
Segment Proximity Graphs and Nearest Neighbor
Queries Amid Disjoint Segments
Pankaj K. Agarwal #

Department of Computer Science, Duke University, Durham, NC, USA

Haim Kaplan #

School of Computer Science, Tel Aviv University, Israel

Matthew J. Katz #

Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva, Israel

Micha Sharir #

School of Computer Science, Tel Aviv University, Israel

Abstract
In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in
R2. Let S be a set of n pairwise-disjoint segments in R2, and let r > 0 be a parameter. We define
the segment proximity graph of S to be Gr(S) := (S, E), where E = {(e1, e2) | dist(e1, e2) ≤ r} and
dist(e1, e2) = min(p,q)∈e1×e2 ∥p − q∥ is the Euclidean distance between e1 and e2. We define the
weight of an edge (e1, e2) ∈ E to be dist(e1, e2).

We first present a simple grid-based O(n log2 n)-time algorithm for computing a BFS tree of
Gr(S). We apply it to obtain an O∗(n6/5)+O(n log2 n log ∆)-time algorithm for the so-called reverse
shortest path problem, in which we want to find the smallest value r∗ for which Gr∗ (S) contains a
path of some specified length between two designated start and target segments (where the O∗(·)
notation hides polylogarithmic factors). Here ∆ = maxe ̸=e′∈S dist(e, e′)/ mine ̸=e′∈S dist(e, e′) is the
spread of S.

Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments
in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of
pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S,
the segment of S closest to e can be computed in O(log5 n) amortized time. The amortized update
time is also O(log5 n). We note that if the segments in S ∪ Q are allowed to intersect then the known
lower bounds on halfplane range searching suggest that a sequence of n updates and queries may
take at least close to Ω(n4/3) time. One thus has to strongly rely on the non-intersecting property
of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each.

Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that
a DFS tree (or forest) of Gr(S) can be computed in O∗(n) time. We also obtain an O∗(n)-time
algorithm for constructing a minimum spanning tree of Gr(S).

Finally, we present an O∗(n4/3)-time algorithm for computing a single-source shortest-path tree
in Gr(S). This is the only result that does not exploit the disjointness of the input segments.
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7:2 Segment Proximity Graphs and NN Searching

1 Introduction

Let S be a set of n geometric (compact) objects in R2 (e.g., points, disks, segments, rectangles,
or convex polygons), and let r > 0 be a real parameter. Define the r-proximity graph of
S, or proximity graph for short, denoted as Gr(S), to be the graph whose vertices are the
objects of S, and whose edges are all pairs (e, e′) of objects in S with dist(e, e′) ≤ r, where
dist(e, e′) = minp∈e,q∈e′ ∥p − q∥. For r = +∞, we obtain the complete graph on S. Even for
finite values of r, Gr(S) can have a quadratic number of edges. Note that if S is a set of
points in R2, then Gr(S) is the widely studied unit-disk graph (where the unit (common
radius) is r/2); see [23]. On the other hand, for r = 0, Gr(S) is the geometric intersection
graph on S. Because of their numerous applications, geometric proximity (and intersection)
graphs have been studied extensively in many different fields.

Since one does not have to specify the edge set E of Gr(S) explicitly, a natural and
fundamental question in the theory of proximity graphs is whether basic graph algorithms,
such as BFS, DFS, minimum-spanning-tree algorithms, or Dijkstra’s shortest-paths algorithm,
can be implemented in time that is near linear in |S| (instead of being linear or near linear
in |E|), or at least subquadratic in |S|. Efficient algorithms for these problems require a
dynamic data structure on a subset X of S that can handle insertions/deletions of objects of
S into/from X, and that can quickly compute a fixed-radius neighbor or a nearest neighbor
in X of a query object, a fundamental problem of independent interest. In this paper we
study these questions when S is a set of pairwise-disjoint segments, and so are the query
segments. By strongly exploiting the disjointness property of input and query segments, we
present a data structure that answers nearest-neighbor queries in O∗(1) time, and obtain
O∗(n)-time algorithms for some basic graph problems on Gr(S).1

Related work. A wide range of combinatorial and algorithmic questions have been studied
for geometric proximity graphs, e.g., realizability of graphs as geometric proximity graphs
(such as unit-disk graphs or segment-intersection graphs), the computational complexity of
deciding whether a given graph can be represented as a geometric intersection graph, or
studying extremal properties for geometric proximity graphs; see [6, 24, 29, 30, 36, 42, 48]
and references therein for a few such results. Motivated by applications in communication
networks and data mining, there has been much work on developing faster algorithms for
basic graph problems on unit-disk graphs; see [5, 14, 15, 19, 21, 23, 27, 28, 31, 47] for a
sample of known results on these graphs.

Despite extensive work on unit-disk graphs, much less is known for algorithmic problems
for proximity graphs of more complex objects. An O∗(n) algorithm is known for performing a
BFS on a disk-proximity graph (where the disks have arbitrary radii) [20], and the algorithm
in [15] for computing a single-source shortest-path tree on unit-disk graphs can be extended
to disk-proximity graphs, with O∗(n) running time; see also [18, 35].

An interesting and natural question is whether basic graph algorithms (e.g., BFS or DFS)
can be performed in O∗(n) time on segment proximity graphs. Recently, Agarwal et al. [3]
showed that BFS and DFS on segment proximity graphs can be performed in O∗(n4/3) time,
in a general setting where the segments can intersect. Furthermore, the known lower-bound
results on (planar) simplex range searching and on the so-called Hopcroft’s problem suggest
that an O(n4/3−ε)-time algorithm, for any ε > 0, is unlikely to exist, even for performing
BFS, if the segments in S can intersect each other [1, 26]. However, these lower bounds fail if

1 As in the abstract, the O∗(·) notation hides polylog(n) factors.
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the segments in S are pairwise disjoint, which raises a natural question whether O∗(n)-time
algorithms exist for basic graph problems (such as BFS/DFS/MST) on a segment proximity
graph, assuming that the segments are pairwise disjoint.

Bespamyatnikh and Snoeyink [12], and later Bespamyatnikh [11], studied the nearest-
neighbor searching problem amid a set of pairwise-disjoint segments in an off-line setting:
Let R be a set of red segments and let B be another set of blue segments in R2, so that
the segments in R ∪ B are pairwise disjoint; set n = |R| + |B|. The work in [11] yields an
O(n log2 n)-time algorithm to compute the nearest neighbor of every segment of B in R.
However, this algorithm is inherently static and off-line – it is not clear how to extend it to
the case where the set B is not known in advance, or when we allow to update R dynamically.
For the case where the segments are allowed to intersect, Bespamyatnikh [11] solves the
problem in O(n4/32O(log∗ n)) time, which was recently improved to O(n4/3) time [50].

Our contributions. Let S be a set of n pairwise-disjoint segments in R2, and let r > 0 be a
parameter. We obtain the following results:

Breadth-first search. Our first main result (Section 2) is a simple O(n log2 n)-time algorithm
for computing a BFS tree of Gr(S) (assuming it is connected), using a grid-based technique.
Although it resembles the technique of Chan and Skrepetos [19] for unit-disk graphs, dealing
with segments, which may straddle any number of grid cells, requires new ideas, and makes
our algorithm different from the one in [19] in many substantial ways.

By combining our BFS algorithm with a novel implementation of parametric search,
originally developed in [8], and akin to the recent machinery developed by the authors for disk
graphs in [32], we get, also in Section 2, an algorithm for the reverse shortest path problem:
for a pair of segments s, t ∈ S and an integer parameter k > 0, compute the smallest value r∗

of r such that Gr∗(S) contains a path from s to t composed of at most k edges. The running
time of the algorithm is O∗(n6/5) + O(n log2 n log ∆), where ∆ is the spread of S, defined as
∆ = maxe ̸=e′∈S dist(e, e′)/ mine ̸=e′∈S dist(e, e′).

Nearest-neighbor (NN) queries and bichromatic closest pair. Our second main result
(in Section 3) is a dynamic data structure that can maintain a set S of pairwise disjoint
segments in the plane under insertions and deletions (so that the segments in S remain
pairwise disjoint after each update), so as to answer efficiently NN-queries with segments as
queries. We do not need to know the set of query segments in advance. The only assumptions
we need are that (i) all the query segments remain pairwise disjoint throughout the process,
and (ii) each query segment e is disjoint from the segments of S at the time of the query. A
query with a segment e asks for the segment in (the current) S closest to e. The amortized
query and update times are O(log5 n). If the segments in Q are known in advance (but
not necessarily the sequence of queries), then the amortized query and update time can be
improved to O(log4 n).

We use this data structure for performing DFS on Gr(S), but this result is of independent
interest and has potential applications in many other proximity problems involving segments.
For example, it is required for efficient implementation of the online facility-location algorithm
of Meyerson [41], and for other clustering algorithms, where the items and the centers are
pairwise disjoint segments.

We emphasize again that if the input or query segments are allowed to intersect then
the known lower bounds on planar simplex range searching suggest that a sequence of n

updates and queries might take at least Ω(n4/3) time [1] (or at least time close to it; see
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7:4 Segment Proximity Graphs and NN Searching

the aforementioned works [11, 50] for matching upper bounds). One thus has to strongly
rely on the assumed property that the segments are pairwise disjoint, in order to be able
to perform updates and queries in O(polylog(n)) (amortized) time per operation. In other
words, this assumption is not just an artifact made to simplify the analysis, but an essential
requirement, without which the whole machinery, and the hope for fast algorithms of this
kind, collapse. The assumption that the query segments be pairwise disjoint might seem
puzzling and counter-intuitive, but, informally speaking, we gain some information from the
previous searches, which we use to speed up the current query, exploiting its disjointness
from the preceding queries.

Depth-first search and minimum spanning tree. Using the results just mentioned, we
obtain (in the full version of the paper) an efficient algorithm, that runs in O∗(n) time,
for constructing a Depth-First Search (DFS) tree for Gr(S) (or a forest if Gr(S) is not
connected).

Regarding Gr(S) as a weighted graph and using Borůvka’s algorithm, we can compute an
MST of Gr(S) in O(n log3 n) time.2 The algorithm is based on an O(n log2 n)-time algorithm
for the all “foreign” nearest neighbors (AFNN) problem in a set S of n pairwise-disjoint
segments, namely, each segment in S is assigned a color and the goal is to compute the
closest segment of a different color for every segment in S (see [11]).

Single-source shortest paths. Finally, we design an O∗(n4/3)-time algorithm for computing
a single-source shortest-path tree in (the weighted) Gr(S). The algorithm is presented in the
full version of the paper.

2 BFS in Segment Proximity Graphs

τ

N(τ)

prefix of long
segment

suffix of long
segment

Figure 1 The (upper part of the) neighborhood N(τ). Sτ consists of two short segments, a prefix,
and a suffix.

Let A be a set of n pairwise-disjoint segments in R2, r > 0 a real parameter, and s ∈ A

a designated start segment.3 We present an O(n log2 n)-time algorithm for running BFS
from s in Gr(A). We first describe the data structures that we use and then describe the
procedure itself.

2 We thank an anonymous reviewer of an earlier version of the paper for suggesting to use Borůvka’s
algorithm instead of Prim’s algorithm.

3 We use A for the set of segments because S has a different meaning here.
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2.1 Data structures
We call a segment e ∈ A long if its length is at least 13r; otherwise e is short. We partition
each long segment e into three parts, a prefix, the leftmost portion of e of length 6r, a suffix,
the rightmost portion of e of length 6r, and the middle part, containing the part of e between
its prefix and suffix (the length of the middle part is at least r).

Grid. We construct a uniform grid G of cell side-length r/
√

2. For a grid cell τ , let Sτ ⊆ A

be the subset of short segments that intersect τ plus the subset of long segments whose
prefixes or suffixes intersect τ . We call τ non-empty if Sτ ̸= ∅. See Figure 1. By construction,∑

τ |Sτ | = O(n), and Sτ , for all non-empty cells τ , can be computed in O(n) time. We define
the neighborhood of a cell τ , denoted by N(τ), to be the 5 × 5 square of cells centered at τ .

Segment trees. Let M denote the set of middle parts of long segments. We construct a
segment tree T + on the projections of segments in M onto the line y = x. For each node ξ of
T +, let A+

ξ ⊆ A be the set of (long) segments whose middle portions are stored at ξ, sorted
by their order along the orthogonal direction y = −x. (By the disjointness of the segments
and the basic properties of segment trees, A+

ξ is well defined as a sequence.) Storing the
elements of A+

ξ at the leaves of a height-balanced tree, we obtain O(|A+
ξ |) canonical subsets

of A+
ξ , one subset associated with each node of the tree, so that for any segment e parallel

to y = −x, within the slab corresponding to ξ, the segments of A+
ξ intersected by e can be

returned as the union of O(log |A+
ξ |) = O(log n) canonical subsets. The total size of canonical

subsets, over all nodes ξ of T +, is O(n log2 n).
Symmetrically, we also construct another segment tree T − on the projection of M onto

the line y = −x (where their order at a node is in the perpendicular direction y = x). The
resulting sequence of segments stored at a node ξ is now denoted as A−

ξ . We construct and
store canonical subsets of A−

ξ as above, with the same performance bounds.

τ

∆
y = x

∆∗

The middle por-
tions of segments
of A+

ξ that inter-
sect ∆

The slab assoicaed with ξ

Figure 2 The sequence of middle portions (of segments A+
ξ ) stored at a node ξ. Those intersecting

∆ are obtained as the union of O(log n) disjoint canonical subsets.

We use T + and T − to associate canonical sets of segments with grid cells, as follows. Let
τ be a grid cell in the neighborhood N(τ ′) of a non-empty cell τ ′. We extract from T + all
the long segments whose middle portions intersect the diagonal ∆ of τ parallel to y = −x, as
the union of O(log2 n) canonical subsets, which we associate with τ . See Figure 2. In a fully
symmetric manner, using T −, we obtain the set of long segments whose middle portions
intersect the other diagonal ∆′ of τ , as the union of O(log2 n) other canonical sets, which
are also associated with τ . Let C(τ) be the set of all canonical subsets associated with τ .⋃

C(τ) is the set of all long segments whose middle portions intersect one of the diagonals of
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7:6 Segment Proximity Graphs and NN Searching

τ (which holds iff they intersect τ); each segment appears either once or twice in this union.
We repeat this procedure for all cells in the neighborhood of a non-empty grid cell. Let C be
the set of canonical subsets that are associated with at least one grid cell. Any canonical set
in C has the property that every pair of its segments are within distance r from each other
(as they cross the same diagonal of a grid cell).

We keep cross-pointers from each canonical set C ∈ C to all its associated cells, i.e., we
store G(C) = {τ | C ∈ C(τ)}. We also keep cross pointers from each segment e ∈ A to the
set C(e) of all canonical subsets in C that contain e. All this data takes O(n log2 n) time to
compute. We have the following useful lemma

▶ Lemma 1. Let p be a point in a grid cell τ .
(i) If the middle portion e◦ of a long segment e is within distance r from p, then e◦

intersects one of the diagonals of a neighborhood cell τ ′ ∈ N(τ) of τ .
(ii) Let A∆ be the sequence of long segments whose middle portions intersect a diagonal ∆

of a cell τ ′ ∈ N(τ), ordered by their intersection points along ∆. The subset A∆,p ⊆ A∆
of segments that are within distance r from p forms a contiguous subsequence of A∆,
and it can be computed in O(log2 n + |A∆,p|) time.

Proof. (i) Let q be the point on e◦ closest to p. In particular, the distance of q from τ is at
most r. The two families of diagonals of the grid cells of N(τ) form a portion of a uniform
grid (rotated by π/4) of cell side-length r/2. The cells of this rotated grid cover N(τ), except
for fringe triangles, each of which is a right-angle triangle whose hypotenuse is a boundary
edge of N(τ). See Figure 3(i). If q lies inside a complete cell σ of the rotated grid then, since
e◦ is of length at least r, it must intersect ∂σ, i.e., a diagonal of a cell of N(τ), as claimed.
If q lies in a fringe triangle, its distance from τ , and thus from p, is at least as large as the
distance from τ of the apex of that triangle (again, refer to Figure 3(i)). But this latter
distance is at least r√

2 + 1
2 · r√

2 = 3r
2

√
2 > r, contradicting our assumption. This proves (i).

τ

N(τ)

K(τ)

(i) (ii)

τ

D

p Q

τ ′
ζ1

ζ3

ζ2

ξ1

ξ2
ξ3

e1

e2

e3

Figure 3 (i): Illustration of Lemma 1(i). K(τ) = τ + B(o, r); the boundary of grid cells formed
by diagonals is shown in blue. Fringe triangles, lying outside the blue region, do not intersect K(τ).
(ii): Illustration of Lemma 1 (ii). Three segments of a canonical set intersecting a diagonal of τ ′. If
e1 and e3 intersect D(p) but e2 does not, then an endpoint of e2 is too close to ξ2.

(ii) Let D(p) be the disk of radius r centered at p, and let e1 ≺ e2 ≺ e3 (where ≺ is the
order according to the intersection points with ∆) be three segments of A∆ such that e1, e3
intersect D(p) but e2 does not. See Figure 3(ii). Let ξi = ei ∩ ∆, for i = 1, 2, 3. Let ζ1 be the
intersection point of D(p) with e1 closest to ξ1; if ξ1 ∈ D(p) then ζ1 = ξ1. Similarly define ζ3
for e3. Consider the quadrilateral Q := ζ1ξ1ζ3ξ3. The edge ξ1ξ3 contains the point ξ2, and
the edge ζ1ζ3 lies inside D(p). If e2 does not intersect D(p), then one of the endpoints of e2,



P. K. Agarwal, H. Kaplan, M. J. Katz, and M. Sharir 7:7

denoted by ζ2, has to lie inside Q (since the segments in A∆ are pairwise disjoint), which
implies that ∥ξ2 − ζ2∥ ≤ max{∥ζ1 − ξ3∥, ∥ζ3 − ξ1∥}.

Since τ ′ ∈ N(τ) and p ∈ τ , ∥p − ξi∥ ≤ 3r, for i ≤ 3. Furthermore, for i = 1, 3,
∥ξi − ζi∥ ≤ ∥p − ξi∥ ≤ 3r, which implies

max{∥ξ1 − ζ3∥, ∥ξ3 − ζ1∥} ≤ max{∥ξ3 − ζ3∥, ∥ξ1 − ζ1∥} + ∥ξ1 − ξ3∥ ≤ 3r + r ≤ 4r.

Hence, ∥ξ2 −ζ2∥ ≤ 4r. However, ξ2 lies on the middle portion of e2, implying that ∥ξ2 −ζ2∥ ≥
6r, a contradiction. Therefore e2 also intersects D. This shows that A∆,p is a contiguous
subsequence of A∆.

Finally, we compute A∆,p as follows. Recall that we have A∆ at our disposal as the union
of O(log2 n) canonical subsets, collected at O(log n) nodes of one of the segment trees, say,
T +. Consider the O(log n) canonical subsets C1, . . . , Cr, r = O(log n), obtained from one
node v of T +. These O(log n) canonical subsets are linearly ordered along ∆, i.e., all of the
segments in one canonical subset appear before those of the other. Let C1 ≺ C2 ≺ · · · ≺ Cη

be this linear ordering. Since A∆,p is a contiguous sequence, by testing the first and the last
segments of each Ci, we can determine the first and the last canonical subsets, say Ci and
Cj , with i < j, whose segments intersect D(p). Then all segments Ci+1, . . . , Cj−1 intersect
D(p). Finally, by performing a binary search in each of Ci and Cj , we can determine the
first and the last segments of these canonical subsets, respectively, that intersect D(p). By
repeating this step for all O(log n) nodes, we can report A∆,p in O(log2 n + |A∆,p|) time. ◀

2.2 The BFS itself
We proceed layer by layer. For each i ≥ 0, we compute Li, the set of segments reached at
layer i, starting with L0 = {s}. Assume that we have already constructed the i-th layer Li.
Let Ui = A \

⋃
j≤i Lj denote the subset of unreached segments after i layers. A segment

e ∈ Ui is in Li+1 if there is a segment e′ ∈ Li within distance r from e. Since the segments
in A are pairwise disjoint, either an endpoint of e is within distance r from e′ or an endpoint
of e′ is within distance r from e. This in turn implies that at least one of e and e′ belongs
to Sτ for some non-empty cell τ , and the other intersects a cell in N(τ). Using this simple
observation, we compute Li+1 as we describe after introducing the following definitions of an
active cell and an active canonical set.

We say that a non-empty cell τ is active if Sτ ∩ Li ̸= ∅. Similarly, a canonical set C

is active if C ∩ Li ̸= ∅. It is easily seen that a cell or a canonical set is active during the
processing of at most two consecutive layers. Once a segment e is added to Li+1, it is deleted
from all canoncial subsets of C(e) to which it belongs, to avoid e being reported as a newly
reached segment several times. As such, each canonical subset only stores those segments
which have not been reached so far.

First, for each active cell τ , we add to Li+1 all segments in Sτ ∩ Ui as well as all (long)
segments in the canonical subsets of C(τ). Similarly, for each active canonical subset C and
for every cell τ ∈ G(C), we add all segments of

⋃
C(τ) and Sτ ∩ Ui to Li+1. We compute the

remaining segments of Li+1 in the following three steps.

Step I: Processing Sτ ′ in the neighborhood of an active cell. Let τ be an active
cell. We compute Li(τ) = Sτ ∩ Li and Ui(τ) =

⋃
τ ′∈N(τ)\{τ} Sτ ′ ∩ Ui, in brute force, in

O
(∑

τ ′∈N(τ) |Sτ ′ |
)

time. Next, we compute the segments of Ui(τ) that are within distance
r from some segment of Li(τ) (and then add them to Li+1) in two steps. (1) We construct
the Voronoi diagram Vi(τ) of Li(τ). For each segment e ∈ Ui(τ), we locate its endpoints in
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7:8 Segment Proximity Graphs and NN Searching

Vi(τ). If the distance of either endpoint from its closest segment in Vi(τ) is ≤ r, we add e to
Li+1. (2) Let Di(τ) be the set of disks of radius r centered at the endpoints of segments in
Li(τ). We compute U(Di(τ)), the union of the disks in Di(τ). Using a line-sweep algorithm,
we compute all segments in Ui(τ) that intersect U(Di(τ)) and add them to Li+1. This step
takes O((|Li(τ)| + |Ui(τ)|) log n) = O

((∑
τ ′∈N(τ) |Sτ ′ |

)
log n

)
time.4

Step II: Processing long segments near active cells. Let τ be an active cell. Let Pi(τ) be
the set of endpoints of the segments of Li(τ) that lie in τ . We compute the long segments
whose middle portions are within distance r from some point p of Pi(τ). By Lemma 1, the
middle portion of such a long segment intersects a diagonal of a cell τ ′ ∈ N(τ). For each
diagonal ∆ of every cell τ ′ ∈ N(τ), using Lemma 1, we report the set A∆,p ⊆ Ui of long
segments that are within distance r from p and whose middle portions intersect ∆, in time
O(log2 n + |A∆,p|). We add the segments of A∆,p to Li+1 and, as mentioned above, delete
them from all canonical subsets, so that they are not reported again. The total time spent
in this step for an active cell τ is O(|Li(τ)| log2 n + λτ ), where λτ is the number of long
segments reported while processing τ . Recall that each segment of Li+1 is reported at most
once in this step (over all active cells), so

∑
τ λτ ≤ |Li+1|.

τ

e−

e+

τ ′

∆

τ

e−

e+

τ ′

∆

e<

e>

C ′

C ′

Figure 4 (Left): All segments of a canonical subset C′ lie on the same side of a grid cell τ ′.
(Right): The first segment of a canonical subset C′ lies above τ ′ and the last segment of C′ lies
below τ ′.

Step III: Processing active canonical sets. Finally, we collect the still unreported segments,
that should be added to Li+1, whose endpoints are within distance r from the middle portion
of a long segment e of Li; e belongs to one of the currently active canonical subsets. To do
so, we take each active canonical set C and construct the subsequence Ci = C ∩ Li; assume
Ci is ordered from top to bottom (in the y = −x direction, say). Let e− (resp., e+) be the
first (resp., last) segment of Ci. We go over all cells τ ′ ∈ N(τ), for every τ ∈ G(C). Let
U◦

i (τ ′) ⊆ Sτ ′ be the set of yet unreached segments of Sτ ′ , such that (at least) one of their
endpoints lies in τ ′. See Figure 4. If both e− and e+ lie below (resp., above) τ ′ then we test
every segment of U◦

i (τ ′) whether it lies within distance r from e− (resp., e+), and if so, we
add it to Li+1. If either e− or e+ intersects τ ′, we add all of U◦

i (τ ′) to Li+1. Otherwise, e−

lies above τ ′ and e+ below τ ′. We first check, in O(log n) time, using binary search, whether

4 (a) Recall that the Voronoi diagram of m pairwise-disjoint segments has linear complexity, and it can
be constructed in O(m log m) time [7]. (b) As soon as the line sweep detects a segment e that intersects
U(Di(τ)), we delete e, to ensure that the number of events processed is O(|Li(τ)| + |Ui+1(τ)|).
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a segment of Ci intersects τ ′. If so, we add all of U◦
i (τ ′) to Li+1, as above. If not, the binary

search returns the last segment e< of Ci lying above τ ′ and the first segment e> of Ci lying
below τ ′. Again, see Figure 4. We check every segment e ∈ U◦

τ ′ whether it is within distance
r from e< or e>. If yes, we add e to Li+1.

This completes the description of the (i + 1)-st stage of the BFS procedure, and thus of
the whole procedure.

Correctness. We prove the correctness by induction on the BFS layers. What one needs
to argue is that all the unreached neighbors of segments in Li are correctly detected and
added to Li+1. Using the observation that two segments intersecting the same grid cell are
within distance r, it is easily seen that any segment added to Li+1 is within distance r from
a segment of Li. Therefore it suffices to argue that any unreached segment e′ ∈ Ui that is
within distance r from a segment e ∈ Li is added to Li+1. Let (p, p′) ∈ e × e′ be the closest
pair of e and e′. Suppose p ∈ τ and p′ ∈ τ ′, then τ ′ ∈ N(τ) and vice-versa. Since e and e′

do not intersect, at least one of p and p′ is an endpoint of that segment.
First consider the case when p is an endpoint of e. If e′ ∈ S(τ ′′) for some τ ′′ ∈ N(τ),

then e′ will be added to Li+1 either in the initial step or Step I. Otherwise p′ lies in the
middle portion of e′. By Lemma 1, the middle portion of e′ intersects the diagonal of a cell
τ ′′ ∈ N(τ) and thus e′ belongs to one of the canonical subsets of C(τ ′′). In this case, Step II
will add e′ to Li+1.

Next, consider the case when p′ is an endpoint of e′. If e is short or if p lies on the
prefix or suffix of a long segment, then τ is an active cell and Step I will add e′ to Li+1. So
assume that p lies on the middle portion of e. In this case, all canonical subsets containing
e are active. By Lemma 1, there is a cell τ ′′ ∈ N(τ ′) such that e lies in a canonical subset
C ∈ C(τ ′′), which implies that τ ′′ ∈ G(C). Therefore Step III will test τ ′ while processing C

and detect that e′ is within distance r from a segment of Li ∩ C and add it to Li+1.
Hence, we conclude that all segments of Ui that are within distance r from a segment of

Li are added to Li+1.

Running time. As for the running time, we spend O(n log2 n) time to construct the data
structure, canonical subsets, and all the cross pointers.

To bound the time taken by the BFS itself, consider a fixed cell τ of the grid. The
segments of Sτ are processed when (i) a cell in N(τ) (including τ itself) is active, or (ii) a
canonical set in C(τ) is active.

Case (i) happens for each cell in N(τ) only during the processing of two consecutive
BFS layers, and thus O(1) times overall, since |N(τ)| = O(1). The work for processing
the segments of Sτ in this case is O(|Sτ | log n). Case (ii) may occur O(log2 n) times, since
there are O(log2 n) canonical sets in C(τ). Following the same argument as in the proof of
Lemma 1, we perform a binary search for only O(log n) of these canonical subsets in Step III,
each of which takes O(log n) time. Furthermore, for an active set C and a cell τ , the cost of
processing the segments of Sτ is O(|Sτ |), to which we have to add a one-time cost of O(|C|),
for finding the subsequence Ci of reached segments in C. Summing up over all cells and lists,
we get that the total time for processing short segments is O(n log2 n).

We process an unreached canonical set C ∈ C(τ) when τ is active. This processing takes
O(|Sτ | + λτ ) time, where λτ is the total number of middle portions of long segments in C

that were added to Li+1 while processing τ . Since each segment is added to a BFS layer once,
we have

∑
τ λτ ≤ n. Since each non-empty grid cell is active at most twice and is associated

with O(log2 n) canonical sets, it follows that the total cost of processing unreached canonical
sets is O(n log2 n).
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In conclusion, we thus obtain the main result of this section:

▶ Theorem 2. Given a set A of n pairwise-disjoint segments in R2 and a parameter r > 0,
breadth-first search on the proximity graph Gr(A) can be performed in O(n log2 n) time.

2.3 Reverse shortest path
The reverse shortest path problem in segment proximity graphs is defined as follows. Given a
pair of segments s, t ∈ S and a parameter k > 0, compute the smallest value r∗ of r such that
Gr∗(S) contains a path from s to t composed of at most k edges. Kaplan et al. [32] recently
showed how to carefully adapt a subtle implementation of parametric search introduced
by [8] (in a different context) to compute reverse shortest paths in disk graphs. We adapt
this method to compute reverse shortest paths in segment proximity graphs.

The first step is to find a value r̂ which is a (1 + ε)-approximation of r∗, for a suit-
able sufficiently small ε > 0. We do this by a binary search (using the procedure of
Section 2) between maxe ̸=e′∈S dist(e, e′) and mine ̸=e′∈S dist(e, e′). This takes O(log ∆) steps,
where ∆ = maxe ̸=e′∈S dist(e, e′)/ mine ̸=e′∈S dist(e, e′) is the spread of S, for a total cost of
O(n log2(n) log ∆) time. Once we have r̂, we simulate the BFS at (the unknown) r∗, using r̂

to form a good enough grid for running the procedure on it.
For the simulation to be efficient, we want the critical values of r at which the combinatorial

structure of the decision procedure changes, to be distances between endpoints of segments
and segments. (More generally, we want each critical value to depend on just two input
objects.) To achieve this, we use a dynamic Voronoi diagram over the segments in Ui+1(τ),
instead of a sweep over a union of disks, in step (2) of the processing of an active cell τ .
This ensures that all critical values of r that the procedure generates are of the desired form,
unlike computing the union of disks, in which additional kinds of critical values may arise.

As a preliminary step to this simulation, we use a modified version of standard two-
dimensional range searching techniques, as elaborated in [8, 32], to confine r∗ to an interval
I containing a relatively small number of critical values. Then our simulation bifurcates
at critical values in I, carefully balancing the progress of the simulated decision procedure,
while narrowing down I. We omit further details, which are fairly similar to those in [32]
(and [8]), and summarize with the following theorem.

▶ Theorem 3. Given a set S of n pairwise-disjoint segments in R2, a designated pair of
segments s, t, and a parameter k, the reverse-shortest-path problem in the proximity graph of
S, i.e., finding the smallest r∗ such that Gr∗(S) contains a path from s to t composed of at
most k edges, can be solved in O∗(n6/5) + O(n log2(n) log ∆) time, where ∆ is the spread of
S, i.e., ∆ = maxe ̸=e′∈S dist(e, e′)/ mine ̸=e′∈S dist(e, e′).

3 Dynamic Nearest-Neighbor Queries for Disjoint Segments

Let S be a set of n pairwise-disjoint segments in R2, which we refer to as input segments. Let
P denote the set of endpoints of the segments in S. Let Q be another set of pairwise-disjoint
segments, which we refer to as query segments and which we may not know in advance. The
set S changes dynamically by insertions and deletions of segments, but its current segments
are pairwise disjoint at all times. We also assume that when we query with a segment e ∈ Q,
it is disjoint from all the segments in the current set S. (See the introduction and below.)
For a segment e ∈ Q, let NN(e, S) = arg mine′∈S dist(e, e′) be the segment in S closest to e.
Our goal is to store S in a dynamic data structure that supports the following operations:5

5 Note that S is required to be pairwise disjoint at any given time, so after a segment e has been deleted, a
segment intersecting e can be inserted into S as long as it does not intersect any of the current segments.
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Insert(e): Given a segment e ̸∈ S that does not intersect any segment of S, insert e into S.
Delete(e): Given a segment e ∈ S, delete e from S.
Query(e): Given a segment e ∈ Q that does not intersect any segment of (the current) S,

return NN(e, S).

We remark that such a data structure can be used to obtain an efficient, near-linear
algorithm for the BFS problem discussed in the previous section. However, the algorithm
presented in that section is simpler, as it avoids the need to use the fairly involved NN-
structure, and is more efficient.

3.1 Main idea
To design a data structure for efficiently answering NN queries of this kind, we use the
(obvious) property that the distance between two disjoint segments is always attained between
an endpoint of one segment and some point – endpoint or interior point – of the other segment.
Thus, to query with a segment e ∈ Q, we need to perform two subtasks:
(Q1) For each endpoint of e, compute its nearest segment in S.
(Q2) Find the point in P nearest to (the interior portion of) e.

Task (Q1) is simpler to accomplish, using the existing techniques in [2, 33, 37] (see below).
Task (Q2) is considerably more difficult. The relevant algorithms described in [11, 12] are
inherently static and off-line. An alternative approach (to task (Q2)) is to use range-searching
machinery: Let Σ(e) be the slab orthogonal to e, namely the slab that is bounded by the two
lines that are orthogonal to e and pass through its endpoints. The points of Σ(e) ∩ P are
precisely those points of P whose distance to e is attained at an interior point of e, and this
distance is the same as that to ℓe, the line supporting e. Computing P ∩ Σ(e) as the union of
a small number of prestored canonical subsets, so that each subset either lies fully above e or
lies fully below e (within Σ(e)), is a major component of the algorithm, but a straightforward
approach to this task involves simplex range searching machinery that is “doomed” to run in
O∗(n4/3) time. Instead, we use a more elaborate, and more efficient, range-searching based
technique, that strongly exploits the disjointness of the segments in S and Q.

We now describe the data structure and the query/update procedures in detail. Without
loss of generality, we assume that the slopes of the query segments lie in the range [−1, +1].
For handling query segments whose slopes do not lie in this range, we construct a similar
data structure with the roles of the x- and y-axes flipped. For simplicity, we first describe
the procedure for answering a fixed-radius neighbor query, namely, given a query segment
e ∈ Q and a parameter r > 0, return a segment of S that lies within distance at most r from
e if there exists one. (This procedure suffices for our DFS application.) We then extend this
procedure to answering NN queries, as described in the full version of the paper.

3.2 Data structure
Our data structure, which consists of multi-level trees, uses the following two classical data
structures as building blocks:

Weight balanced trees. We use BB[α] trees [43] (see also [54]) to construct some of the
underlying balanced binary trees in our structure. BB[α] trees have been extensively used for
dynamic multi-level data structures [39, 54]. Roughly speaking, for α ∈ (0, 1), a BB[α]-tree
T is a binary search tree in which the size of the subtrees is used as a criterion to balance the
tree. The weight of a node v, denoted by w(v), is 1 plus the number of nodes in the subtree
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7:12 Segment Proximity Graphs and NN Searching

rooted at v. If u, z are the two children of v, then we require that w(u), w(z) ≥ αw(v). The
weight-balance condition during updates in T is maintained by performing single and double
rotations; see [43, 54] for details. Assume that every internal node v stores a secondary
data structure on the elements stored at the leaves of the subtree rooted at v. When a
rotation is performed at a node u, we reconstruct the secondary structures stored at u

from scratch. A crucial property of BB[α]-trees, which makes them suitable for multi-level
data structures and which we also exploit, is that if the reconstruction of a secondary
structure of size m takes f(m) = Ω(m) time, then an insert/delete operation on T can be
performed in O((f(n)/n) log n) amortized time, where n is the total number of items stored
in T [13, 38, 54].

Dynamic convex hull. Second, we use the dynamic convex-hull data structure of Overmars
and van Leeuwen [45]. We skip the description of this well-known structure, but note that it
supports efficient implementation of many operations involving convex hulls: A point can be
inserted/deleted in O(log2 n) time, and the following queries can be performed efficiently:

(CH1) Given a vertical slab Σ and a halfplane γ, determine whether P ∩ (Σ ∩ γ) ̸= ∅.
(CH2) Given Σ, γ as above, return k points of P ∩(Σ∩γ) one by one, where k ≤ |P ∩(Σ∩γ)|.
(CH3) Given a halfplane γ, compute the leftmost (or rightmost) point of P ∩ γ.
(CH4) Given a vertical slab Σ and a line ℓ that does not intersect conv(P ∩ Σ), return the

closest point of P ∩ Σ to ℓ.

Queries (CH1), (CH3), and (CH4) take O(log2 n) time each, and (CH2) takes O((1+k) log2 n)
time. We refer to this data structure as C(P ). It can be constructed in O(n log n) time.

We are now ready to describe the overall data structure. We construct a data structure
Φ for task (Q1), and two data structures Ψ1, Ψ2 for task (Q2).

Data structure for task (Q1). The data structure Φ for the task (Q1) is (relatively) simple.
Since the segments in S are pairwise disjoint, their Euclidean Voronoi diagram has linear
complexity [7]. Therefore we use the general machinery of Kaplan et al. [33], as recently
improved by Liu [37] (see also an earlier, slightly less efficient, algorithm of Agarwal et al. [2]),
to store S in a dynamic data structure of size O(n log n), so that a segment can be inserted
into S in O(log2 n) amortized time and deleted from S in O(log4 n) amortized time, and
NN(q, S), for a query point q ∈ R2, can be computed in O(log2 n) time.

The first data structure for task (Q2). The first data structure, Ψ1, for (Q2) is constructed
on P and combines a range tree with the aforementioned dynamic convex-hull data structure.
It supports insertion and deletion of points, and enables us to add range restriction to (CH1)–
(CH4) queries, i.e., perform these queries on a subset of points lying inside an axis-aligned
rectangle. In particular, we can perform the following three queries on Ψ1:

(CHY1) Given an axis-aligned rectangle □ = X□ ×Y□ and a halfplane γ, determine whether
P ∩ □ ∩ γ is nonempty.

(CHY2) Given a vertical slab σ = Xσ × R and a halfplane γ, return the highest (or the
lowest) point in P ∩ σ ∩ γ.

(CHY3) Given an axis-aligned rectangle □ = X□ × Y□ and a line ℓ that does not intersect
□, return the point of P ∩ □ closest to ℓ.

The primary tree Υ of Ψ1 is a 1-dimensional range tree on the y-coordinates of points in
P , constructed as a BB[α]-tree [54]. Each node ξ of Υ is associated with a y-interval Iξ and
a canonical subset Pξ ⊆ P of points whose y-coordinates lie in Iξ. At each node ξ of Υ, we
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store Cξ := C(Pξ), the dynamic convex-hull data structure on Pξ. The size of Ψ1 is O(n log n),
and it can be constructed in O(n log2 n) time. The update and query procedures for Ψ1,
described in the full version of the paper, take O(log3 n) time each, which is amortized for
an update.

The second data structure for (Q2). The second data structure, Ψ2, is more involved
and exploits the fact that the query segments are pairwise disjoint. Roughly speaking, Ψ2
also enables range restriction to (CH1)–(CH4) queries, where the ranges are now halfplanes
bounded by the (lines supporting the) segments of Q. See Section 3.3 and the full version
of the paper. Ψ2 is periodically reconstructed. More precisely, suppose the size of S was
n0 when Ψ2 was last (re)constructed. Then we reconstruct Ψ2 after performing a sequence
of n0/2 query/insert/delete operations, and charge the reconstruction time to these n0/2
operations. Let R be the set of query segments that arrived after the last reconstruction
of Ψ2; we set R = ∅ when Ψ2 is reconstructed, so all previous queries are discarded at this
moment. It can easily be verified that |R| ≤ |S|/2 at any given time. Ψ2 consists of a
three-level tree and stores both P and R. A schematic illustration of the structure is given
in Figure 5.

ξ

Vξ

Pξ

A primitive
bucket ∆

Π(1)

ζ

Π
(2)
ξ

The points of Pξ by buck-
ets (bottom to top); within a
bucket by lexicographical order

Vξ

Pξ,ζ
βξ,ζ

Π
(3)
ξ,ζ

C(Pξ,ζ)

Figure 5 A schematic illustration of the data structure Ψ2.

The primary tree Π(1) is a BB[α]-tree on the x-coordinates of the points of P and of the
endpoints of segments in R, and it is dynamically updated as points are inserted into or
deleted from P and as new query segments arrive. We consider Π(1) as a segment tree on
the x-projections of the segments in R. Each node ξ of Π(1) is associated with an x-interval
Iξ. Let Vξ := Iξ × R be the vertical slab spanned by Iξ, which we also associate with ξ.
Set Pξ := P ∩ Vξ. (Note that the endpoints of segments of R are not included in Pξ.) By
construction, a segment e ∈ R is stored at ξ if Iξ ⊆ e∗ and Iπ(ξ) ̸⊆ e∗, where e∗ is the
x-projection of e and π(ξ) is the parent of ξ. Let Rξ be the set of segments of R stored at ξ,
clipped to within Vξ. Since the segments of Rξ straddle Vξ from side to side and are pairwise
nonintersecting, they partition Vξ into trapezoidal regions, which we refer to as primitive
buckets. See Figure 5. We store the following three auxiliary structures at ξ.

1. We store the segments of Rξ, sorted from bottom to top, in a balanced binary tree Bξ,
so that we can determine, in O(log n) time, the primitive bucket of Vξ that contains a
point p ∈ Pξ. A segment e that straddles Vξ and that does not intersect any segment of
R (namely, a new query segment) can be inserted into Bξ in O(log n) time; e effectively
splits the single primitive bucket that it crosses into two primitive buckets.

2. For each primitive bucket ∆ of Vξ, let P∆ := Pξ ∩ ∆. We maintain C∆ := C(P∆), the
dynamic convex-hull data structure on P∆.

3. Finally, we define a total order ≺ on the points of Pξ as follows: Let p, q ∈ Pξ. If the
primitive bucket of Vξ containing p lies below the one containing q, then p ≺ q. If they
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lie in the same primitive bucket, we order them lexicographically. We store Pξ in a
BB[α]-tree Π(2)

ξ using ≺ as the total order. Note that all points of Pξ lying in the same
primitive bucket are stored at consecutive leaves of Π(2)

ξ .

An insertion of a segment e into the structure destroys the order of the points within the
bucket that e crosses, and their new order has to be constructed; see below.

We call a node ζ of Π(2)
ξ redundant if all points in the subtree rooted at the parent

of ζ belong to the same bucket, and non-redundant otherwise (the root of Π(2)
ξ is always

non-redundant). At each internal node ζ ∈ Π(2)
ξ , let Pξ,ζ be the set of points stored at

the subtree rooted at ζ. We store C(Pξ,ζ), denoted as a third-level substructure Π(3)
ξ,ζ , at

ζ. At each non-redundant node ζ, we store the bottom edge, denoted by βξ,ζ , of the lowest
primitive bucket of Vξ that contains a point of Pξ,ζ ; the edges βξ,ζ facilitate the search in
Π(2)

ξ . Recall that R = ∅ when Ψ2 is (re-)constructed, so initially Vξ consists of only one
primitive bucket, namely Vξ itself, and the root of Π(2)

ξ is its only non-redundant node, which
stores the dynamic convex-hull data structure on the full local set Pξ.

This completes the description of the second data structure Ψ2 for (Q2). Since (i) Π(3)
ξ,ζ

has linear size, (ii) each point of P or segment of R is stored at O(log n) nodes of Π(1), and
(iii) each point of Pξ is stored at O(log n) nodes of Π(2)

ξ , it follows that the overall size of
Ψ2 is O(n log2 n). Since Π(3)

ξ,ζ can be constructed in O(|Pξ,ζ | log |Pξ,ζ |) time, Π(2)
ξ and Π(1)

can be constructed in O(|Pξ| log2 |Pξ|) and O(n log3 n) time, respectively. The procedure for
inserting a point into, or deleting from, Ψ2, in O(log5 n) amortized time, is described in the
full version of the paper. Here we describe the procedure for inserting a segment into Ψ2.

Inserting a segment into Ψ2. Recall that Ψ2 stores both P and R, so when we query Ψ2
with a segment e ∈ R that is disjoint from (the current) S, we first insert e into Ψ2. We begin
by inserting the endpoints of e into Π(1), as described in the full version of the paper, and
then insert the segment e itself into Ψ2. Recall that Π(1) is a segment tree on the segments
of R, so e is stored at a node ξ if Iξ ⊆ e∗ but Iπ(ξ) ̸⊆ e∗. Let ξ be such a node. Insertion of
e at ξ splits a primitive bucket of Vξ, which in turn updates the ordering of the points in
Pξ. We thus update the secondary structures stored at ξ, as follows. We clip e within Vξ,
and continue to denote by e the clipped segment. Let e+ (resp., e−) be the halfplane lying
above (resp., below) the line supporting e. By searching with e in Bξ, we find the primitive
bucket ∆ of Vξ that e crosses. We split ∆ into two primitive buckets ∆+ = ∆ ∩ e+ and
∆− = ∆ ∩ e−. Let P∆− = P∆ ∩ ∆− and P∆+ = P∆ ∩ ∆+. We construct C∆− and C∆+, from
C∆: by performing (CH2) queries on C∆ with the halfplanes e+ and e−, we report the points
of P∆ lying in e+ and e−, respectively, in a lock-step manner, until we exhaust all the points
in one of the halfplanes. Suppose, without loss of generality, |P∆− | ≤ |P∆+ |. We have P∆−

at our disposal, so we construct C∆− from an empty structure by inserting the points of P∆− ,
and we obtain C∆+ by deleting the points of P∆− from C∆.

The insertion of e changes the ordering of points in P∆, namely, now p ≺ q for every
p ∈ P∆− and q ∈ P∆+ . We thus delete the points of P∆− from Π(2)

ξ and re-insert them with
their new key, using the procedure described above, so that they appear before P∆+ in Π(2)

ξ .
Finally, for all non-redundant nodes ζ of Π(2)

ξ whose leftmost leaf stores a point of P∆+ , we
update βζ to e. There are O(log n) such nodes and they lie along two root-to-leaf paths of
Π(2)

ξ , so this can be accomplished in O(log n) time.
We now bound the time spent to insert e. The insertion of the endpoints of e into Π(1)

takes O(log5 n) amortized time, as discussed in the full version. Let ξ be a node of Π(1)

at which e is stored. We spend O(log n) time in inserting e into Bξ. The total time spent
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in computing the smaller of the two sets P∆− , P∆+ (say P∆−), and constructing C∆− and
C∆+ from C∆ is O((1 + |P∆− |) log2 n). Finally, deleting and re-inserting the points of P∆− in
Π(2)

ξ takes O(|P∆− | log3 n) amortized time. Summing up all costs, the total time spent in
inserting e at the secondary structures stored at ξ is O(log3 n + |P∆− | log3 n). We charge
O(log3 n) cost to the insertion of e and pay the O(|P∆− |) log3 n) cost by charging O(log3 n)
units of credit to each point of P∆− . One can show (see below) that there is enough credit
to pay for these operations.

We obtained P∆− , P∆+ by splitting P∆, in time proportional to min{|P∆− |, |P∆+ |} (times
O(log3 n)). Following a standard argument, it can be shown that this cost (over all insertions
of segments to R) can be paid by charging a total of O(log4 n) units to each point of Pξ.
Since a point p of P is stored at O(log n) nodes of Π(1), O(log5 n) units of credit assigned
to p when it was inserted into P are sufficient to pay for all the costs charged to it (and
these O(log5 n) credits are charged against the insertion cost of p into P ). Putting all the
ingredients together, the amortized cost of inserting a segment into R is O(log5 n).

Similar considerations apply to the other operations. See the full version for details.

3.3 Fixed-radius neighbor queries
Let e = pq ∈ R be a query segment, and let r > 0 be a parameter (which is part of the
query). We wish to report a segment of S that is within distance r from e if there exists one.
Without loss of generality, assume that the slope of e is in the range [0, 1] (other ranges are
handled similarly). Let Σ(e) be the slab orthogonal to e, as defined earlier.

Vξ Vξ
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(a) (b)

A primitive
bucket
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Figure 6 (a) Querying with a segment e, and the slabs Vξ and Σ−(e). (b) Testing σr(e) for
emptiness by splitting Pξ ∩ Σ−(e) into a left part and a right part at the vertex w (assuming that
w ∈ Vξ), and performing a halfplane emptiness query for each part. (c) Testing τr(e) by splitting it
into two right axis-aligned triangles.

We first query Φ with p and q and return their nearest segments in S. If either of them
is within distance r from e, we return it and stop. So assume that neither of them is within
distance r from e. In this case, it suffices to determine whether there is any point of P ∩ Σ(e)
within distance r from the line ℓe supporting e, which we do by querying Ψ1 and Ψ2.

We first insert e into Ψ2, as described above. Recall that e is stored at O(log n) nodes
of the primary tree Π(1) of Ψ2. These nodes partition e into O(log n) subsegments, each
lying within and straddling the vertical slab associated with that node. This split of e

also partitions the slab Σ(e) into O(log n) parallel subslabs. We search within each subslab
separately. More precisely, let ξ ∈ Π(1) be one of the nodes where e is stored. With a slight
abuse of notation, we use e to denote the query segment clipped to within Vξ, and use Σ(e)
to denote the slab orthogonal to this clipped segment. We now describe the procedure for
reporting a point of Σ(e) ∩ P within distance r from e (or from ℓe), if one exists.
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We partition Σ(e) into two semi-slabs Σ−(e) and Σ+(e), lying below and above e re-
spectively. We describe the procedure for finding a desired point in Σ−(e) ∩ P ; a symmetric
procedure works for Σ+(e). Σ−(e) is bounded by e and by two rays orthogonal to e and
emanating from its endpoints, one of which, denoted by ρ′, is fully disjoint from Vξ; we
denote the other ray as ρ. See Figure 6(a). Let γr(e) ⊂ Σ−(e) denote the rectangle with e as
its upper edge and its lower edge lying on the line ℓ−

r parallel to e at distance r below it; γr(e)
determines the set of points in Σ−(e) within distance r from e (or from ℓe). One of the side
edges of γr(e) is contained in ρ, and the other side is contained in ρ′ and lies outside Vξ. Our
goal is to determine whether P ∩γr(e) ̸= ∅ and return a point of P ∩γr(e) if the answer is Yes.

We partition γr(e) into two regions: σr(e) = γr(e) ∩ Vξ and τr(e) = γr(e) \ Vξ. Since the
slope of e is positive, τr(e) lies to the right of Vξ. If the right boundary line of Vξ intersects
the lower edge of γr(e) then σr(e) is a trapezoid and τr(e) is a right-angle triangle, otherwise
(if that line intersects the left side edge of γr(e)) σr(e) is a right-angle triangle and τr(e) is a
trapezoid. We check whether either of σr(e), τr(e) contains a point of P , as follows.

Testing σr(e). We focus on the case when σr(e) is a trapezoid; the case when σr(e) is
a triangle can be viewed as a degenerate instance of this case and is simpler to handle.
Since σr(e) ⊂ Vξ, σr(e) ∩ P = σr(e) ∩ Pξ, so it suffices to test whether σr(e) ∩ Pξ ̸= ∅. See
Figure 6(b). Note that e is already inserted into the secondary structures at ξ. Hence, using
the secondary tree Π(2)

ξ stored at ξ, we compute, in O(log n) time, the points of Pξ lying
below e (i.e., points lying in primitive buckets below e) as the union of O(log n) canonical
subsets, each stored at some node ζ of Π(2)

ξ . Let Pξ,ζ be such a canonical subset. Let w

be the bottom vertex of σr(e), let λw denote the vertical line through w, and let λ−, λ+

be the vertical halfplanes lying to the left and to the right of λw, respectively. Again, see
Figure 6(b). Let ρ+ be the halfplane lying above the line supporting the ray ρ, and let η+

be the halfplane lying above the line ℓ−
r . A point p ∈ Pξ,ζ lying in λ− (resp., λ+) lies in

σr(e) if and only if it lies in the halfplane ρ+ (resp., η+). See Figure 6(b). Therefore, by
performing two (CH1) queries on Π(3)

ξ,ζ , we determine whether Pξ,ζ ∩ (λ− ∩ ρ+) ̸= ∅ and
whether Pξ,ζ ∩ (λ+ ∩ η+) ̸= ∅. If the answer of either of these tests is Yes, we conclude that
σr(e) ∩ Pξ ̸= ∅, return a point in it and stop. By repeating this procedure for all O(log n)
canonical nodes, we determine, in O(log3 n) time, whether Pξ ∩ σr(e) ̸= ∅, and return a point
in this intersection if it is indeed nonempty.

Testing τr(e). Abusing the notation slightly, let p and q be the endpoints of the clipped
segment e (within Vξ). We first consider the case where τr(e) is a right-angle triangle. Let z

be the right-angle (rightmost) vertex of the triangle τr(e); z is adjacent to the bottom edge
of τr(e), which is contained in ℓ−

r , and to the right edge of τr(e), which is contained in ρ′.
We partition τr(e) into subtriangles τ+

r (e) and τ−
r (e) by drawing a horizontal edge from z,

where τ+
r (e) lies above the horizontal edge and τ−

r (e) lies below the edge. See Figure 6(c).
Since each of these subtriangles is an axis-aligned right-angle triangle (i.e., with horizontal
and vertical sides), it can be expressed as the intersection of an axis-aligned rectangle and a
halfplane. Therefore, by performing a (CHY1) query on Ψ1, we determine, in O(log3 n) time,
whether either of these subtriangles contains a point of P ; if so we return one such point.

Next, consider the case when τr(e) is a trapezoid. The difficulty in this case is that the
two parallel edges of τr(e) lying on ρ, ρ′ can be arbitrarily long (when r is much larger than
the length of e), and it is not clear how to decompose τr(e) into O(1) right-angle triangles.
Instead, we use the following approach. Since, as we have assumed, the slope of e is in the
range [0, 1], it can be verified that |e| ≤ r in this case (namely, when τr(e) is a trapezoid),
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Vξ

e
ρ′

Σ−(e)

ρ

p

q

Dp(r)

Dq(r)

λpq

χpq

z
K

∆

Figure 7 τr(e) is a trapezoid.

which implies that the two disks Dp(r) and Dq(r), of radius r around p and q, intersect,
and one of the intersection points of their boundaries, denoted by χpq, lies in Σ−(e) and
to the right of Vξ; see Figure 7. Our preliminary querying in Φ with p and q allows us to
assume that Dp(r) ∪ Dq(r) ∩ P = ∅. Therefore, if P ∩ τr(e) ̸= ∅, any point of P ∩ τr(e) lies
in ∆ = τr(e) \ (Dp(r) ∪ Dq(r)). Let λpq be the horizontal line that supports ∆ from above,
i.e., the lowest horizontal line such that ∆ lies below λpq. Since χpq lies to the right of both
p and q, the two disks Dp(r) and Dq(r) have positive slopes at χpq, and λpq passes through
the rightmost vertex z of τr(e). See Figure 7.

Let λ−
pq be the halfplane lying below λpq. Let K be the right-angle triangle whose

hypotenuse is the bottom edge of τr(e) and whose top side is contained in λpq. It is easily
checked that ∆ is contained in K, and that K \ ∆ is contained in the union of the two
disks. It thus suffices to test whether K ∩ P is nonempty, which can be done using the same
technique described above, in O(log3 n) time.

This completes the description of the procedure for determining whether γr(e) ∩ P ̸= ∅.
A symmetric procedure determines in O(log3 n) time whether Σ+(e) ∩ P contains a point
within distance r from e. By repeating this procedure for all O(log n) nodes of Π(1) at which
e is stored, the total time spent in querying Ψ2 is O(log4 n). Taking into account the time
spent in inserting e into Ψ2, and adding the time taken in querying Φ with the endpoints of
e, the total amortized query time is O(log5 n).

Putting everything together, we obtain the main result of this section:

▶ Theorem 4. Let S be a set of n pairwise-disjoint segments in R2, and let Q be another
set of pairwise-disjoint segments in R2 that are not known in advance. S can be stored in a
dynamic data structure that can handle insertion and deletion of segments, assuming the set
S remains pairwise disjoint after each update, and that can answer fixed-radius-neighbor and
nearest-neighbor queries for a query segment e ∈ Q that does not intersect any segment in
(the current) S. The amortized query and update times are O(log5 n). If the set Q is known
in advance (but not the sequence of queries), the query and (amortized) update time can be
improved to O(log4 n).
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