Minimizing the Weighted Number of Tardy Jobs Is
W/[1]-Hard

Klaus Heeger =
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Danny Hermelin &
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

—— Abstract

We consider the 1 || >~ w;U; problem, the problem of minimizing the weighted number of tardy jobs
on a single machine. This problem is one of the most basic and fundamental problems in scheduling
theory, with several different applications both in theory and practice. Using a reduction from
the MULTICOLORED CLIQUE problem, we prove that 1 || Y w;U; is W[1]-hard with respect to the
number px of different processing times in the input, as well as with respect to the number wx
of different weights in the input. This, along with previous work, provides a complete picture for
1| > w;U; from the perspective of parameterized complexity, as well as almost tight complexity
bounds for the problem under the Exponential Time Hypothesis (ETH).

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms; Mathematics of computing — Combinatorial optimization

Keywords and phrases single-machine scheduling, number of different weights, number of different
processing times

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.68
Related Version Full Version: https://arxiv.org/abs/2401.01740 [10]

Funding Supported by the ISF, grant No. 1070/20.

1 Introduction

In this paper, we consider the following fundamental scheduling problem: we are given a set
of n jobs {z1,...,z,}, where each job z; is defined by a three integer-valued characteristic
consisting of: a processing time p(z;) € N, a weight w(z;) € N, and a due date d(z;) € N. We
have a single machine to process all jobs {x1, ..., x,} non-preemptively. Thus, in this setting
a schedule for {x1,...,2,} is a permutation IT : {zy,...,z,} — {1,...,n} that specifies
the processing order of each job. In this way, we schedule in II a job x; starting at time
R(z;) = Zn(y)<n(zj) p(y); that is, the total processing time of jobs preceding x; in II. The
completion time C(x;) of x; is then defined by C(z;) = R(x;) + p(z;). Job z; is said to be
tardy in I if C(z;) > d(z;), and early otherwise. Our goal is to find a schedule II where the
total weight of tardy jobs, i.e. Z%:C(%bd(%) w(x;), is minimized. Following Graham [9],
we denote this problem by 1 || > w;U;.

The 1 || > w;U; problem models a very basic and natural scheduling scenario, and
is thus very important in practice. However, it also plays a prominent theoretical role,
most notably in the theory of scheduling algorithms. For instance, it is one of the first
scheduling problems shown to be NP-hard, already included in Karp’s famous initial list of 21
NP-hard problems [15]. The algorithm by Lawler and Moore [17] which solves the problem
in O(Pn) or O(Wn) time, where P and W are the total processing times and weights of all
jobs, is one of the first examples of pseudo-polynomial dynamic programming (see [13] for
? Klaus Heeger and Danny Hermelir.l;

37 icensed under Creative Commons License CC-BY 4.0
32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 68; pp. 68:1-68:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:heeger@post.bgu.ac.il
https://orcid.org/0000-0001-8779-0890
mailto:hermelin@bgu.ac.il
https://orcid.org/0000-0002-6379-0383
https://doi.org/10.4230/LIPIcs.ESA.2024.68
https://arxiv.org/abs/2401.01740
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

recent improvements on this algorithm). Sahni [24] used 1 || > w;U; as one of the three
first examples to illustrate the important concept of a fully polynomial time approximation
scheme (FPTAS) in the area of scheduling. To that effect, several generalizations of the
1|| > w;U; problem have been studied in the literature, testing the limits to which these
techniques can be applied [1].

Another reason why 1 || > w;Uj is such a prominent problem is that it is a natural
generalization of two classical problems in combinatorial optimization. Indeed, the special
case of 1 || >~ w;U; where all jobs have a common due date (i.e. d(z1) = --- = d(z,,) = d)
translates directly to the dual version of KNAPSACK [15]: in 1 || " w;U; our goal is to
minimize the total weight of jobs that complete after d, where in KNAPSACK we wish to
maximize the total weight of jobs that complete before d. (Here d corresponds to the
Knapsack size, the processing times correspond to item sizes, and the weights correspond
to item values.) When in addition to d(xz1) = --- = d(x,) = d, we also have p(z) = w(x)
for each job z, the 1 || >~ w;U; problem becomes SUBSET SUM. The 1 || > p;U; problem,
a generalization of SUBSET SuM and a special case of 1 || >~ w;Uj, has recently received
attention in the research community as well [2, 16, 25].

1.1 Parameterized complexity of 1 || >~ w,;U;

In this paper, we focus on the 1 || >~ w;U; problem from the perspective of parameterized
complexity [4, 5]. Thus, we are interested to know whether there exists some algorithm solving
1| Y w,;U; in f(k) - n®W time, for some computable function f and some problem-specific
parameter k. In parameterized complexity terminology, this equates to asking whether
1] Y>> w,Uj is fized-parameter tractable with respect to parameter k. If we take k to be the
total weight of tardy jobs in an optimal schedule, then 1 || Y w;Uj is trivially fixed-parameter
tractable by using the aforementioned pseudo-polynomial time algorithms that exist for the
problem. In fact, these pseudo-polynomial time algorithms show that the 1 || > w;U; is only
hard in the unbounded setting, i.e. the case where the processing times, weights, and due
dates of the jobs may be super-polynomial in the number n of jobs. This is the case we focus
on throughout the paper.

In the unbounded setting, the most natural first step is to analyze 1 || > w;U; through
the “number of different numbers” lens suggested by Fellows et al. [6]. In this framework,
one considers problem instances with a small variety of numbers in their input. Three
natural parameters arise in the context of the 1 || 3}~ w;U; problem: the number of differ-
ent due dates dy = |{d(z1),...,d(zy)}|, the number of different processing times py =
Hp(z1),...,p(zy)}], and the number of different weights wx = [{w(x1),...,w(zy,)}|. Re-
garding parameter dy, the situation is rather clear. Since 1 || Y~ w;Uj is essentially equivalent
to the NP-hard KNAPSACK problem already for dy = 1 [15], there is no f(k) - n®®) time
algorithm for the problem unless P=NP.

» Theorem 1 ([15]). 1 || > w;U; is not fized-parameter tractable with respect to dy unless
P=NP.

What about parameters px and wx? This question was first studied in [11]. There
it was shown 1 || > w,;U; is polynomial time solvable when either p4 or wy are bounded
by a constant. This is done by generalizing the algorithms of Moore [20] and Pcha [21]
for the cases of wy = 1 or px = 1. Moreover, the authors in [11] show that any instance
of 1| > w;U; can be translated to an integer linear program whose number of variables
depends solely on du + px, dy + wy, or py + wyx. Thus, using fast integer linear program
solvers such as Lenstra’s celebrated algorithm [18], they proved that 1 || " w;Uj is fixed
parameter tractable with respect to all possible combinations of parameters d4, px, and wx.

K. Heeger and D. Hermelin

» Theorem 2 ([11]). The 1 || Y w;U; problem is solvable in polynomial-time when py = O(1)
or wg = O(1). Moreover, it is fized-parameter tractable with respect to parameters diy + p,
dy + wy, or py + wx.

Thus, both the aforementioned KNAPSACK and SUBSET SUM problems are both fixed-
parameter tractable in the number of different numbers viewpoint. What about 1 || >~ w;U;?
The parameterized complexity status of 1 ||) w;U; parameterized by either py or wy was
left open in [11], and due to Theorem 1 and Theorem 2, these are the only two remaining
cases. Thus, the main open problem in this context is

“Is 1 || >~ w;U; fixed-parameter tractable with respect to either py or wy?”

1.2 Our contribution

In this paper, we resolve the open question above negatively, by showing that 1 || >~ w;Uj; is
W(1]-hard with respect to either py or wx. This means that unless the central hypothesis of
parameterized complexity (i.e. FPT#WT(1]) is false, 1 || >~ w;U; is neither fixed-parameter
tractable with respect to px nor with respect to wx.

» Theorem 3. 1 || > w;U; parameterized by either py or wy is W[1]-hard.

Thus, Theorem 3 together with Theorem 1 and Theorem 2 provide a complete picture of the
parameterized complexity landscape of 1 || Y w;U; with respect to parameters {py, wy,dx},
and any of their combinations.

We prove Theorem 3 using an elaborate application of the “multicolored clique tech-
nique” [7] which we discuss later on. The proof gives one of the first examples of a single
machine scheduling problem which is hard by the number of different processing times or
weights. The only other example we are aware of is in [12] for a generalization of 1 || > w;U;
involving release times and batches. Indeed, there are several open problems regarding the
hardness of scheduling problems with a small number of different processing times or weights.
The most notable example is arguably the P | HM | Cax problem, whose parameterized
complexity status is open for parameter px (despite the famous polynomial-time algorithm
for the case of px = O(1) [8]). Further, Mnich and van Bevern [19] list three scheduling
with preemption problems that are also open for parameter px. We believe that ideas and
techniques used in our proof can prove to be useful for some of these problems as well.

Regarding exact complexity bounds for 1 || > w;Uj;, the best known algorithms for the
problem with respect to px and wyx have running times of the form O(n*F*1) for either
k = py or k = wy [11]. How much can we improve on these algorithms? A slight adaptation
of our proof which we discuss in the last part of paper gives an almost complete answer to
this question. In particular, we can show that the above upper bounds are tight up to a
factor of O(lgk), assuming the Exponential Time Hypotheses (ETH) of Impagliazzo and
Paturi [14].

» Corollary 4. 1 || > w;U; cannot be solved in nok/18K) time, for either k = Py Oor k= wy,
unless ETH is false.

1.3 Technical overview

We next give a brief overview of the proof of Theorem 3. As the case of parameter py
and wx are rather similar, let us focus on parameter px. On a high level, our proof follows
the standard “multicolored clique technique” introduced in [7]. In this framework, one

68:3

ESA 2024

68:4

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

Figure 1 An example nice 3-partite graph (that is, each color class has the same size, and the
number of edges between any pair of color classes is the same) with n = 4 (the size of each color
class) and m = 4 (the number of edges between any pair of color classes). The selected vertices are
squared. Lexicographically larger or equal edges are dashed, while smaller or equal edges are in bold.

designs a parameterized reduction from k-MULTICOLORED CLIQUE, where we are given a
k-partite graph G = (V1 W--- WV}, E), and we wish to determine whether G contains a clique
that includes one vertex from each color class V; of G (see Figure 1). Given an instance
of k-MULTICOLORED CLIQUE, our goal is to construct in f(k) - n©() time an equivalent
instance of 1 || >~ w;U; such that px = g(k) for some computable functions f and g.

Our reduction essentially consists of three gadgets: one gadget for the vertices of G, and
two gadgets for the edges of G. The gadget for the vertices of G, which we refer to as the
vertex selection gadget, consists of a set of jobs whose role is to encode the selection of a
single vertex from each color class of G (that is, if G' contains a multicolored clique, then the
selected vertices shall form such a multicolored clique). Since we may assume that each color
class of GG includes exactly n vertices, we essentially need to encode the selection of k integers
ny,...,ng € {1,...,n}. The crux is that we need to do this using jobs that have only f(k)
different processing times. This will be done as follows: For each color class, there are 2n
jobs with two different, very large processing times in total. As all these jobs have not only
a very large processing time but also a very large weight, we know that exactly n of these
jobs need to be scheduled for every color class. The jobs with larger processing time also
have slightly larger weight than the jobs with smaller processing times. Thereby, scheduling
the shorter jobs early results in the jobs from the edge gadgets being started earlier, while
selecting the larger jobs early results in a smaller weighted processing time of the late jobs
inside the vertex selection gadget. This trade-off between a smaller weighted number of tardy
jobs inside the vertex selection gadget and a smaller processing time of the early jobs in the
vertex selection gadget encodes the selection of a vertex: selecting n; jobs of the first kind
and n — n; jobs of the second kind encodes the selection of the i-th vertex of the color class.

The first edge gadget, called the large edge gadget, consists of a set of jobs whose role
is to count the number of edges that are lexicographically larger or equal to any selected
pair (n;,n;) € {1,...,n}?. The second edge gadget, referred to as the small edge gadget,
counts all lexicographically smaller or equal edges. In this way, if the total number of edges
counted is |E| + (§), then we know that the vertices indexed by n1,...,nt € {1,...,n} form
a clique in G. If the total number of counted edges is smaller, then G contains no clique
with k vertices. Again, we need to ensure that the jobs in both gadgets have f(k) different
processing times.

K. Heeger and D. Hermelin

To ensure all jobs constructed have a small variety of different processing times, we
make heavy use of the fact that the processing times (and weights and due dates) can be
rather large. Thus, we choose some polynomially large N, and use integers in the range
of {0,..., N/(®) —1} for some function f. In this way, considering all integers in their base N
representation, allows us to use the different digits in the representation to encode various
numerical values such as the integers ny,...,nx € {1,...,n}. We partition each integer
in {0,..., N/®) — 1} into blocks of m + 2 consecutive digits. Each digit in each block has
a function that will overall allow us to use the strategy discussed above, and selecting a
sufficiently large IV ensures that no overflow can occur between adjacent digits. The devil, of
course, is in the details.

1.4 Roadmap

The rest of the paper is organized as follows. In Section 2 we briefly review all preliminary
results that are necessary for proving our main result, i.e. Theorem 3. Section 3 then contains
the proof of Theorem 3 for parameter py, which is the main technical part of the paper. The
discussion of how to adapt the proof of Section 3 to parameter wy as well as the discussion
of our ETH-based lower bounds are deferred to the full version [10]. Further, all proofs of
statements marked with x are deferred to the full version [10].

2 Preliminaries

We use standard notation from graph theory and parameterized complexity. For more details
on parameterized complexity, we refer to [3]. Throughout the paper, we will use < to denote
the lexicographical order between ordered pairs of integers. Thus,

(i,4) < (i0,jo) <= (i <ip) or (i =1ip and j < jo)

for any pair of integers (i, 7) and (4o, jo)-

2.1 The multicolored clique problem

The source W[1]-hard problem in our parameterized reduction used for proving Theorem 3 is
the k-MULTICOLORED CLIQUE problem.

» Definition 5. Given a k-partite graph G = (V1 W---wVy,, E), the k-MULTICOLORED CLIQUE
problem asks to determine whether G contains a subset of k pairwise adjacent vertices (i.e.
a clique of size k).

For a given a k-partite graph G = (V1 W--- WV, E), we let E; ; denote the set of edges
between any vertex in V; and any vertex in V}, for all 1 <14 < j < k. We say that a k-partite
graph G = (V1 U---UVy) is nice if |Vi|=--- = |Vi| and |E12| =+ = |Ex_1%

» Theorem 6 ([7, 22]). k-MULTICOLORED CLIQUE is W[1]-hard when parameterized by k,
even if the input graph is nice.

Given a nice k-partite graph G = (V4 W --- W Vi, E), we refer to each V; € {Vq,...,Vi} as
a color class of G. We write V; = {vi,... v} } to denote vertices in V; for each 1 < i < k, and
Ei;={e",... ek} to denote the edges in E; j for each 1 <i < j < k. When considering a
specific set of edges E; ;, we will often use ¢; € {1,...,n} and ¢; € {1,...,n} to respectively
denote the index of the vertex in V; and the index of the vertex of V; in the £’th edge of E; ;.
That is, e}’ = {v}éi,vﬁj}.

68:5

ESA 2024

68:6

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

2.2 EDD schedules

In the 1 || > w;U; problem it is frequently convenient to work with what we refer to as an
EDD! schedule.

» Definition 7. A schedule 11 for a set {x1,...,2,} of jobs is EDD if all early jobs in 11
are scheduled in before all tardy jobs, and the order among early jobs is non-decreasing
in due dates. Thus, if II(x;) < II(x;), then either x; is tardy, or both jobs are early and

The reason EDD schedules are popular when working with the 1 || >~ w;U; problem is
that we can always assume that there exists an optimal schedule which is EDD. The following
lemma is by now folklore (see e.g. [1]), and can easily be proven by an exchange argument
which swaps early jobs that do not satisfy the EDD property in a given optimal schedule.

» Lemma 8. Any instance of 1|| > w;U; has an optimal EDD schedule.

Thus, throughout our reduction from k-MULTICOLORED CLIQUE, we can restrict our
attention to EDD schedules only. Given an EDD schedule IIj for a job set {x1,...,x,}, we
say that I is an extension of Iy to the set of jobs {y1,...,ym} if II is an EDD schedule for
{z1,...,Tn,Y1,-..,Ym} which schedules early all jobs that are scheduled early in II,. We
write P(II) and W (II) to respectively denote the total processing time and weight of all early
jobs in a given EDD schedule TII.

3 Parameter py

In the following section we present a proof of Theorem 3 for parameter px. As mentioned
above, the proof consists of a parameterized reduction from k-MULTICOLORED CLIQUE
parameterized by k to 1 || >~ w;U; parameterized by px. Weuse G =(V =V, 0 --- gV, E)
to denote an arbitrary nice k-partite graph given as an instance of k-MULTICOLORED
CLIQUE, with n = |V4]| = --- = |Vi| and m = |Ey1 9| = -+ = |Ep_1%|. Before discussing
our construction in full detail, we review the terminology that we will use throughout for
handling large integers.

3.1 Digits and blocks

Let N be a polynomially-bounded integer that is chosen to be sufficiently larger than the
overall number of jobs in our construction (N = O(kn + k*m) is enough). This number
will appear frequently in the processing times, weights, and due dates of the jobs in our
construction. In particular, it is convenient to view each integer in our construction in its
base N representation: each integer will be in the range of [0,1,..., NFF2(5)-(mE2)+1 1],
and so we can view each integer as a string of length &k + 2(’;) - (m + 2) + 1 over the
alphabet {0,..., N — 1}. When viewed as such, we will refer to each letter of the string as a
digit.

Furthermore, we will conceptually partition each integer into blocks of consecutive digits
as follows (see Example 9): the least significant digit is a block within itself which we refer
to as the counting block. Following this, there are (g) blocks which we refer to as the small
blocks, consisting of m + 2 digits each, where the first (least significant) block corresponds to

! EDD here is an acronym for “Earliest Due Date”.

K. Heeger and D. Hermelin

the color class pair (1, V3), the second corresponds to (V1, V3), and so forth. Following the
small blocks are (g) blocks which we dub the large blocks, which again consist of m + 2 digits
each, and are ordered similarly to the left blocks. The final block is the vertex selection block
which consists of the k£ most significant digits of the given integer.

» Example 9. As example, the following is the partitioning of integer 0:

k m-+2 m+2 m-+2 m+2 1
/ NI —— — —_——
0---010------ 0] - J0------ 0[[0------ 0] - [0------ 0] ~0
v
sevlzrctt??:n (]2”) large blocks (g) small blocks Cotl)llrcl)zll?g

loc!

The large and small blocks are ordered in increasing lexicographic order of (i, j), so the (1,2)
small block is the first block following the counting block. In each block we order the digits
from least significant to most significant, so the first digit in the (1,2) small block is the
second least significant digit overall.

Let g : {(i,j) |1 <i<j<k}—={0,..., (’;) — 1} denote the lexicographic ordering
function, that is g(i,j) > g(io, jo) iff (,5) > (i0,J0) for all 1 < i < 57 < k. Furthermore,
let G(i,7) = (m+2)-g(i,5) + 1 for all 1 <i < j < k. Similarly, let f: {(¢,7) |1 <i<
i<k} — {(g), o2 (’;) — 1} denote the function defined by f(i,7) = (’2“) +g(i,7), and let
F(i,j) = (m+2)- f(i,5) + 1. We will use the following constants in our construction:

X; = N t2200)+ for 5 € {1, K},

Y; = NFGD+mHL for j < j e {1,...,k}, and

Z; ;= NCOGIDTMHL for j < j € {1,...,k}.

Thus, X; corresponds to the i’th digit in the vertex selection block, Y; ; corresponds to the
last digit in the (7, j) large block, and Z; ; corresponds to the last digit in the (4, j) small
block.

3.2 Vertex selection gadget

The role of the vertex selection gadget is to encode the selection of k vertices, one from each
color class V; of G. In constructing the vertex selection jobs, we will use the following two
values associated with each i € {1,...,k}:

L(i) = Y50 NFGD 4 370 NP+

S(i) = 23;11 NCGD Z?:Prl NE@IHL,
Thus, adding L(4) to an integer corresponds to adding a 1 to the first digit of every (j,) large
block with j < i, and a 1 to the second digit of any (i, j) large block with j > i. Adding S(4)
corresponds to adding a 1 to the same digits in the small blocks.

Let 1 < i < k, and consider the color class V; of G. The V; vertex selection gadget is
constructed as follows. Let P denote the following value:

PV =Y = SN

J>1 Jj>i

Thus, PV has n as its j’th most significant digit for j < i, and 0 in all of its other digits. We
construct n — 1 copies of the job pair {z;, —x;} with the following characteristic:

p(z;) = w(x;) = X; + L(3).

p(—z;) = w(—z;) = X; + S(7).

d(x;) = d(-z;) = PV | + Nm+2)-2(3) (where P} =n->. X;).

68:7

ESA 2024

68:8

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

In addition to these n — 1 copies of {x;, —x;}, we construct a single job z} with similar
processing time and due date as x;, but with significantly larger weight:

p(a}) = pl(a:) and d(z}) = d(a,).

w(z}) =n+1)- X; + L(i).
The jobs x7, x;, and —~x; are called V; vertex selection jobs.

Overall, we have (2n — 1) - k vertex selection jobs that together have only 2k different
processing times, 3k different weights, and k different due dates. The vertex selection jobs
are constructed in a way so that any schedule with sufficiently large weight of early jobs will

*
19

schedule n early jobs from {z¥,x;, —~x;} for each 1 <1 < n. Due to the large weight of x
job a7 will always be scheduled early, while the number of early jobs z; and —x; will be used
to encode an integer n; € {1,...,n} corresponding to vertex vﬁl eV.

» Lemma 10 (x). Let ny,...,nx € {1,...,n}. There exists a schedule Il = II(nq,...,ny)
for the vertex selection jobs such that for each i € {1,...,k} precisely n; jobs from {z¥,x;}
and n — n; copies of ~x; are early in Il for each 1 <i < k.

Throughout the remainder of the proof, we will use IT = II(nq,...,nx) to denote the
schedule that schedules 7, exactly n; — 1 jobs x;, and n — n; jobs —x; early. Let Wy, denote
the value

WV:2n-ZXi.

Then the following corollary follows directly from Lemma 10:

» Corollary 11. Let II =1I(ny,...,ng) for some ny,...,ng € {1,...,n}. Then
(i) PAI) = Py + >, n; - L(i) + > ,(n —n;) - S(3).
(ii) W(II) = Wy + >, ni - L(3) + >, (n — ny) - S(4).

» Example 12. Consider the 3-partite graph in Figure 1, where vertex v} is selected for
each color class V;. Then the total processing time of all early vertex selection jobs in this
example is:

444/000023| | 000013 | 000012| | 000021] | 000031| | 000032] |0
—_— —— Y Y Y Y~

(2,3) (1,3) (1,2) (2,3) (1,3) (1,2)
large large large small small small

The total weight of all early vertex selection jobs is identical, except that the vertex selection
block equals “888” instead of “444”.

As mentioned above, the vertex selection jobs are constructed in a way so that any
schedule II for these jobs with sufficiently large weight of early jobs will schedule precisely
n early jobs from {z},x;, —a;} for each 1 < i < k. This is formally proven in the following
lemma:

» Lemma 13 (x). Let IT be an EDD schedule for the vertex selection jobs with W (II) > Wy, .
Then I = 1I(nq,...,ng) for someny,...,ng € {1,...,n}.

3.3 Large edge gadget

We next describe the large edge gadget. The role of this gadget is to “count” all edges that
are lexicographically larger or equal to pairs of selected vertices. This is done by constructing
a pair of jobs {y,”,—y,”} for each edge e, of G, along with some additional filler jobs.

J

K. Heeger and D. Hermelin 68:9

Let 1 < i < j < k. The (4,5) large edge gadget is constructed as follows. First we
define PL to be the following value:

PlLJ = Z (m Yiyjo + - NEGodo+L 4 NF(imjo)))
(t0,50)>(4,5)

Thus, the two first digits of the (7,) large block in PL equal n, the last digit of this block
equals m, and all other digits equal 0. Let £ € {1,. m}, and suppose that the £’th edge
between V; and Vj is the edge eé’j = {vzi7vgj} for some ¢;,¢; € {1,...,n}. We construct two
jobs yé’j and —\yé’j corresponding to ez’j with the following characteristic:

plyy’) =Yy and w(y,’) = Ym‘ /NE+1.

p(~wi?) = Yoy and w(-y}?) = Yo, /N,

dy;?) = Py + PE 4+ 0 Y, j + €; - NFGDTL 4 g, NFGD) 4 NFGD=L

d(~y,?) =Py +PL + (- Yi,j +n . NF@GDTL g NFGI) 4 NF(EI)-1
Observe that both jobs have the same processing time, which is equal throughout for jobs
corresponding to other edges of F; ;. Also note that the weight of yé’j is slightly larger than
the weight of =y, while the due date of —y,” is significantly larger than the due date of y;”’

We will also need to add filler jobs that will help us control the total processing times of
all early jobs selected from the (4, j) large edge gadget. We construct n copies of the the job
pair { fé’j , fl” } which have the following characteristic:

p(fo?) = w(fy?) = NFEI),

p(fi7) = w(fi?) = NG

d(févj) =d(fi7) =Py + pﬁj +m-Y;+n- NEGDHL 4 p. NFOI) 4 NFG)-T

Thus, altogether, the large edge gadget consists of the job pair {ye ,ﬁyéj} for ¢ €
{1,...,m} and n copies of the job pair {fo 7fl’J} for each 1 < i < j < k. Note that
the large edge jobs have 3(2) different processing times in total. We next prove a lemma
regarding the structure of certain schedules for the vertex selection and large edge job. This
structure is what allows us to count all edges that are lexicographically larger or equal any
selected pair (n;,n;). Let Il be a schedule for the vertex selection jobs. We say that II is
an optimal extension of IIy to the set of large edge jobs if all jobs that are early in Il are
also early in II, and there is no other such schedule with a larger total weight of early jobs.

» Lemma 14 (%). Let Iy = II(nq,...,nk) be a schedule for the vertex selection jobs for
some ny,...,ng € {1,...,n}, and let II be an optimal extension of Il to the set of large
edge jobs. Then the following properties hold for each 1 <i < j <k:

(a) The total processing time P of all vertex selection jobs and all (ig,jo) large jobs for
(40, Jo) > (4,7) which are early in 11 satisfies

P > Py + Pl 4ng - NFOIT 4y NFGD
and
P < Py+ pﬁj +n; - NFGDH 4 n; CNFG@H) ¢ NFG@H-T

(b) For each ¢ € {1,...,m} we have that either job yé or job ﬂyé is early in II, but not
both. Job y)” is early iff (ni,ny) < (€i,¢;), where ey’ = {vj. ,vz } is the £’th edge in E; ;.

(c) Precisely n — n; copies of job f1 I and n — n; copies of job f0 are scheduled early in II.

ESA 2024

68:10

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

Using Lemma 14, we can again derive the total processing time and weight of all early
jobs in any optimal EDD schedule II for vertex selection jobs and the large edge jobs. Let W
be the following value:

(i,5) \ ¢

Define Py, = P(fo- Moreover, for 1 < i < j < k and n;,n; € {1,...,n}, define mfj (ns,)
to be the total number of edges in E; ; that are lexicographically larger or equal to (n;,n;).
That is, the total number of edges ez’j = (v}, ,v[) € E; ; with (n;,n;) < (¢;,¢;). Then the
following holds:

» Corollary 15 (x). Let Iy = (ny,...,nk) be a schedule for the vertex selection jobs for
some ny,...,ng € {1,...,n}, and let II be an optimal extension of Ily to the set of vertex
selection and large edge jobs. Then

(i) P(H) =Py + Pr+ Zz(n —n;) - S(0).

(i)) WD) = Wy + Wr + 37,(n —nq) - S(i) + X2 ;. 5 mi (i, ng).-

» Example 16. Recall the schedule of Example 12. After optimally scheduling all jobs from
the (2,3) large edge gadget (including the filler jobs), the total processing time of all early
jobs is:
4441400044 | 000013| | 000012| | 000021| | 000031] | 000032| |0
—— —— —— Y — Y — N——

(2,3) (1,3) (1,2) (2,3) (1,3) (1,2)
large large large small small small

The total weight of all early jobs is

888| 111144/ |000013] | 000012| | 000021 | 000031| | 000032] |2
— —— Y Y —(— ——

(2,3) (1,3) (1,2) (2,3) (1,3) (1,2)
large large large small small small

as mj 3(2,3) = 2 in the example.

3.4 Small edge gadget

We next describe the small edge gadget. Analogous to the large edge gadget, the role of
the small edge gadget is to count all edges that are lexicographically smaller or equal to
pairs of selected vertices. It is constructed similarly to the large edge gadget, except that we
focus on the small blocks of the integers. We start by defining P,
the value P,L] used in the large edge gadget:

f j, which is analogous to

Pi:,;j = Z (m “Zigjo 1 NGGo.jo)+1 4 . NG(iU,jO)))
(t0,50)>(4,5)

For each 1 < i < j < j, we construct thel(i,j) small edge gadget as follows: let
¢ € {1,...,m}, and suppose that e;” = {U}éi,vzj} € E;; is the ’th edge in E; ;. We
construct two jobs zé’j andﬁzz’j associated with ez’j that have the following characteristic:

p(z7) = Z; J and w(z,?) = Z;; / N* + 1.

(ﬂze) = Zi; and w(ﬁzz) =Z; /N

d(zy) Py +Pp+ PS5 +0-Zij+ (n— ;) - NCODH 4 (n— ;) - NGOD 4 NCGI-1,

d(=z,7) = Py + P, + PS +0-Zij+mn- NCODFTL 4 p NCGI) 4 NG

K. Heeger and D. Hermelin

We will also add filler jobs as done in the large edge gadgets. We construct n copies of
the job pair {g(ijj , gi’j } which have the following characteristic:

p(gf) = w(gh?) = NCCD.

plgy’) = w(gy’) = NCGIHL

d(gs”) = d(g\”) = Py + P+ PS5, + (- Z j+n - NCGITL 4 . NG,
Thus, altogether, the (i,j) small edge gadget consists of all job pairs {zé’j, —\zz’j} for ¢ €
{1,...,m}, and all n copies of the job pair {gé’j,gi’j}. Note that all these jobs have three
different processing times in total.

Lemma 17 below is analogous to Lemma 14, except that the structure that it conveys
allows us to count all edges that are lexicographically smaller or equal (as opposed to larger
or equal) to pairs of selected vertices. We have the following:

» Lemma 17 (x). Let Iy = (n1,...,nk) be a schedule for the vertex selection jobs for some

ny,...,ng € {1,...,n}, and let II;, be an optimal extension of Il to the set of large edge

jobs. Let IT be an optimal extension of I, to the set of small edge jobs. Then the following

properties hold for each 1 <i < j <k:

(a) The total processing time P of all vertex selection jobs, all large edge jobs, and all (ig, jo)
small jobs for (ig,jo) > (4,7), which are early in I1 satisfies

P > P, + P+ pfj +(n—ny) - NG+ | (n—nj) - NG(.4)
and
P < P, +P.+ Pi:,;j +(n—mng) - NCEH+L (n—ny) - NG L NyGGj)—1

(b) For each £ € {1,...,m} we have that either job 2y’ or job =z, is early in TI, but not
both. Job zé’j is early if and only if (n;,n;) > (4;,¢;), where e?j = {véi,vgj} is the £’th
edge in E; ;.

(c) Precisely n; copies of job gi’j and n; copies of job gé’j are scheduled early in II.

For 1 <i<j<kandn;n; €{l,...,n}, define mfj(ni,nj) to be the total number of
edges in E; ; that are lexicographically smaller or equal to (n;,n;). That is, the total number
of edges e;;’j = (véi,vgj) € E; ; with (n;,n;) > (¢;,¢;). Let Wg denote the following value:

Ws=) (Z Zij/N'4n. NCGIFL Loy NG@%J')) ,

(63) \ ¢
We have the following corollary of Lemma 17.

» Corollary 18 (x). Let IIy = (ny,...,ng) be a schedule for the vertex selection jobs for
someny,...,ng € {1,...,n}, let I, be an optimal extension of Iy to the set of large edge
jobs, and let 11 be an optimal extension of I1;, to the set of small edge jobs. Then

W) =Wy + Wr + Ws + Z mﬁj(ni,nj) + Z mfj(ni, n;).
(4,9) (4,9)

» Example 19. Consider the schedule of Example 16. After scheduling all remaining large
edge jobs, and all jobs from the (2, 3) small edge gadget (including the filler jobs), the total
processing time of all early jobs is:

444] 400044 | 400044 | 400044| | 400044 | 000031| | 000032 |0
—_— Y Y Y Y Y=

(2,3) (1,3) (1,2) (2,3) (1,3) (1,2)
large large large small small small

68:11

ESA 2024

68:12

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

The total weight of all early jobs is

888| 111144| | 111144 | 111144/ | 11114]| 000031| | 000032 |12
—— —— —— Y — Y—(— Y——

(2,3) (1,3) (1,2) (2,3) (1,3) (1,2)
large large large small small small

as D i mf;(i,j) +m33(2,3) = 12 in the example.

3.5 Correctness

We have completed the description of all jobs in our 1 || ~ w;U; instance. Table 1 provides a
compact list of the characteristics of all these jobs. Lemma 20 below, along with Theorem 6,
completes our proof of Theorem 3 for parameter p,. Theorem 3 for parameter wy follows
by a similar reduction; for details we refer to the full version [10].

Table 1 The weights, processing times, due dates, and multiplicities of all jobs in our construction.
Here, Pfj (¢) is shorthand notation for Py + Pfj +0-Yi;+ NFGED=1 and Pfj () =Py +PL+ Pfj +
l- Z»;j + NG(i’j)il.

Job | Proc. Time Weight Due Date Mult.
i | Xi+ L@ | (n+1)- X+ L(i) PV, + Nm+22(3) 1
T Xi + L(3) X+ L(3) d(zy) n—1
T Xi+5(3) X+ 5(4) d(zy) n
v’ Y, Yi; /N +1 PE(0) + £; - NFODHL 4 g, NFGI) 1
-y’ Yiy Yi, /N PE(€) + n- NFGDHL 4y NFGD) 1
L[NFGT NEGHH PL(m) +n- NFGDTL 4 NFG@D "
é’j NEGH) NEGT) d(f;ﬂ) n
257 Zij Zij/N+1 P(0) + (n—£;) - NCGDTL 4 (n—g;) . NCGD) 1
—zy” Zis Zi;/N* P5.(0) 4 m- NOCDHL . NGGI) 1
g7 | NGGIH NG P5.(m) + n- NOGIT 4 . NOGD) "
g NG (@) NGGI) d(gi) n

» Lemma 20. There is a parameterized reduction from k-MULTICOLORED CLIQUE (Trestricted
to nice k-partite graphs) parameterized by k to 1 || Y- w;U; parameterized by py.

Proof. The reduction is as described throughout the section. It is in fact a reduction to the
equivalent problem of 1 || Y~ w;U; where the goal is to maximize the weight of early jobs. The
reduction can be carried out in polynomial-time, and the total number of different processing-
times py in the resulting 1 || >_ w;U; instance is 2k + 6(5) (see Table 1). To complete the
proof of the lemma, we argue that the graph G = (V = V; W --- WV, E) of the input k-
MULTICOLORED CLIQUE instance has a clique of size k iff the constructed 1 || 3~ w;U; instance
has a schedule where the total weight of early jobs is at least Wy + W+ Ws + (m+1) - (g)

Suppose G has a clique of size k with v}, € Vi,...,v% € Vi. Then 26.) mf;(ni,n;) +
mfj (ni,nj) = (m+1)- (’2“) Thus, according to Corollary 18, the optimal extension II of
IIy =II(ng,...,nk) to the set of large and small edge jobs has total weight of early jobs
W) =Wy +Wr +Ws+ (m+1) - (g) Conversely, suppose that there is a schedule II
for the 1 || Y- w;U; instance with W(II) > Wy + W + Wg + (m + 1) - (g) Let Iy be
the restriction of IT to the vertex selection jobs. Then as N(m+2)'2(§)71 is larger than the
total weight of all large and small edge jobs, we have W (Ily) > Wy as otherwise we have

W(Ily) < Wy — X; + N™+220)=1 implying W(IT) < Wy. Thus, Iy = O(n,. .., ng)

K. Heeger and D. Hermelin

for some nq,...,n; € {1,...,n} according to Lemma 13. We may assume without loss of
generality that II is an optimal extension of Iy to set of large and small edge jobs. It follows
then from Corollary 18 that > . ml;(ni,ng) +ms;(ng,n;) = (m+1)- (’2“), which means
that there are (’2“) edges in G between vertices in {v} ,...,vk }. Thus, v} ,...,vf isa
clique of size k in G. <

Slightly adapting the reduction, we also get an ETH-based lower bound (we refer to the
full version [10] for details).

» Corollary 4. 1 || > w;U; cannot be solved in n®*/18%) time, for either k = py or k = wy,
unless ETH is false.

4 Conclusions

In the current paper we completely resolved the parameterized complexity status of 1 ||
>~ w;U; with respect to parameters py, wy, and dy. Our result also gives almost ETH tight
bounds in the case when only one of px or wy is bounded by a constant. However, there
still remains several research directions to explore regarding the 1 || >~ w;U; problem, and
its variants. Below we list a few questions that still remain open:

Can the gap between lower and upper bound in Corollary 4 be closed? That is, can one
show a lower bound of n°*) or can 1 || 3> w;U; be solved in n®*/18%) time, for k = py
or k=wy?

The current FPT algorithms solving 1 || > w;U; for parameters k = pu+wy, k = py+dy,
or k = wy + dy have running times of the form 20(k1218%) . nOM) yging the recent ILP-
algorithm by Reis and Rothvoss [23]. Can any of these running times be improved to
20(k) . . or can one show a 22(*k1glgk) . O Jower-bound?

Our result shows that 1 || >~ w;U; is W[1]-hard with respect to parameters px and wy,
but it does not show that the problem is én W][1] for any of these parameters. Is
1] > w;U; contained in Wt] for some ¢t > 17

—— References

1 Muminu O. Adamu and Aderemi O. Adewumi. A survey of single machine scheduling to
minimize weighted number of tardy jobs. Journal of Industrial and Management Optimization,
10(1):219-241, 2014.

2 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341-1356,
2022.

3 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Transactions on Algorithms, 15(1):14:1-14:25, 2019.

4 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complezity.
Texts in Computer Science. Springer, 2013.

6 Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Parameterizing by the number
of numbers. Theory of Computing Systems, 50(4):675-693, 2012.

7 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53-61, 2009.

68:13

ESA 2024

68:14

Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant
number of item types. Journal of the ACM, 67(6):38:1-38:21, 2020. doi:10.1145/3421750.
Ronald L. Graham. Bounds on multiprocessing timing anomalies. STAM Journal on Applied
Mathematics, 17(2):416-429, 1969.

Klaus Heeger and Danny Hermelin. Minimizing the weighted number of tardy jobs is W[1]-hard.
CoRR, abs/2401.01740, 2024. doi:10.48550/arXiv.2401.01740.

Danny Hermelin, Shlomo Karhi, Michael L. Pinedo, and Dvir Shabtay. New algorithms for
minimizing the weighted number of tardy jobs on a single machine. Annals of Operations
Research, 298(1):271-287, 2021.

Danny Hermelin, Matthias Mnich, and Simon Omlor. Single machine batch scheduling to
minimize the weighted number of tardy jobs. CoRR, abs/1911.12350, 2019.

Danny Hermelin, Hendrik Molter, and Dvir Shabtay. Minimizing the weighted number of
tardy jobs via (max, +)-convolutions. INFORMS Journal on Computing - to appear, 2024.
Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85—103. Springer, 1972.

Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing time,
max-min skewed convolution, and triangular structured ILPs. In Proc. of the 34th ACM-SIAM
Symposium On Discrete Algorithms, SODA 2023, pages 29472960, 2023.

Eugene L. Lawler and James M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16(1):77-84, 1969.

Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8(4):538-548, 1983.

Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254-261, 2018.

James M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15(1):102-109, 1968.

Jon M. Peha. Heterogeneous-criteria scheduling: Minimizing weighted number of tardy jobs
and weighted completion time. Computers and Operations Research, 22(10):1089-1100, 1995.
Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757-771, 2003. doi:10.1016/50022-0000(03)00078-3.

Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer
programming. In Proc. of the 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, pages 974-988, 2023. doi:10.1109/F0CS57990.2023.00060.

Sartaj K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23(1):116—
127, 1976.

Baruch Schieber and Pranav Sitaraman. Quick minimization of tardy processing time on a
single machine. In Proc. of the 18th international Workshop on Algorithms and Data Structures,
WADS 2023, pages 637-643, 2023.

https://doi.org/10.1145/3421750
https://doi.org/10.48550/arXiv.2401.01740
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1109/FOCS57990.2023.00060

	1 Introduction
	1.1 Parameterized complexity of
	1.2 Our contribution
	1.3 Technical overview
	1.4 Roadmap

	2 Preliminaries
	2.1 The multicolored clique problem
	2.2 EDD schedules

	3 Parameter p_{#}
	3.1 Digits and blocks
	3.2 Vertex selection gadget
	3.3 Large edge gadget
	3.4 Small edge gadget
	3.5 Correctness

	4 Conclusions

