j ≤ k. We say that a k-partite
graph G = (V1 ∪ · · · ∪ Vk) is nice if |V1| = · · · = |Vk| and |E1,2| = · · · = |Ek−1,k|.

▶ Theorem 6 ([7, 22]). k-Multicolored Clique is W[1]-hard when parameterized by k,
even if the input graph is nice.

Given a nice k-partite graph G = (V1 ⊎ · · · ⊎ Vk, E), we refer to each Vi ∈ {V1, . . . , Vk} as
a color class of G. We write Vi = {vi

1, . . . , vi
n} to denote vertices in Vi for each 1 ≤ i ≤ k, and

Ei,j = {ei,j
1 , . . . , ei,j

m } to denote the edges in Ei,j for each 1 ≤ i < j ≤ k. When considering a
specific set of edges Ei,j , we will often use ℓi ∈ {1, . . . , n} and ℓj ∈ {1, . . . , n} to respectively
denote the index of the vertex in Vi and the index of the vertex of Vj in the ℓ’th edge of Ei,j .
That is, ei,j

ℓ = {vi
ℓi

, vj
ℓj

}.

ESA 2024

68:6 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

2.2 EDD schedules
In the 1 ||

∑
wjUj problem it is frequently convenient to work with what we refer to as an

EDD1 schedule.

▶ Definition 7. A schedule Π for a set {x1, . . . , xn} of jobs is EDD if all early jobs in Π
are scheduled in before all tardy jobs, and the order among early jobs is non-decreasing
in due dates. Thus, if Π(xi) < Π(xj), then either xj is tardy, or both jobs are early and
d(xi) ≤ d(xj).

The reason EDD schedules are popular when working with the 1 ||
∑

wjUj problem is
that we can always assume that there exists an optimal schedule which is EDD. The following
lemma is by now folklore (see e.g. [1]), and can easily be proven by an exchange argument
which swaps early jobs that do not satisfy the EDD property in a given optimal schedule.

▶ Lemma 8. Any instance of 1 ||
∑

wjUj has an optimal EDD schedule.

Thus, throughout our reduction from k-Multicolored Clique, we can restrict our
attention to EDD schedules only. Given an EDD schedule Π0 for a job set {x1, . . . , xn}, we
say that Π is an extension of Π0 to the set of jobs {y1, . . . , ym} if Π is an EDD schedule for
{x1, . . . , xn, y1, . . . , ym} which schedules early all jobs that are scheduled early in Π0. We
write P (Π) and W (Π) to respectively denote the total processing time and weight of all early
jobs in a given EDD schedule Π.

3 Parameter p#

In the following section we present a proof of Theorem 3 for parameter p#. As mentioned
above, the proof consists of a parameterized reduction from k-Multicolored Clique
parameterized by k to 1 ||

∑
wjUj parameterized by p#. We use G = (V = V1 ⊎ · · · ⊎ Vk, E)

to denote an arbitrary nice k-partite graph given as an instance of k-Multicolored
Clique, with n = |V1| = · · · = |Vk| and m = |E1,2| = · · · = |Ek−1,k|. Before discussing
our construction in full detail, we review the terminology that we will use throughout for
handling large integers.

3.1 Digits and blocks
Let N be a polynomially-bounded integer that is chosen to be sufficiently larger than the
overall number of jobs in our construction (N = O(kn + k2m) is enough). This number
will appear frequently in the processing times, weights, and due dates of the jobs in our
construction. In particular, it is convenient to view each integer in our construction in its
base N representation: each integer will be in the range of [0, 1, . . . , Nk+2(k

2)·(m+2)+1 − 1],
and so we can view each integer as a string of length k + 2

(
k
2
)

· (m + 2) + 1 over the
alphabet {0, . . . , N − 1}. When viewed as such, we will refer to each letter of the string as a
digit.

Furthermore, we will conceptually partition each integer into blocks of consecutive digits
as follows (see Example 9): the least significant digit is a block within itself which we refer
to as the counting block. Following this, there are

(
k
2
)

blocks which we refer to as the small
blocks, consisting of m + 2 digits each, where the first (least significant) block corresponds to

1 EDD here is an acronym for “Earliest Due Date”.

K. Heeger and D. Hermelin 68:7

the color class pair (V1, V2), the second corresponds to (V1, V3), and so forth. Following the
small blocks are

(
k
2
)

blocks which we dub the large blocks, which again consist of m + 2 digits
each, and are ordered similarly to the left blocks. The final block is the vertex selection block
which consists of the k most significant digits of the given integer.

▶ Example 9. As example, the following is the partitioning of integer 0:

k︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸
vertex

selection
block

|
m+2︷ ︸︸ ︷

0 · · · · · · 0 | · · · |
m+2︷ ︸︸ ︷

0 · · · · · · 0 |︸ ︷︷ ︸
(k

2) large blocks

|
m+2︷ ︸︸ ︷

0 · · · · · · 0 | · · · |
m+2︷ ︸︸ ︷

0 · · · · · · 0 |︸ ︷︷ ︸
(k

2) small blocks

1︷︸︸︷
0︸︷︷︸

counting
block

The large and small blocks are ordered in increasing lexicographic order of (i, j), so the (1, 2)
small block is the first block following the counting block. In each block we order the digits
from least significant to most significant, so the first digit in the (1, 2) small block is the
second least significant digit overall.

Let g : {(i, j) | 1 ≤ i < j ≤ k} → {0, . . . ,
(

k
2
)

− 1} denote the lexicographic ordering
function, that is g(i, j) > g(i0, j0) iff (i, j) > (i0, j0) for all 1 ≤ i < j ≤ k. Furthermore,
let G(i, j) = (m + 2) · g(i, j) + 1 for all 1 ≤ i < j ≤ k. Similarly, let f : {(i, j) | 1 ≤ i <

j ≤ k} → {
(

k
2
)
, . . . , 2 ·

(
k
2
)

− 1} denote the function defined by f(i, j) =
(

k
2
)

+ g(i, j), and let
F (i, j) = (m + 2) · f(i, j) + 1. We will use the following constants in our construction:

Xi := N (m+2)·2(k
2)+i for i ∈ {1, . . . , k},

Yi,j := NF (i,j)+m+1 for i < j ∈ {1, . . . , k}, and
Zi,j := NG(i,j)+m+1 for i < j ∈ {1, . . . , k}.

Thus, Xi corresponds to the i’th digit in the vertex selection block, Yi,j corresponds to the
last digit in the (i, j) large block, and Zi,j corresponds to the last digit in the (i, j) small
block.

3.2 Vertex selection gadget
The role of the vertex selection gadget is to encode the selection of k vertices, one from each
color class Vi of G. In constructing the vertex selection jobs, we will use the following two
values associated with each i ∈ {1, . . . , k}:

L(i) =
∑i−1

j=1 NF (j,i) +
∑k

j=i+1 NF (i,j)+1.
S(i) =

∑i−1
j=1 NG(j,i) +

∑k
j=i+1 NG(i,j)+1.

Thus, adding L(i) to an integer corresponds to adding a 1 to the first digit of every (j, i) large
block with j < i, and a 1 to the second digit of any (i, j) large block with j > i. Adding S(i)
corresponds to adding a 1 to the same digits in the small blocks.

Let 1 ≤ i ≤ k, and consider the color class Vi of G. The Vi vertex selection gadget is
constructed as follows. Let P V

i denote the following value:

P V
i = n ·

∑
j>i

Xj = n ·
∑
j>i

N (m+2)·2(k
2)+j .

Thus, P V
i has n as its j’th most significant digit for j < i, and 0 in all of its other digits. We

construct n − 1 copies of the job pair {xi, ¬xi} with the following characteristic:
p(xi) = w(xi) = Xi + L(i).
p(¬xi) = w(¬xi) = Xi + S(i).
d(xi) = d(¬xi) = P V

i−1 + N (m+2)·2(k
2) (where P V

0 = n ·
∑

i Xi).

ESA 2024

68:8 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

In addition to these n − 1 copies of {xi, ¬xi}, we construct a single job x∗
i with similar

processing time and due date as xi, but with significantly larger weight:
p(x∗

i) = p(xi) and d(x∗
i) = d(xi).

w(x∗
i) = (n + 1) · Xi + L(i).

The jobs x∗
i , xi, and ¬xi are called Vi vertex selection jobs.

Overall, we have (2n − 1) · k vertex selection jobs that together have only 2k different
processing times, 3k different weights, and k different due dates. The vertex selection jobs
are constructed in a way so that any schedule with sufficiently large weight of early jobs will
schedule n early jobs from {x∗

i , xi, ¬xi} for each 1 ≤ i ≤ n. Due to the large weight of x∗
i ,

job x∗
i will always be scheduled early, while the number of early jobs xi and ¬xi will be used

to encode an integer ni ∈ {1, . . . , n} corresponding to vertex vi
ni

∈ Vi.

▶ Lemma 10 (⋆). Let n1, . . . , nk ∈ {1, . . . , n}. There exists a schedule Π = Π(n1, . . . , nk)
for the vertex selection jobs such that for each i ∈ {1, . . . , k} precisely ni jobs from {x∗

i , xi}
and n − ni copies of ¬xi are early in Π for each 1 ≤ i ≤ k.

Throughout the remainder of the proof, we will use Π = Π(n1, . . . , nk) to denote the
schedule that schedules x∗

i , exactly ni − 1 jobs xi, and n − ni jobs ¬xi early. Let WV denote
the value

WV = 2n ·
∑

i

Xi.

Then the following corollary follows directly from Lemma 10:

▶ Corollary 11. Let Π = Π(n1, . . . , nk) for some n1, . . . , nk ∈ {1, . . . , n}. Then
(i) P (Π) = PV +

∑
i ni · L(i) +

∑
i(n − ni) · S(i).

(ii) W (Π) = WV +
∑

i ni · L(i) +
∑

i(n − ni) · S(i).

▶ Example 12. Consider the 3-partite graph in Figure 1, where vertex vi
i is selected for

each color class Vi. Then the total processing time of all early vertex selection jobs in this
example is:

444| 000023|︸ ︷︷ ︸
(2,3)
large

| 000013|︸ ︷︷ ︸
(1,3)
large

| 000012|︸ ︷︷ ︸
(1,2)
large

| 000021|︸ ︷︷ ︸
(2,3)
small

| 000031|︸ ︷︷ ︸
(1,3)
small

| 000032|︸ ︷︷ ︸
(1,2)
small

|0

The total weight of all early vertex selection jobs is identical, except that the vertex selection
block equals “888” instead of “444”.

As mentioned above, the vertex selection jobs are constructed in a way so that any
schedule Π for these jobs with sufficiently large weight of early jobs will schedule precisely
n early jobs from {x∗

i , xi, ¬xi} for each 1 ≤ i ≤ k. This is formally proven in the following
lemma:

▶ Lemma 13 (⋆). Let Π be an EDD schedule for the vertex selection jobs with W (Π) ≥ WV .
Then Π = Π(n1, . . . , nk) for some n1, . . . , nk ∈ {1, . . . , n}.

3.3 Large edge gadget
We next describe the large edge gadget. The role of this gadget is to “count” all edges that
are lexicographically larger or equal to pairs of selected vertices. This is done by constructing
a pair of jobs {yi,j

ℓ , ¬yi,j
ℓ } for each edge ei,j

ℓ of G, along with some additional filler jobs.

K. Heeger and D. Hermelin 68:9

Let 1 ≤ i < j ≤ k. The (i, j) large edge gadget is constructed as follows. First we
define P L

i,j to be the following value:

P L
i,j =

∑
(i0,j0)>(i,j)

(
m · Yi0,j0 + n · NF (i0,j0)+1 + n · NF (i0,j0)

)
.

Thus, the two first digits of the (i, j) large block in P L
i,j equal n, the last digit of this block

equals m, and all other digits equal 0. Let ℓ ∈ {1, . . . , m}, and suppose that the ℓ’th edge
between Vi and Vj is the edge ei,j

ℓ = {vi
ℓi

, vj
ℓj

} for some ℓi, ℓj ∈ {1, . . . , n}. We construct two
jobs yi,j

ℓ and ¬yi,j
ℓ corresponding to ei,j

ℓ with the following characteristic:
p(yi,j

ℓ) = Yi,j and w(yi,j
ℓ) = Yi,j / N ℓ + 1.

p(¬yi,j
ℓ) = Yi,j and w(¬yi,j

ℓ) = Yi,j / N ℓ.
d(yi,j

ℓ) = PV + P L
i,j + ℓ · Yi,j + ℓi · NF (i,j)+1 + ℓj · NF (i,j) + NF (i,j)−1.

d(¬yi,j
ℓ) = PV + P L

i,j + ℓ · Yi,j + n · NF (i,j)+1 + n · NF (i,j) + NF (i,j)−1.
Observe that both jobs have the same processing time, which is equal throughout for jobs
corresponding to other edges of Ei,j . Also note that the weight of yi,j

ℓ is slightly larger than
the weight of ¬yi,j

ℓ , while the due date of ¬yi,j
ℓ is significantly larger than the due date of yi,j

ℓ .
We will also need to add filler jobs that will help us control the total processing times of

all early jobs selected from the (i, j) large edge gadget. We construct n copies of the the job
pair {f i,j

0 , f i,j
1 } which have the following characteristic:

p(f i,j
0) = w(f i,j

0) = NF (i,j).
p(f i,j

1) = w(f i,j
1) = NF (i,j)+1.

d(f i,j
0) = d(f i,j

1) = PV + P L
i,j + m · Yi,j + n · NF (i,j)+1 + n · NF (i,j) + NF (i,j)−1.

Thus, altogether, the large edge gadget consists of the job pair {yi,j
ℓ , ¬yi,j

ℓ } for ℓ ∈
{1, . . . , m} and n copies of the job pair {f i,j

0 , f i,j
1 }, for each 1 ≤ i < j ≤ k. Note that

the large edge jobs have 3
(

k
2
)

different processing times in total. We next prove a lemma
regarding the structure of certain schedules for the vertex selection and large edge job. This
structure is what allows us to count all edges that are lexicographically larger or equal any
selected pair (ni, nj). Let ΠV be a schedule for the vertex selection jobs. We say that Π is
an optimal extension of ΠV to the set of large edge jobs if all jobs that are early in ΠV are
also early in Π, and there is no other such schedule with a larger total weight of early jobs.

▶ Lemma 14 (⋆). Let ΠV = Π(n1, . . . , nk) be a schedule for the vertex selection jobs for
some n1, . . . , nk ∈ {1, . . . , n}, and let Π be an optimal extension of ΠV to the set of large
edge jobs. Then the following properties hold for each 1 ≤ i < j ≤ k:
(a) The total processing time P of all vertex selection jobs and all (i0, j0) large jobs for

(i0, j0) > (i, j) which are early in Π satisfies

P ≥ PV + P L
i,j + ni · NF (i,j)+1 + nj · NF (i,j)

and

P ≤ PV + P L
i,j + ni · NF (i,j)+1 + nj · NF (i,j) + NF (i,j)−1.

(b) For each ℓ ∈ {1, . . . , m} we have that either job yi,j
ℓ or job ¬yi,j

ℓ is early in Π, but not
both. Job yi,j

ℓ is early iff (ni, nj) ≤ (ℓi, ℓj), where ei,j
ℓ = {vi

ℓi
, vj

ℓj
} is the ℓ’th edge in Ei,j .

(c) Precisely n − ni copies of job f i,j
1 and n − nj copies of job f i,j

0 are scheduled early in Π.

ESA 2024

68:10 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

Using Lemma 14, we can again derive the total processing time and weight of all early
jobs in any optimal EDD schedule Π for vertex selection jobs and the large edge jobs. Let W L

be the following value:

WL =
∑
(i,j)

(∑
ℓ

Yi,j / N ℓ + n · NF (i,j)+1 + n · NF (i,j)

)
.

Define PL = P L
0,0. Moreover, for 1 ≤ i < j ≤ k and ni, nj ∈ {1, . . . , n}, define mL

i,j(ni, nj)
to be the total number of edges in Ei,j that are lexicographically larger or equal to (ni, nj).
That is, the total number of edges ei,j

ℓ = (vi
ℓi

, vj
ℓj

) ∈ Ei,j with (ni, nj) ≤ (ℓi, ℓj). Then the
following holds:

▶ Corollary 15 (⋆). Let ΠV = (n1, . . . , nk) be a schedule for the vertex selection jobs for
some n1, . . . , nk ∈ {1, . . . , n}, and let Π be an optimal extension of ΠV to the set of vertex
selection and large edge jobs. Then

(i) P (Π) = PV + PL +
∑

i(n − ni) · S(i).
(ii) W (Π) = WV + WL +

∑
i(n − ni) · S(i) +

∑
(i,j) mL

i,j(ni, nj).

▶ Example 16. Recall the schedule of Example 12. After optimally scheduling all jobs from
the (2, 3) large edge gadget (including the filler jobs), the total processing time of all early
jobs is:

444| 400044|︸ ︷︷ ︸
(2,3)
large

| 000013|︸ ︷︷ ︸
(1,3)
large

| 000012|︸ ︷︷ ︸
(1,2)
large

| 000021|︸ ︷︷ ︸
(2,3)
small

| 000031|︸ ︷︷ ︸
(1,3)
small

| 000032|︸ ︷︷ ︸
(1,2)
small

|0

The total weight of all early jobs is

888| 111144|︸ ︷︷ ︸
(2,3)
large

| 000013|︸ ︷︷ ︸
(1,3)
large

| 000012|︸ ︷︷ ︸
(1,2)
large

| 000021|︸ ︷︷ ︸
(2,3)
small

| 000031|︸ ︷︷ ︸
(1,3)
small

| 000032|︸ ︷︷ ︸
(1,2)
small

|2

as mL
2,3(2, 3) = 2 in the example.

3.4 Small edge gadget
We next describe the small edge gadget. Analogous to the large edge gadget, the role of
the small edge gadget is to count all edges that are lexicographically smaller or equal to
pairs of selected vertices. It is constructed similarly to the large edge gadget, except that we
focus on the small blocks of the integers. We start by defining P S

i,j , which is analogous to
the value P L

i,j used in the large edge gadget:

P S
i,j =

∑
(i0,j0)>(i,j)

(
m · Zi0,j0 + n · NG(i0,j0)+1 + n · NG(i0,j0)

)
.

For each 1 ≤ i < j ≤ j, we construct the (i, j) small edge gadget as follows: let
ℓ ∈ {1, . . . , m}, and suppose that ei,j

ℓ = {vi
ℓi

, vj
ℓj

} ∈ Ei,j is the ℓ’th edge in Ei,j . We
construct two jobs zi,j

ℓ and ¬zi,j
ℓ associated with ei,j

ℓ that have the following characteristic:
p(zi,j

ℓ) = Zi,j and w(zi,j
ℓ) = Zi,j / N ℓ + 1.

p(¬zi,j
ℓ) = Zi,j and w(¬zi,j

ℓ) = Zi,j / N ℓ.
d(zi,j

ℓ) = PV + PL + P S
i,j + ℓ · Zi,j + (n − ℓi) · NG(i,j)+1 + (n − ℓj) · NG(i,j) + NG(i,j)−1.

d(¬zi,j
ℓ) = PV + PL + P S

i,j + ℓ · Zi,j + n · NG(i,j)+1 + n · NG(i,j) + NG(i,j)−1.

K. Heeger and D. Hermelin 68:11

We will also add filler jobs as done in the large edge gadgets. We construct n copies of
the job pair {gi,j

0 , gi,j
1 } which have the following characteristic:

p(gi,j
0) = w(gi,j

0) = NG(i,j).
p(gi,j

1) = w(gi,j
1) = NG(i,j)+1.

d(gi,j
0) = d(gi,j

1) = PV + PL + P S
i,j + ℓ · Zi,j + n · NG(i,j)+1 + n · NG(i,j).

Thus, altogether, the (i, j) small edge gadget consists of all job pairs {zi,j
ℓ , ¬zi,j

ℓ } for ℓ ∈
{1, . . . , m}, and all n copies of the job pair {gi,j

0 , gi,j
1 }. Note that all these jobs have three

different processing times in total.
Lemma 17 below is analogous to Lemma 14, except that the structure that it conveys

allows us to count all edges that are lexicographically smaller or equal (as opposed to larger
or equal) to pairs of selected vertices. We have the following:

▶ Lemma 17 (⋆). Let ΠV = (n1, . . . , nk) be a schedule for the vertex selection jobs for some
n1, . . . , nk ∈ {1, . . . , n}, and let ΠL be an optimal extension of ΠV to the set of large edge
jobs. Let Π be an optimal extension of ΠL to the set of small edge jobs. Then the following
properties hold for each 1 ≤ i < j ≤ k:
(a) The total processing time P of all vertex selection jobs, all large edge jobs, and all (i0, j0)

small jobs for (i0, j0) > (i, j), which are early in Π satisfies

P ≥ PV + PL + P S
i,j + (n − ni) · NG(i,j)+1 + (n − nj) · NG(i,j)

and

P ≤ PV + PL + P S
i,j + (n − ni) · NG(i,j)+1 + (n − nj) · NG(i,j) + NG(i,j)−1.

(b) For each ℓ ∈ {1, . . . , m} we have that either job zi,j
ℓ or job ¬zi,j

ℓ is early in Π, but not
both. Job zi,j

ℓ is early if and only if (ni, nj) ≥ (ℓi, ℓj), where ei,j
ℓ = {vi

ℓi
, vj

ℓj
} is the ℓ’th

edge in Ei,j.
(c) Precisely ni copies of job gi,j

1 and nj copies of job gi,j
0 are scheduled early in Π.

For 1 ≤ i < j ≤ k and ni, nj ∈ {1, . . . , n}, define mS
i,j(ni, nj) to be the total number of

edges in Ei,j that are lexicographically smaller or equal to (ni, nj). That is, the total number
of edges ei,j

ℓ = (vi
ℓi

, vj
ℓj

) ∈ Ei,j with (ni, nj) ≥ (ℓi, ℓj). Let WS denote the following value:

WS =
∑
(i,j)

(∑
ℓ

Zi,j / N ℓ + n · NG(i,j)+1 + n · NG(i,j)

)
.

We have the following corollary of Lemma 17.

▶ Corollary 18 (⋆). Let ΠV = (n1, . . . , nk) be a schedule for the vertex selection jobs for
some n1, . . . , nk ∈ {1, . . . , n}, let ΠL be an optimal extension of ΠV to the set of large edge
jobs, and let Π be an optimal extension of ΠL to the set of small edge jobs. Then

W (Π) = WV + WL + WS +
∑
(i,j)

mL
i,j(ni, nj) +

∑
(i,j)

mS
i,j(ni, nj).

▶ Example 19. Consider the schedule of Example 16. After scheduling all remaining large
edge jobs, and all jobs from the (2, 3) small edge gadget (including the filler jobs), the total
processing time of all early jobs is:

444| 400044|︸ ︷︷ ︸
(2,3)
large

| 400044|︸ ︷︷ ︸
(1,3)
large

| 400044|︸ ︷︷ ︸
(1,2)
large

| 400044|︸ ︷︷ ︸
(2,3)
small

| 000031|︸ ︷︷ ︸
(1,3)
small

| 000032|︸ ︷︷ ︸
(1,2)
small

|0

ESA 2024

68:12 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

The total weight of all early jobs is

888| 111144|︸ ︷︷ ︸
(2,3)
large

| 111144|︸ ︷︷ ︸
(1,3)
large

| 111144|︸ ︷︷ ︸
(1,2)
large

| 11114|︸ ︷︷ ︸
(2,3)
small

| 000031|︸ ︷︷ ︸
(1,3)
small

| 000032|︸ ︷︷ ︸
(1,2)
small

|12

as
∑

(i,j) mL
i,j(i, j) + mS

2,3(2, 3) = 12 in the example.

3.5 Correctness
We have completed the description of all jobs in our 1 ||

∑
wjUj instance. Table 1 provides a

compact list of the characteristics of all these jobs. Lemma 20 below, along with Theorem 6,
completes our proof of Theorem 3 for parameter p#. Theorem 3 for parameter w# follows
by a similar reduction; for details we refer to the full version [10].

Table 1 The weights, processing times, due dates, and multiplicities of all jobs in our construction.
Here, P L

i,j(ℓ) is shorthand notation for PV + P L
i,j + ℓ · Yi,j + NF (i,j)−1, and P S

i,j(ℓ) = PV + PL + P S
i,j +

ℓ · Zi,j + NG(i,j)−1.

Job Proc. Time Weight Due Date Mult.
x∗

i Xi + L(i) (n + 1) · Xi + L(i) P V
i−1 + N (m+2)·2(k

2) 1
xi Xi + L(i) Xi + L(i) d(x∗

i) n − 1
¬xi Xi + S(i) Xi + S(i) d(x∗

i) n

yi,j
ℓ Yi,j Yi,j / N ℓ + 1 P L

i,j(ℓ) + ℓi · NF (i,j)+1 + ℓj · NF (i,j) 1
¬yi,j

ℓ Yi,j Yi,j / N ℓ P L
i,j(ℓ) + n · NF (i,j)+1 + n · NF (i,j) 1

f i,j
1 NF (i,j)+1 NF (i,j)+1 P L

i,j(m) + n · NF (i,j)+1 + n · NF (i,j) n

f i,j
0 NF (i,j) NF (i,j) d(f i,j

1) n

zi,j
ℓ Zi,j Zi,j / N ℓ + 1 P S

i,j(ℓ) + (n−ℓi) · NG(i,j)+1 + (n−ℓj) · NG(i,j) 1
¬zi,j

ℓ Zi,j Zi,j / N ℓ P S
i,j(ℓ) + n · NG(i,j)+1 + n · NG(i,j) 1

gi,j
1 NG(i,j)+1 NG(i,j)+1 P S

i,j(m) + n · NG(i,j)+1 + n · NG(i,j) n

gi,j
0 NG(i,j) NG(i,j) d(gi,j

1) n

▶ Lemma 20. There is a parameterized reduction from k-Multicolored Clique (restricted
to nice k-partite graphs) parameterized by k to 1 ||

∑
wjUj parameterized by p#.

Proof. The reduction is as described throughout the section. It is in fact a reduction to the
equivalent problem of 1 ||

∑
wjUj where the goal is to maximize the weight of early jobs. The

reduction can be carried out in polynomial-time, and the total number of different processing-
times p# in the resulting 1 ||

∑
wjUj instance is 2k + 6

(
k
2
)

(see Table 1). To complete the
proof of the lemma, we argue that the graph G = (V = V1 ⊎ · · · ⊎ Vk, E) of the input k-
Multicolored Clique instance has a clique of size k iff the constructed 1 ||

∑
wjUj instance

has a schedule where the total weight of early jobs is at least WV + WL + WS + (m + 1) ·
(

k
2
)
.

Suppose G has a clique of size k with v1
n1

∈ V1, . . . , vk
nk

∈ Vk. Then
∑

(i,j) mL
i,j(ni, nj) +

mS
i,j(ni, nj) = (m + 1) ·

(
k
2
)
. Thus, according to Corollary 18, the optimal extension Π of

ΠV = Π(n1, . . . , nk) to the set of large and small edge jobs has total weight of early jobs
W (Π) = WV + WL + WS + (m + 1) ·

(
k
2
)
. Conversely, suppose that there is a schedule Π

for the 1 ||
∑

wjUj instance with W (Π) ≥ WV + WL + WS + (m + 1) ·
(

k
2
)
. Let ΠV be

the restriction of Π to the vertex selection jobs. Then as N (m+2)·2(k
2)−1 is larger than the

total weight of all large and small edge jobs, we have W (ΠV) ≥ WV as otherwise we have
W (ΠV) < WV − X1 + N (m+2)·2(k

2)−1, implying W (Π) < WV . Thus, ΠV = Π(n1, . . . , nk)

K. Heeger and D. Hermelin 68:13

for some n1, . . . , nk ∈ {1, . . . , n} according to Lemma 13. We may assume without loss of
generality that Π is an optimal extension of ΠV to set of large and small edge jobs. It follows
then from Corollary 18 that

∑
(i,j) mL

i,j(ni, nj) + mS
i,j(ni, nj) = (m + 1) ·

(
k
2
)
, which means

that there are
(

k
2
)

edges in G between vertices in {v1
n1

, . . . , vk
nk

}. Thus, v1
n1

, . . . , vk
nk

is a
clique of size k in G. ◀

Slightly adapting the reduction, we also get an ETH-based lower bound (we refer to the
full version [10] for details).

▶ Corollary 4. 1 ||
∑

wjUj cannot be solved in no(k/ lg k) time, for either k = p# or k = w#,
unless ETH is false.

4 Conclusions

In the current paper we completely resolved the parameterized complexity status of 1 ||∑
wjUj with respect to parameters p#, w#, and d#. Our result also gives almost ETH tight

bounds in the case when only one of p# or w# is bounded by a constant. However, there
still remains several research directions to explore regarding the 1 ||

∑
wjUj problem, and

its variants. Below we list a few questions that still remain open:

Can the gap between lower and upper bound in Corollary 4 be closed? That is, can one
show a lower bound of no(k) or can 1 ||

∑
wjUj be solved in nO(k/ lg k) time, for k = p#

or k = w#?
The current FPT algorithms solving 1 ||

∑
wjUj for parameters k = p#+w#, k = p#+d#,

or k = w# + d# have running times of the form 2O(k lg lg k) · nO(1) using the recent ILP-
algorithm by Reis and Rothvoss [23]. Can any of these running times be improved to
2O(k) · n, or can one show a 2Ω(k lg lg k) · nO(1) lower-bound?
Our result shows that 1 ||

∑
wjUj is W [1]-hard with respect to parameters p# and w#,

but it does not show that the problem is in W [1] for any of these parameters. Is
1 ||

∑
wjUj contained in W [t] for some t ≥ 1?

References
1 Muminu O. Adamu and Aderemi O. Adewumi. A survey of single machine scheduling to

minimize weighted number of tardy jobs. Journal of Industrial and Management Optimization,
10(1):219–241, 2014.

2 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341–1356,
2022.

3 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Transactions on Algorithms, 15(1):14:1–14:25, 2019.

4 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

6 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Parameterizing by the number
of numbers. Theory of Computing Systems, 50(4):675–693, 2012.

7 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

ESA 2024

68:14 Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

8 Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant
number of item types. Journal of the ACM, 67(6):38:1–38:21, 2020. doi:10.1145/3421750.

9 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

10 Klaus Heeger and Danny Hermelin. Minimizing the weighted number of tardy jobs is W[1]-hard.
CoRR, abs/2401.01740, 2024. doi:10.48550/arXiv.2401.01740.

11 Danny Hermelin, Shlomo Karhi, Michael L. Pinedo, and Dvir Shabtay. New algorithms for
minimizing the weighted number of tardy jobs on a single machine. Annals of Operations
Research, 298(1):271–287, 2021.

12 Danny Hermelin, Matthias Mnich, and Simon Omlor. Single machine batch scheduling to
minimize the weighted number of tardy jobs. CoRR, abs/1911.12350, 2019.

13 Danny Hermelin, Hendrik Molter, and Dvir Shabtay. Minimizing the weighted number of
tardy jobs via (max, +)-convolutions. INFORMS Journal on Computing - to appear, 2024.

14 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

15 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

16 Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing time,
max-min skewed convolution, and triangular structured ILPs. In Proc. of the 34th ACM-SIAM
Symposium On Discrete Algorithms, SODA 2023, pages 2947–2960, 2023.

17 Eugene L. Lawler and James M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16(1):77–84, 1969.

18 Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8(4):538–548, 1983.

19 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254–261, 2018.

20 James M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15(1):102–109, 1968.

21 Jon M. Peha. Heterogeneous-criteria scheduling: Minimizing weighted number of tardy jobs
and weighted completion time. Computers and Operations Research, 22(10):1089–1100, 1995.

22 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.

23 Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer
programming. In Proc. of the 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, pages 974–988, 2023. doi:10.1109/FOCS57990.2023.00060.

24 Sartaj K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23(1):116–
127, 1976.

25 Baruch Schieber and Pranav Sitaraman. Quick minimization of tardy processing time on a
single machine. In Proc. of the 18th international Workshop on Algorithms and Data Structures,
WADS 2023, pages 637–643, 2023.

https://doi.org/10.1145/3421750
https://doi.org/10.48550/arXiv.2401.01740
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1109/FOCS57990.2023.00060

	1 Introduction
	1.1 Parameterized complexity of
	1.2 Our contribution
	1.3 Technical overview
	1.4 Roadmap

	2 Preliminaries
	2.1 The multicolored clique problem
	2.2 EDD schedules

	3 Parameter p_{#}
	3.1 Digits and blocks
	3.2 Vertex selection gadget
	3.3 Large edge gadget
	3.4 Small edge gadget
	3.5 Correctness

	4 Conclusions

