
Dynamic Embeddings of Dynamic Single-Source
Upward Planar Graphs
Ivor van der Hoog #

Technical University of Denmark, Lyngby, Denmark

Irene Parada #

Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Abstract
A directed graph G is upward planar if it admits a planar embedding where each edge is y-monotone.
Unlike planarity testing, upward planarity testing is NP-hard except in restricted cases, such as
when the graph has the single-source property (i.e., each connected component has one source).

In this paper, we present a dynamic data structure for maintaining an upward combinatorial
embedding −→

E (G) of a single-source upward planar graph subject to edge deletions, edge contractions,
directed edge insertions across a face, and single-source-preserving vertex splits through specified
corners (i.e., the gaps between pairs of consecutive edges that share a vertex and a face). We
furthermore support changes to the embedding −→

E (G) in the form of subgraph flips that mirror
or slide the placement of a subgraph that is connected to the rest of the graph via at most two
vertices. Updates that are incompatible with the current upward planar embedding are identified
and rejected.

All update operations are supported as long as the graph remains upward planar. In addition,
we support queries that can tell whether two vertices can be connected with a directed edge while
the graph remains single-source (we call these uplinkability queries). If a pair of vertices are not
uplinkable, we facilitate one-flip-linkable queries: These point to a flip that makes them uplinkable,
if any such flip exists. We dynamically maintain a linear-size data structure on G which supports
incidence queries between a vertex and a face, and uplinkability queries for vertex pairs. We support
all updates and queries in O(log2 n) worst-case time.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Mathematics
of computing → Graphs and surfaces

Keywords and phrases dynamic graphs, data structures, computational geometry, graph drawing,
graph algorithms, upward planarity

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.70

Related Version Full Version: https://arxiv.org/abs/2209.14094

Funding This research was supported by Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”.
Ivor van der Hoog: This project has additionally received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No
899987.
Irene Parada: I. P. is a Serra Húnter Fellow. Partially supported by grant 2021UPC-MS-67392
funded by the Spanish Ministry of Universities and the European Union (NextGenerationEU) and
by grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033.
Eva Rotenberg: This research was additionally supported by Carlsberg Foundation Young Researcher
Fellowship CF21-0302 “Graph Algorithms with Geometric Applications”.

© Ivor van der Hoog, Irene Parada, and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 70; pp. 70:1–70:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:irene.parada@upc.edu
https://orcid.org/0000-0003-2401-8670
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.ESA.2024.70
https://arxiv.org/abs/2209.14094
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


70:2 Dynamic Upward Planar Embeddings

1 Introduction

A directed graph is upward planar if it admits a drawing that is both upward (every edge has
monotonically increasing y-coordinates) and planar (without crossings). Upward planarity is
a natural analogy of planarity for directed graphs. We can test if a graph admits a planar
embedding in linear time since 1974 [18]. In sharp contrast, testing upward planarity is, in
general (for multi-source graphs), NP-hard [13].

We consider a dynamic n-vertex single-source directed graph G with an upward embedding−→
E (G). An ordered vertex pair (u, v) is uplinkable in −→

E (G) whenever we may insert the edge
u→v across some face without violating upward planarity. We design a data structure that
supports updates to the graph (that preserve upward planarity and G being single-source),
local changes to the embedding (flips and slides), and answers queries to whether an edge can
be inserted in the current embedding (uplinkability), or inserted after performing a limited
type of local changes to the embedding (one-flip uplinkability). We support these queries in
O(log2 n) time. The bounds we obtain in this more challenging upward-planar setting match
the ones of the planar case [15] and generalise the dynamic data structure for single-source
directed graphs with a fixed embedding and outer face [29]. Contrary to [29], we also allow
changes to the embedding and edge deletions that disconnect the graph.

For planar graphs, a corresponding dynamic data structure that supports similar queries
and changes to the embedding [15] has been proven instrumental for (fully) dynamic planarity
testing of a dynamic graph [17]. An additional motivation for this work is the hope that with
additional insights and techniques, it would serve as a stepping stone towards a fully-dynamic
algorithm for upward planar single source graphs (i.e., facilitating the deletion or insertion of
any edge, as long as the graph remains upward planar and component-wise single-source).

Related work to upward planarity. Upward planar graphs are spanning subgraphs of planar
st-graphs [2, 21, 27]. While testing upward planarity is NP-complete for general graphs [13],
polynomial algorithms exist for several restricted classes. One of the most relevant such
results is the linear-time algorithm for single-source directed graphs [6, 7, 19]. Other classes
for which upward planarity can be tested in polynomial time are graphs with a fixed (upward)
embedding [5], outerplanar graphs [24], and series–parallel graphs [9]. Dynamically, it can
be checked in O(log n) amortised time whether an embedded single-source upward planar
directed graph with a fixed external face can stay as such after an edge insertion or deletion
without changing the embedding [29]. There are no existing worst-case results for dynamic
upward embeddings and no results for dynamic upward embeddings subject to flips in the
embedding. The study of upward planar graphs continues to be a prolific area of research,
including recent developments in parameterized algorithms for upward planarity [8], bounds
on the page number [20], morphing [23], and extension questions [7, 22]. In particular, in
biconnected graphs, it can be tested in O(n2) time whether a given upward planar drawing
can be extended to an upward planar drawing of an n-vertex single-source directed graph
G [7]. For st-graphs, the running time was recently improved to O(n log n) [22]. This
contrasts the linear-time extension algorithm for the planar undirected case [1].

Dynamic maintenance of planar (embedded) graphs. Dynamic maintenance of graphs
and their embedding is a well-studied topic in theoretical computer science [3, 4, 10, 11, 12,
14, 15, 16, 17, 28, 30]. In this area, we typically study some graph G = (V, E) subject to
adding or removing edges to the edge set E. A combinatorial embedding E(G) specifies the
outer face and for each vertex v ∈ V a cyclic ordering of the edges incident to v.



I. van der Hoog, I. Parada, and E. Rotenberg 70:3

One famous approach to dynamic maintenance of an embedding is the work by Eppstein
[10] who studies maintaining an embedding E(G) subject to edge deletions and insertions
across a specified face as a crossing free drawing, in O(log n) time. Henzinger, Italiano, and
La Poutré [14] give a dynamic algorithm for maintaining a plane embedded graph subject to
edge deletions and insertions across a face, while supporting queries to whether a pair of
vertices presently share a face in the embedding, in O(log2 n) time per operation. Holm and
Rotenberg [15] expand on the result of [14] by additionally supporting flips (operations which
change the combinatorial embedding but not G). They show how to support all operations
in O(log2 n) time, rejecting operations that would violate the planarity of E(G). Their data
structure supports linkability queries which, for a pair of vertices, report a sequence of faces
across which they are linkable, or singular flips that would make the two vertices linkable.

For dynamic planarity testing (maintaining a bit indicating whether the graph is presently
planar) there has been a body of work [3, 4, 11, 12, 16, 17, 25, 26, 28, 30]. The current
state-of-the-art algorithm for incremental planarity testing is by Holm and Rotenberg [17]
in O(log3 n) worst case time per edge insertion. Here, they crucially rely upon an O(log2 n)
fully dynamic algorithm for the dynamic maintenance of a planar embedding E(G) [15].

Contribution and organisation. Let G be a single-source upward planar directed graph.
We study how to maintain an upward combinatorial embedding −→

E (G) subject to operations
on −→

E (G). Updates which would violate upward planarity are recognised as such and rejected.
Section 2 contains our preliminaries and formalises our setting and the type of updates and
queries that we allow. In Section 3 we present our linear-size dynamic data structure that
maintains G and a combinatorial representation of −→

E (G) subject to edge insertions across a
face, edge deletions, vertex splittings, edge contractions, and “flip”-operations that perform
local changes to the embedding, in O(log2 n) time per operation. Our set of operations (see
preliminaries) allow us to transform between any two upward embeddings of a single-source
biconnected digraph with the same leftmost edge around the source [7, Theorem 3].

A corner cu in −→
E (G) is the gap between two edges that are consecutive in the ordering

around a vertex v that share a face f . An edge insertion specifies two corners cu and cv that
share a face f , and aims to insert the edge cu →cv into −→

E (G) (the edge directed from u to v

that is inserted across f in between the two corners). In Section 3, we give a dynamic data
structure that supports edge deletion and edge insertion between corners that share a face.
Our data structure can efficiently test whether inserting cu →cv violates upward planarity,
rejecting updates that would violate upward planarity. In Section 4, we extend this data
structure to support uplinkable queries in O(log2 n) time; i.e., queries that decide for vertices
(u, v) whether there exists a corner pair (cu, cv) such that cu →cv may be inserted without
violating upward planarity. Specifically, our algorithm is capable of reporting all suitable
corner pairs. In the negative case, Section 4 furthermore describes how to efficiently support
queries whether minor changes to the embedding would allow us to insert the edge; namely,
the one-flip uplinkable query which in O(log2 n) time answers whether there exists at least
one flip in −→

E (G) after which u and v are uplinkable, and outputs a flip if one exists.

Techniques and challenges. We build on techniques from two sources. Firstly, Holm
and Rotenberg [15] show how to dynamically maintain a planar embedded graph, rejecting
updates that would make the graph not planar. Secondly, Bertolazzi, Di Battista, Mannino,
and Tamassia [6] define the face-sink graph of a combinatorially embedded single-source
digraphs and prove that a realization as an upward planar drawing exists if and only if the
face-sink graph satisfies a specific set of conditions. We combine insights from [15] and [6]:

ESA 2024



70:4 Dynamic Upward Planar Embeddings

We maintain a planar combinatorial embedding E(G) of G with O(log2 n) update time
using the data structure in [15], which supports all updates.
We make E(G) into an upward combinatorial embedding −→

E (G). We store a data structure
over −→

E (G) to dynamically maintain the face-sink graph (and check the conditions from [6])
in O(log2 n) time. We verify after each update whether −→

E (G) remains upward planar.

We can dynamically maintain an upward planar combinatorial embedding −→
E (G) subject

to all our updates. We also show that we can answer all queries. Holm and Rotenberg [15]
provide a framework for answering these queries in planar graphs. However, we need to build
on this framework to be able to apply it to upward planarity. Indeed, for undirected graphs,
the edge (u, v) may be inserted whenever (u, v) share a face. For upward planar digraphs, u

and v may share a face even if the edge u→v cannot be inserted whilst preserving upward
planarity. This difference creates two problems: First, Holm and Rotenberg specifically
assume (and use) that (u, v) do not share a face before the one-flip linkable query. Thus, we
must alter their scheme to operate without such assumption. Second, they may return O(n)
candidate flips after which (u, v) share a face, from which we need to filter the flips that
allow insertion of the directed edge u→v. To achieve this, we show new geometric lemmas
that uniquely characterise which faces can be part of a flip to facilitate the insertion of the
directed edge u→v. We prove that these faces must form a contiguous subsequence of the
output by the data structure of Holm and Rotenberg. Subsequently, we use binary search on
the candidate output to identify the sequence of flips that are part of our output.

2 Preliminaries

Let G = (V, E) be a directed graph (digraph) where V is a set of vertices and E is a set of
ordered pairs of vertices. Each pair (u, v) ∈ E represents an edge directed from u to v. For
u, v ∈ V we say that u < v if and only if there exists a directed path from u to v in G. Note
that it is not known how to dynamically decide u < v in poly-logarithmic time. Instead, our
algorithms use our current embedding to derive whether u < v when necessary. We require
that G is single-source: each component of G has a unique vertex with only outgoing edges.

Combinatorial embeddings. A combinatorial embedding E(G) of a connected graph G (as
defined in [15]) specifies for every vertex v ∈ V a counter-clockwise ordering of the edges
incident to v. This defines a set of faces F where for every f ∈ F there is a cyclic ordering
of vertices incident to f . We define a corner in E(G) as a 4-tuple (v, f, e1, e2) where v ∈ V

is incident to face f , e1, e2 ∈ E are both incident to v and f , and are consecutive in the
counter-clockwise order around v. In the degenerate case that v is a vertex incident to a single
edge e and a face f , we define the corner (v, f, e, e). If G is not connected, a combinatorial
embedding of G consists of a combinatorial embedding of each connected component.

Upward (combinatorial) embeddings. An upward (combinatorial) embedding −→
E (G) is a

combinatorial embedding E(G) that additionally stores for each corner (v, f, e1, e2) where e1
and e2 are directed towards v, whether the corresponding angle is presently reflex (larger
than 180) or convex in the embedding. Also, we require that an upward embedding marks,
for each connected component, a face in the corresponding combinatorial embedding as its
outer face. Finally, we require that each connected component with outer face h has exactly
one corner (v, h, e1, e2), where v is the source and e1 and e2 are directed from v, marked
as reflex. An upward embedding −→

E (G) is upward planar whenever there exists an upward
planar drawing D(G) realising −→

E (G).



I. van der Hoog, I. Parada, and E. Rotenberg 70:5

(a) (b)

Figure 1 (a) An upward planar drawing. Sink corners are marked with a dot, which is green
for top corners. Critical vertices are red. (b) The face-sink graph is a bipartite graph. If −→

E (G) is
upward planar, it is a forest where the critical vertices and the outer face are the roots.

Single-source digraphs, corners, and the face-sink graph. Next, we discuss properties of
digraphs and upward embeddings crucial for the remainder of the paper (see Figure 1(a)):

A source (resp. a sink) is a vertex with only outgoing (resp. incoming) edges. The reflex
source corner is the unique reflex corner incident to the source of a component.
Vertices which are not a source or a sink are internal vertices.
In a sink corner (v, f, e1, e2), the edges e1 and e2 are both directed towards v. In a source
corner (v, f, e1, e2), the edges e1 and e2 are both directed away from v.
A top corner is a sink corner where the angle between e1 and e2 is convex.
A critical vertex is a (internal) vertex v incident to at least two incoming edges and at
least one outgoing edge.

In this paper, we consider single-source digraphs (each connected component has one
source). In their upward planar embeddings, in each component the outer face is incident
to the source. For an upward embedding −→

E (G) of a single-source digraph G, Bertolazzi
et al. [6] define its face-sink graph F(−→E (G)). We slightly modify their definition to match
the above-defined concepts and ensure that F(−→E (G)) is a directed graph instead. Formally,
F(−→E (G)) is a bipartite graph between the vertices V and faces F of −→

E (G) (Figure 1(b)).
There is a directed edge from v ∈ V to f ∈ F whenever they share a sink corner that is not
a top corner, and a directed edge from f to v whenever they share a top corner. They show:

▶ Theorem 1 (Theorem 1 in [6], Fact 2+3). Let G be a single-source digraph. An upward
(combinatorial) embedding −→

E (G) of G is upward planar if and only if:
F(−→E (G)) is a forest T ∗, T1, . . . , Tm where each non-outer face has out-degree 1,
T ∗ does not have internal vertices and its root is incident to the unique reflex source
corner of −→

E (G), and
T1, . . . Tm each have as root the unique internal vertex in Ti, which is critical.

Articulation slides, twists, and separation flips. The most basic dynamic update to an
embedded graph, is to alter its embedding. We characterise three important changes to an
upward planar embedding that can be used as building blocks for transformations that change
it into another upward planar embedding. This is highly motivated by the dynamic updates
of adding and removing edges, because the current embedding may not be compatible with
the edge we want to add. We will define three embedding changes.

For any (undirected) graph G, an articulation vertex w is a vertex whose removal separates
a connected component G′ of G into at least two connected components C1, C2, . . .: the
articulation components. In an embedded planar graph E(G), articulation vertices have at
least two corners incident to the same face f . Given an articulation vertex w, let Cw(v)

ESA 2024



70:6 Dynamic Upward Planar Embeddings

(a)

(c)

v f

(b)

v

f

w

vv

v
g

x

y

w

v

ww

f

x

y

u u

Figure 2 (a) An articulation vertex w with v in the blue component B. Fs = (f, w, v) slides B

into f . (b) Ft = (w, v) mirrors the blue component B. (c) The square vertices form a separation
pair (x, y). We show the separation flip Ft = (f, g, x, y, v) after which v becomes incident to f .

be the component containing v in G \ w. A separation pair (x, y) in a graph is any pair of
vertices whose removal separates a connected component into at least two components. In a
planar graph, (x, y) is a separation pair if x and y share at least two faces f and g.

The following operations change the embedding −→
E (G) while leaving the graph unchanged:

Given an articulation vertex w incident to f and a vertex v ≠ w, for an articulation slide
Fs = (f, w, v) we cut the component Cw(v) from w and embed Cw(v) into f by merging
it back at w (see Figure 2(a)). We intuitively refer to it as sliding Cw(v) into f .
Given an articulation vertex w and a vertex v ≠ w, for an articulation twist Ft = (w, v)
we isolate the component Cw(v) by cutting through w, mirror its embedding, and merge
it back at w (see Figure 2(b)).
Given a separation pair (x, y) sharing faces f, g and a vertex v ̸= x, y, for a separation
flip F = (f, g, x, y, v) we split x and y along the corners incident to f and g, mirror the
embedding of the component containing v, and merge it back into G (see Figure 2(c)).

Update operations. We dynamically maintain an upward embedding −→
E (G) (i.e., a combin-

atorial embedding that specifies for every connected component the outer face, and for every
sink corner a Boolean indicating whether the angle is reflex) subject to a list of updates
that we specify below. We say that an update violates upward planarity if it cannot be
accommodated such that −→

E (G) remains upward planar. Combinatorial updates modify the
graph G (see Figure 3):

Insert(cu, cv) for an ordered pair of corners, inserts cu →cv into −→
E (G).

Delete(e) for an edge e ∈ E, removes it from −→
E (G).

Cut(c1, c2) for two corners c1 and c2 incident to a vertex v, replaces v by v1 and
v2 connected by an edge (v1, v2) (choosing the edge’s direction that preserves upward
planarity). Each of these two vertices becomes incident to a unique consecutive interval
of edges incident to v that is bounded by c1 and c2.
Contract(e) contracts an edge e ∈ E, merging the two endpoints.



I. van der Hoog, I. Parada, and E. Rotenberg 70:7

(a) (b) (c) (d)

Figure 3 Operations: (a) insertion, (b) cut, (c) articulation-slide, and (d) separation-flip.

Recall that G has one source per connected component. We maintain connected compon-
ents in separate data structures, which are merged/split with updates that merge/split the
respective connected components. We also support embedding updates that change −→

E (G):
Mirror(v, c1, c2) mirrors the flip component containing v that is separated from G

during Cut(c1, c2) (inverting the ordering of edges incident to v between c1 and c2).
Articulation-slide(f, w, v) executes the articulation slide Fs = (f, w, v).
Articulation-twist(w, v) executes the articulation twist Ft = (w, v).
Separation-flip(f, g, x, y, v) executes the separation flip F = (f, g, x, y, v).
Purl(C, cf , h) for a connected component C, and a corner cf incident to the source and
to a face f , sets f to be the outer face, and changes the reflex source corner to be cf . We
support this only under restricted conditions.

Queries. Two corners cu, cv in −→
E (G) are uplinkable in −→

E (G) whenever inserting the edge
cu →cv does not violate the upward planarity or the single-sourceness property. A vertex
pair (u, v) is uplinkable whenever uplinkable corners (cu, cv) exist. We support the following
queries in O(log2 n) time:

UpLinkable(u, v) identifies all corner pairs (cu, cv) in −→
E (G) where cu →cv is uplinkable.

It can report these k pairs in O(k) additional time.
Slide-UpLinkable(u, v) identifies all slides Fs = (f, w, v) and F ′

s = (f ′, w, u) where,
after each articulation slide, u→v is uplinkable in f (or f ′).
Twist-UpLinkable(u, v) reports the at most two articulation twists Ft = (w, v) and
F ′

t = (w, u) where, after each articulation twist, u→v are uplinkable.
Separation-UpLinkable(u, v) reports for u → v not uplinkable, a separation flip
F = (f, g, x, y, v) or F ′ = (f ′, g′, x′, y′, u) after which u and v are uplinkable (if it exists).

Combining the latter three queries, we achieve the upward-planar equivalent of One-Flip-
Linkable, as defined in Holm and Rotenberg [15]:

One-Flip-UpLinkable(u, v) reports whether there exist a face f where there exists
a sequence of flips that all have f as an argument, after which u → v are uplinkable
in f . Unlike [15], we do not assume that u and v do not share a face, and lifting this
assumption is indeed important (e.g., in Figure 2(a), (u, v) share the outer face, but they
are only uplinkable after flipping the blue component into f and then mirroring it in f).

Corner properties. We now define some more technical concepts.

▶ Definition 2. Let cu, cv be two corners incident to a face f ∈
−→
E (G). If f is not the outer

face, or when f is the outer face and u and v share a connected component in G, we define a
directed path π(cu, cv) in f from cu to cv as any consecutive sequence of corners incident to
f that starts at cu and ends at cv (see Figure 4). The edges of the path π(cu, cv) are the edges
shared between two consecutive corners. Note that the direction of π(cu, cv) is independent of
the direction of the edges in G.

ESA 2024



70:8 Dynamic Upward Planar Embeddings

cv

cu

cu

cv

Figure 4 A simple polygon where we marked source corners in blue, sink corners in green and
internal corners in grey. We show one of the two paths π(cu, cv) directed from cu to cv.

▶ Observation 3. Let G be a single-source digraph, and let −→
E (G) be an upward planar

embedding. Let u and v be vertices that lie in different connected components Cu and Cv in
G. The corner pair (cu, cv) is uplinkable if and only if cu is not a top corner and cv is the
reflex source corner.

3 Dynamic Upward Planar Embeddings

Defining our data structure. Let G be a single-source upward planar digraph, and let −→
E (G)

be some upward embedding of G. The foundation of our data structure is the data structure
by Holm and Rotenberg [15] for undirected graphs, which can maintain a planar embedding
E(G) in O(log2 n) subject to all our updates. In addition, we maintain the following new
data structure in O(log2 n) time per update. We use it to reject updates that would violate
the upward planarity of −→

E (G). Our data structure dynamically maintains the face-sink
graph F(−→E (G)) of G in O(log2 n) time per update. We store:
(a) For each connected component C of G, an arbitrary spanning tree TC of C stored in a

top tree e(TC), which is a balanced binary tree over the edges of TC (see the full version).
(b) For each face f of a connected component C, a leaf-based balanced binary tree Tf on

the corners incident to f , in their clockwise ordering around f . We mark the root-to-leaf
path in Tf to the unique top corner or the unique reflex source corner.

(c) For every vertex v, a leaf-based balanced binary tree Tv of corners incident to v. We
store a Boolean indicating whether v is critical.

(d) For every tree T in {T ∗, T1, . . . Tm} of F(−→E (G)), a top tree e(T ) on the edges of T .

Each corner and each vertex in −→
E (G) maintains a pointer to their location in the above

data structures. If cx is a sink corner or x is the single source of a connected component, it
maintains a Boolean indicating whether its angle is reflex.

▶ Theorem 4. We can dynamically maintain −→
E (G) and F(−→E (G)) subject to Insert, Delete,

Cut, Contract, Mirror, Articluation-slide, Articulation-twist, Seperation-flip, and Purl in
O(log2 n) time per update, rejecting updates that violate the upward planarity of −→

E (G).

Proof. By Holm and Rotenberg [15], we can maintain a combinatorial embedding in O(log2 n)
time as long as it remains planar. In addition, we show that we can maintain an upward
embedding −→

E (G) and F(−→E (G)) and our data structure in O(log2 n) time. Our data structure
then verifies whether −→

E (G) remains upward planar by testing whether the conditions for
Theorem 1 are met. If not, it rejects the update accordingly (undoing all changes to −→

E (G)
in O(log2 n) time). We show how to handle edge insertions first.



I. van der Hoog, I. Parada, and E. Rotenberg 70:9

Insert(cu, cv)

We try inserting the edge cu →cv. We select an arbitrary edge incident to cu and traverse
it to the root of its top tree. Doing the same for cv allows us to detect in O(log n) time
whether u and v share a connected component. If they do not, we apply Observation 3 to
test whether cu →cv may be inserted without violating upward planarity in O(1) time. Else,
we reject the update. Similarly, if u and v share a connected component, we test whether
(cu, cv) share a face in O(1) time and reject the insertion if not.

Next, we insert cu →cv and update our data structure. Through our data structure, we
will test the conditions of Theorem 1, verifying whether inserting cu →cv violates upward
planarity. Note that cu →cv deletes cu and cv and creates four new corners, where at most
two can be sink corners (incident to v). Sink corners have a Boolean indicating if they are
reflex or convex. Since we create at most two sink corners, there are at most four Boolean
combinations (in fact, at most three, since we cannot create two new reflex sink corners).
We try all combinations as an update to our data structure, and keep an update that does
not violate upward planarity (if any such update exists). Having fixed which sink corners are
reflex and which are convex, we update the four (a-d) ancillary data structures we store:

We first assume that u and v lie in the same connected component C. In this case, cu

and cv share a face f that gets split into two faces fb and ft. If f is marked as the outer
face of C then either tb or tf needs to become the outer face. We try both combinations.
(a) Since u and v are already connected, the insertion of cu → cv does not change the

spanning tree TC and therefore it does not change the top tree e(TC).
(b) We remove the corners cu and cv from Tf . If any of them were the top corner of f , we

unmark the root-to-leaf path in Tf . The edge cu → cv splits f into two faces (fb, ft).
The face fb (and ft) is incident to a contiguous sequence Z of corners incident to f . We
can obtain any sequence of corners Z from Tf in O(log n) time as O(log n) balanced
subtrees, where each subtree stores a contiguous sequence of Z. O(log n) balanced binary
trees, with contiguous domains, may be merged using the standard balanced binary tree
merge algorithm to create Tfb

in O(log2 n) total time. We obtain Tft
by removing Z

from Tf in O(log2 n) total time. Finally, we insert two new corners into Tfb
(and Tft

).
If we insert a top corner c, we mark the root-to-leaf path in Tfb

. If we try to mark two
root-to-leaf paths in one tree Tfb

, then fb has out-degree two in the face-sink graph and
we violate Theorem 1. Thus, we reject the update. Let ft be chosen as the outer face. If
Tft contains a marked root-to-leaf path, then the outer face is incident to a top corner,
which violates Theorem 1 – we reject the update.

(c) We insert the four new corners into Tu and Tv in O(log n) time. Finally, we update the
Booleans of u and v. The insertion may result in vertex u becoming an internal vertex
in G. It may also happen that v was an internal vertex in G and after the insertion, v

became incident to a top corner (and hence critical). We test whether u, v are internal
in O(log n) additional time and adjust the Booleans accordingly.

(d) Finally, we update F(−→E (G)). The new faces fb and ft are each a new node in F(−→E (G))
and we delete the node corresponding to the shared face f . The parent nodes of these
faces fb and ft correspond to top corners in Tfb

and Tft , respectively, unless ft is the
outer face. Given a top corner c∗ in a face f ′, we obtain the vertex w incident to c∗ in
O(1) time and insert f ′ as a child of w in F(−→E (G)). These operations insert O(1) new
edges into trees in F(−→E (G)), which are supported in O(log n) time.

ESA 2024



70:10 Dynamic Upward Planar Embeddings

In the graph F(−→E (G)), the children of fb and ft can be obtained by separating the
children of f around two corners in any ordered embedding of F(−→E (G)). This operation is
also supported by top trees in O(log n) time. Since we only inserted child-to-parent edges,
F(−→E (G)) is still a forest. We test whether each tree T of F(−→E (G)) has a unique critical
vertex (or the outer face) as its root. Specifically, this operation affects at most two trees of
F(−→E (G)) and at most two vertices. We check if these constantly many objects still satisfy
the conditions of Theorem 1 in O(log n) time and reject the update otherwise.

We next assume that u and v lie in different connected components Cu and Cv. In
this case, cu lies in a face fu and cv is the relfex source corner (Observation 3). The faces fu

and fv then get merged into a single face fu. We delete the reflex Boolean of cv, which was
required by Observation 3, and update (a)+(b)+(c)+(d):
(a) We merge TC1 and TC2 into a tree TC through the edge cu →cv. We then merge the top

trees e(TC1) and e(TC2) in O(log n) time.
(b) By definition, the tree Tfv

has no marked root-to-leaf path. We split Tfv
into two trees

around the corner cv. We then merge both trees into Tfu in O(log n) time. Finally, we
remove cu from Tfu

and insert the four new corners. Just as previously, whenever we
insert a top corner we mark the root-to-leaf path in Tfu accordingly and when we try to
mark two paths, we reject the update. If f is not marked as the outer face of Cu and
after the corner insertions, Tf has no marked root-to-leaf path, then in the face-sink
graph f is a root of a tree without being the outer face, and we violate Theorem 1. Thus,
we reject the update.

(c) This is identical to the case where u and v share a connected component.
(d) Finally, we update F(−→E (G)). Consider the node fv in F(−→E (G)). Since fv was the outer

face of Cv, this node was the root of a tree. By merging fv into f , all children of fv

become children of fv instead. A top tree supports this merge in O(log n) time. Since
v was the source of Cv, no top corners are introduced. It may be that cu was a reflex
sink corner, where cu now becomes an internal vertex, in which case we remove the edge
from cu to fu in F(−→E (G)). Since these operations change O(1) trees in F(−→E (G)), we
may test in O(log n) time whether F(−→E (G)) still satisfies the conditions of Theorem 1.

Delete(e)

Let C be the connected component containing e = uv. We first check if e was an edge in the
spanning tree TC . If it was, we risk that deleting e splits C into two connected components.
The data structure in [15] that we use to store the combinatorial planar embedding supports
checking whether this is the case, and restoring TC in the negative case, in O(log2 n) time.

If e does not split C into two connected components, the delete operation is the immediate
inverse of the insertion operation; we need only perform the easy check that this does not
create a new source in C, since such deletions violate the conditions and must be rejected.
Thus, we consider the special case where deleting an edge e splits a connected component C

into two connected components Cu and Cv. Observe that, in this case, e is incident to only
one face f . Afterward, the vertex u is incident to a face fu and the vertex v is incident to a
vertex fv where fv is the outer face of Cv. We update our data structure:
(a) We split the tree TC into two trees TC1 and TC2 . Thus, we need to obtain the top trees

e(TC1) and e(TC2). Top trees support splits in O(log n) time (see the full version).
(b) We split the tree Tf into fewer than eight subtrees, by cutting at the four corners incident

to e and f . Each subtree is either contained in Cu, or in Cv. All subtrees contained
in Cu get merged in O(log n) time to create Tfu and all subtrees contained in Cv get



I. van der Hoog, I. Parada, and E. Rotenberg 70:11

merged in O(log n) time to create Tfv . Finally, we insert a new corner cu into Tfu and a
new corner cv into Tfv

. If the corner cu is a sink corner, then by Observation 3, its angle
must be reflex, and we specify its Boolean as such. The corner cv must, Observation 3,
be the reflex source corner of its connected component (we update its Boolean). If
it is not a source corner, we reject the update. If f was the outer face of C then fu

becomes the outer face of Cu. Otherwise, we test fu is incident to a top corner in O(log n)
time by checking the marked root-to-leaf path in Tfu

. If it is not, then the conditions
of Theorem 1 are violated and we reject the update. Similarly, we reject the update
whenever Tfu

contains a top corner.
(c) The trees Tu and Tv get updated in O(log n) time by deleting e from them. If u was

a critical vertex, we check whether u is still a critical vertex (by checking if u is still
incident to an outgoing edge) in O(log n) time and update the Boolean accordingly.

(d) In the face-sink graph, we insert fu and fv where fv is now the root of a tree. The
children of f get split amongst fu and fv. Since these children are contiguous along
Tf , a top tree supports this operation in O(log n) time. If u was a critical vertex before
removing e, but no longer is a critical vertex after removing e, we insert the edge from u

to fv in the face-sink graph. Since this operation affects at most two trees in F(−→E (G)),
we can test whether the face-sink graph still satisfies the conditions of Theorem 1 in
O(log n) time. Finally, we update the face-sink graph, and mark cv as the reflex source
corner of Cv.

Cut(c1, c2) / Contract(e)

We describe how to perform the cut operation, as contract is its easier inverse. Let (c1, c2) be
incident to some vertex v in a connected component C. Let c1 be incident to a face f1 and
c2 be incident to a face f2. It may be that f1 = f2. We assume that f1 ̸= f2, since this is
the more difficult case. Denote by Ct and Cb the two sequences of corners incident to v that
are in between c1 and c2. The Cut(c1, c2) operation creates two new vertices vt and vb from
v, incident to Ct and Cb respectively; creating two new corners ct and cb. It then connects
(vb, vt) with either the edge cb → ct , or the edge ct → cb, creating four new corners (two
incident to f1 and two incident to f2). We try both options and update our data structure.
We then use the face-sink graph F(−→E (G)) to test whether −→

E (G) is still upward planar.
We update aspects (a)+(b)+(c)+(d) of our data structure.

(a) We remove v from TC , and replace it with the vertices vt and vb that are connected by
an edge. This way, we can update the top tree e(TC) in O(log n) time.

(b) We update Tf1 and Tf2 . The cut operation deletes the corners c1 and c2 which we may
remove from Tf1 and Tf2 in O(log n) time. If either of them was a top corner, we update
the marked root-to-leaf path in the corresponding tree. We then insert two new corners
into Tf1 and two new corners into Tf2 . If a corner is a sink corner, it must specify a
Boolean whether it is convex of reflex. We simply try for these four corners all constantly
many Boolean combinations and perform the update as such – rejecting updates that
violate upward planarity. Through the updated Tf1 and Tf2 we test whether f1 and f2
have a unique top corner. If not, we violate the conditions in Theorem 1 and reject the
update.

(c) The trees Tvb
, Tvt

are both incident to a sequence of edges that is contiguous in the
clockwise order around v. Given (c1, c2), we obtain this sequence in O(log n) time as
O(log n) subtrees of Tv. We merge these O(log n) subtrees in O(log2 n) total time using
the standard merge of balanced binary trees; obtaining Tvb

and Tvt . Finally, we insert
the edge (vb, vt) into both trees. If the edge (vb, vt) is directed from vb to vt, it may be
that vb is a critical vertex. We test this in O(log n) time. If the edge (vb, vt) is directed
from vt to vb, it may be that vt is a critical vertex. We also test this in O(log n) time.

ESA 2024



70:12 Dynamic Upward Planar Embeddings

(d) We update the face-sink graph F(−→E (G)) analogous to insertions, connecting f1 and f2 to
any sink corners in the graph. This updates O(1) trees in F(−→E (G)) which can be done
in O(log n) time. We then test if the face-sink graph meets the conditions of Theorem 1
in O(log n) time by traversing to the root of all O(1) affected trees.

Articulation-Slide(f, w, v) / Articulation-Twist(w, v)

Note that all combinatorial changes incurred by an articulation slide or twist, also occur in a
separation flip. Specifically, an articulation slide may alter at most four corners in −→

E (G), and
causes a path in g to become a path in f . An articulation twist selects mirrors a component.
A separation flip performs all these three combinatorial changes, twice. Our procedure for
the separation flip will specify all the changes to our data structure for these occurrences,
and thus for the articulation slide and twist also.

Separation-flip(f, g, x, y, v)

Let the face g share corners cx
g and cy

g with x and y, respectively. Similarly, let f share
corners cx

f and cy
g . We illustrate the operation by Figure 5. We update aspects (a)-(d):

(a) Let C be the connected component that contains x, y, v. The tree e(TC) is a top tree
over an embedded arbitrary spanning tree of C. Moreover, the combinatorial embedding
of the spanning tree matches that of −→

E (G) (i.e., all edges in the spanning tree that are
incident to a vertex x have the same clockwise order as the vertices incident to x in−→
E (G)). This operation selects the vertices x and y of the spanning tree, selects a set
of edges C(x) (respectively C(y)) that are incident to x and inverts their order in the
embedding. Top trees support this inversion operation in O(log2 n) time [15] in the exact
same way as we will support it in (d) two paragraphs ahead.

(b) The corners cx
g and cy

g bound a contiguous sequence C(1) of corners in Tg that after the
flip become incident to f instead. We obtain this subsequence as at most O(log n) binary
subtrees of Tg. We test if C(1) contains a top corner in O(log n) time, by checking the
marked root-to-leaf path in Tg. We merge these O(log n) trees into Tf in O(log2 n) total
time and update its marked root-to-leaf path. If we detect that afterwards Tf is incident
to two top corners, we reject the update. We do the same for the corners between cx

f

and cy
f .

(c) The tree Tx stores all edges incident to x in their cyclical order. The separation flip
selects a contiguous sequence C(x) of edges in between cx

g and cx
g and inverts the order of

the edges into C(1). We support this operation through the following trick. We maintain
two copies of Tx: one where the leaves are sorted in clockwise order and one where they
are sorted in counter-clockwise order. In both copies, the sequence C(x) consists of at

(a)

y

x

g
f

(a)

g f

x

y

v

v

Figure 5 A separation flip F = (f, g, x, y, v). Note that the green subtree under g in the face-sink
graph becomes a subtree under f instead.



I. van der Hoog, I. Parada, and E. Rotenberg 70:13

most O(log n) subtrees. To invert the order of C(x) order, we simply interchange these
subtrees and rebalance both trees in O(log2 n) total time. We do the same for the tree
Ty. For all other trees in the flip component C2 separated by (x, y), we still have a tree
for their clockwise and counter-clockwise order (although they have interchanged) and
we hence do not have to update them.

(d) We update F(−→E (G)) as follows: Let f be contained in Tf and g be contained in Tg. All
source corners (which are not top corners) in C(1) receive f as their parent instead of g.
This operation is directly supported by our top trees over Tf and Tg in O(log n) time.
The separation flip destroys the corners cx

g , cy
g , cx

f , cy
f and replaces them with four new

corners. We compute these in O(1) time and check whether they are sink corners. If so,
then we insert the corresponding relation into F(−→E (G)) in O(log n) time per new corner.
Finally, if f and g swapped parents in F(−→E (G)), we execute this swap in O(log n) time.

Mirror(v, c1, c2). The mirror operation requires us to update (d) in the same manner as
the separation flip.

Purl(C, cf , h)

The Purl operation specifies a connected component C, a face f , a corner cf , and the outer
face h of C. We allow this operation only when the following conditions hold (1) the top
corner cw of f is incident to a vertex w, such that there exists a sink corner c′

w incident to w

and f , and (2) the corner cf is a source corner incident to the source of G. These conditions
hold only if the face-sink graph F(−→E (G)) contains an edge from f to w, and an edge from w

to h. We update the aspects of our data structure:
(a) The spanning tree TC remains unchanged and thus e(TC) remains unchanged.
(b) We set the corner c′

w to be a top corner and mark the root-to-leaf path in Tf in O(log n)
time. We set the corner cw to be a reflex corner and unmark the root-to-leaf path in Th

in O(log n) time.
(c) By definition, w was not a critical vertex and thus this aspect remains unchanged.
(d) Finally, we replace the path h → w → f in F(−→E (G)) by f → w → h; satisfying all

conditions of Theorem 1. ◀

4 Supporting uplinkability queries

We show how we support uplinkability queries. Specifically, for each of our queries we spend
O(log2 n) time such that afterwards, we can report in O(k) time the first k items of the
output. The exception is the Separation-UpLinkable(u, v) query where in O(log2 n) time we
return one separation flip if any valid one exists. We maintain the same data structure as
in Section 3 which includes the structure of Holm and Rotenberg [15] maintaining a planar
(undirected) graph G′ and its combinatorial embedding E(G′) subject to linkablility queries.
They [15] dynamically maintain E(G′) supporting the following queries in O(log2 n) time:

Linkable(u, v) returns for two vertices u, v all corner pairs (cu, cv) where the edge
(cu, cv) may be introduced without violating planarity in a data structure S. S stores all
pairs in their clockwise order around u and v. Hence, for any i, it can return the i’th
pair in S in O(log n) time and report all pairs up to the i’th one in O(i) time.
Slide-Linkable(u, v) returns the set of all articulation slides Fs = (f, w, v) where after
Fs, u and v share a face f . The vertex w is the articulation vertex of the slide. This
output can, for any i, return the i’th slide (around w) in O(log n) time and report i

consecutive articulation slides in O(i) time.

ESA 2024



70:14 Dynamic Upward Planar Embeddings

Separation-Linkable(u, v) returns for two vertices u, v for which Linkable(u, v) and
Slide-Linkable(u, v) are empty, a separation flip after which u and v share a face.

The key difference between linkability and uplinkability. In a planar embedding E(G),
two vertices are linkable across any face they share. In an upward embedding −→

E (G), this is
not true, which significantly complicates uplinkability queries. To answer UpLinkable(u, v)
and Slide-UpLinkable(u, v) we need to identify the faces across which u→v may be inserted
and become uplinkable after a slide, respectively. For Separation-UpLinkable(u, v), we find
from all possible separation flips, one making u and v uplinkable.

UpLinkable(u, v). reports all corner pairs (cu, cv) where introducing cu → cv does not
violate upward planarity. The following lemma specifies which corner pairs are uplinkable:

▶ Lemma 5. Let G be a single-source digraph and −→
E (G) be an upward planar embedding.

Let cu, cv be two corners of face f such that u and v share a connected component in G. If f

is the outer face, let π(cu, cv) be the path in f that does not contain the reflex source corner
of the connected component. Else, let π(cu, cv) be the path in f that does not contain the top
corner of f . The two corners (cu, cv) in f are uplinkable if and only if:

(i) cu is not a top corner and
(ii) the path π(cu, cv) ends with an edge directed to v.

Proof. If cu is a top corner, then any edge cu →cv violates upward planarity. So let cu not
be a top corner. We show that cu →cv may be inserted across f without violating upward
planarity if and only if Condition (ii) holds. We make a case distinction based on the edges
incident to cv. For each case, we show whether cu → cv may be inserted checking if the
face-sink graph satisfies Theorem 1. We write never / always / depends on Condition (ii) to
summarize whether we can insert cu →cv. Assuming that cu is not a top corner, the case
analysis shows that cu →cv may be inserted if and only if Condition (ii) holds.

The edge cu →cv splits f into two faces ft and fb; let fb be the one incident to π(cu, cv).

Case 1: cv is incident to two outgoing edges→never. See Figure 6(a+b). If f is the
outer face, assume first that cv is the unique reflex source corner of the connected component.
Inserting cu →cv creates a cycle in G, violating upward planarity. Else, after the insertion,
fb and ft root two different trees of the face-sink graph. Since neither of them contain a top
corner, this contradicts Theorem 1.

If f is not the outer face, then cv is not the top corner of f . After inserting cu →cv, fb

cannot be incident to a top corner: fb is by construction not incident to the top corner of f

and the insertion in this case creates no additional sink corners. Thus, fb becomes a root of a
tree in the face-sink graph and, by Theorem 1, it must be the outer face, which is impossible.

Case 2: cv is incident to one outgoing and one incoming edge→depends on Condition (ii).
Corner cv is split into two corners ct and cb incident to ft and fb, respectively.

Consider first the case in which the path π(cu, cv) ends with the edge directed to v

(Condition (ii)). After the insertion, all children of f in the face-sink graph become children
of either ft or fb, with possibly the exception of u. If u was a child of f , then cu was a sink
corner (not top). Thus, u becomes a critical vertex. Corner cb is a sink corner, and we set
its Boolean to convex. Thus, cb is the (unique) top corner of fb. Face ft is either the outer
face and incident to the reflex source corner, or it is incident to the top corner of f . Thus,
any subtree rooted at ft or fb is part of a valid tree in F(−→E (G)). See Figure 6(a+c).



I. van der Hoog, I. Parada, and E. Rotenberg 70:15

(a) u

v xj

π(cu, cv)

xi

(b) (c)

fb

? y

ft

y

u

fb

y

u

v

xi xj xjxi

ft
f

y

u xjxi

fb

ft

Figure 6 (a) f is split into fb and ft (orange and purple). We show the original tree in F(−→E (G)).
(b) The face-sink graph gets to a graph where the face fb becomes parent-less, violating the conditions
of Theorem 1. (c) The new face fb receives the critical vertex v as its parent.

Now assume that the path π(cu, cv) ends with the edge directed away from v. In this case
cb is not a sink corner. Thus, fb is not incident to any top corner and also not incident to the
reflex source corner of the connected component. This means that, in the face-sink graph, fb

can neither be the outer face nor have out-degree 1. Thus, it does not satisfy Theorem 1.

Case 3: cv is incident to two incoming edges→always. First, assume that cv is the top
corner of f . By inserting cu →cv, we split cv into two top corners incident to both fb and
ft. Thus, in the face-sink graph, f gets replaced by fb and ft which partition its children
and F(−→E (G)) is thus still valid. Assume otherwise that cv is incident to a sink corner that
is not a top corner (i.e., in the face-sink graph, there is a directed edge from cv to f). The
insertion cu →cv splits cv into two corners cb and ct incident to fb and ft, respectively. Both
corners are sink corners, and we set cb to have a convex angle and ct to have a reflex angle.
In the face-sink graph, this implies that f is replaced by the path fb →v →ft (where fb and
ft partition the children of f) and F(−→E (G)) still satisfies the conditions of Theorem 1.

Case 4: cv is incident to only one edge, and it is an incoming edge→always. This case
is identical to Case 3. Thus, in F(−→E (G)), f is replaced by the path fb →v →ft (and fb and
ft partition the children of f) and F(−→E (G)) still satisfies the conditions of Theorem 1.

Case 5: cv is incident to only one edge, and it is an outgoing edge→never. Here v is the
unique source of G. Inserting cu →cv creates a directed cycle, violating upward planarity. ◀

Lemma 5 enables uplinkability queries. Let k be the number of output faces.

▶ Lemma 6. We can support the UpLinkable(u, v) query in O(log2 n + k) time.

Proof. We use (a) from our data structure to test if u and v share a connected component
in G. If not, we use Observation 3 to test whether (u, v) are uplinkable in O(1) time (testing
if v is the unique source, cv is the reflex source corner, and checking if cu is not a top corner).
In the remainder, we assume that u and v share a component.

By the definition of Linkable(u, v) in [15], we obtain in O(log2 n) time all corner pairs
S = {(cu, cv)} across which u and v are linkable, sorted around u and v. For all corner pairs
(cu, cv) ∈ S where (cu, cv) share a face f , by Lemma 5, u→v may be inserted into −→

E (G) if
and only if Conditions (i)+(ii) hold. For any given (cu, cv) sharing a face f , we can test these
conditions in O(log n) time. Indeed, we may obtain any path π(cu, cv) as O(log n) subtrees
in Tf and check if any root of the subtree lies on the marked path to the top corner (or the
reflex source corner). Note that the top corners c′

u incident to u (that violate Condition (i))
are contiguous in the cyclical ordering around u. So, the set S1 ⊆ S of corner pairs that fulfil

ESA 2024



70:16 Dynamic Upward Planar Embeddings

Condition (i) is a contiguous subset of S. The corners c′
v incident to v that are incident to

at least one edge incoming to v are contiguous in the cyclical ordering around v. Hence, the
set S2 ⊆ S of corner pairs that fulfil Condition (ii) must also be a contiguous subset of S.

We may obtain the set S∗ = S1 ∩ S2 in O(log n) time by performing binary search over S

(using the above O(1) time testing algorithm at each step). By Holm and Rotenberg [15], we
can report the first k elements in this output in O(k) additional time. Thus, if v ̸< u then we
may report the first k corners (cu, cv) where cu →cv is uplinkable in O(log2 n + k) time. ◀

Supporting more queries
The proof for the remaining queries can be found in the full version. Here, we highlight the
main approach and challenges for answering these queries (see Figure 7):

Slide-UpLinkable(u, v). We find (an implicit representation of) all slides Fs = (f, w, v)
around w (where u and v are in different components of G\{w}) after which u and v share
a face, as a set Ωv that is cyclically ordered around w in O(log2 n) time. We identify the
set Ω′

v ⊆ Ωv of slides that do not violate upward planarity. Specifically, we prove that Ω′
v is

a contiguous subset. We then identify the subset Ω∗
v ⊆ Ω′

v of slides which are part of our
output. We show that the faces in Ω′

v meeting all conditions of Lemma 5 are a contiguous
subset, and we output Ω∗

v accordingly. The procedure for slides F ′
s = (f, w′, u) is similar.

Twist-UpLinkable(u, v). By using a subroutine of Twist-Linkable(u, v), we identify an
implicit representation of the set Λv of twists Ft = (w, v) in O(log2 n) time. We show that
u→v are either uplinkable after all of Λv or none of Λv. Using Lemma 6 we test whether
after an arbitrary twist in Λv u and v are uplinkable. We do the same for twists F ′

t = (w′, u).

Separation-UpLinkable(u, v). By using a variant of Separation-Linkable(u, v) we consider
all separation flips F = (f, g, x, y, v) where u is incident to the face f , and v to g. Of these
flips, we obtain the unique flip F ∗ = (f, g, x∗, y∗, v) where x∗ and y∗ are closest to v, and the
subgraph containing v is minimal with respect to inclusion. We prove in the full version that
if performing F ∗ violates upward planarity, then any such F must violate upward planarity.
We show the same statement holds for uplinkability of u → v. We perform F ∗, and use
Lemma 5 to test whether we may now insert u→v, thus deciding the question.

One-Flip-UpLinkable(u, v). We show that if there exists faces f and g, and any sequence
of flips, slides, or twists (as above) involving only f and/or g after which u → v may be
inserted, then this sequence has constant size. If any such sequence exists, we output it
in O(log2 n) time. Upward planarity is more complicated than planarity in this regard, as
strictly more than one flip may be necessary when the vertices already share a face.

w

u

v

(a) (b) (c)

u

u

vv

Figure 7 (a) For articulation slides, the subset Ω∗
v where, afterwards, u→v may be inserted is

shown in yellow. (b) There exists a twist Ft = (w, v) for every square vertex w. We only need to
consider the last such w (green). (c) There exists a separation flip F for each pair of squares. We
show that we only need to consider the green pair (x∗, y∗).



I. van der Hoog, I. Parada, and E. Rotenberg 70:17

References

1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maur-
izio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM
Transactions on Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

2 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic
digraphs. Theoretical Computer Science, 61:175–198, 1988. doi:10.1016/0304-3975(88)
90123-5.

3 Giuseppe Di Battista and Roberto Tamassia. On-line graph algorithms with SPQR-trees. In
Proc. 17th International Colloquium on Automata, Languages and Programming (ICALP),
volume 443 of LNCS, pages 598–611. Springer, 1990. doi:10.1007/BFb0032061.

4 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956–997, 1996. doi:10.1137/S0097539794280736.

5 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/BF01188716.

6 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM Journal on Computing, 27(1):132–169,
1998. doi:10.1137/S0097539794279626.

7 Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-tree-like embedding represent-
ation for upward planarity. In Proc. 27th International Symposium on Graph Drawing and Net-
work Visualization (GD), pages 517–531. Springer, 2019. doi:10.1007/978-3-030-35802-0_
39.

8 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Rafto-
poulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In Proc. 38th
International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages
26:1–26:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.26.

9 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward
planarity testing. SIAM Journal on Discrete Mathematics, 23(4):1842–1899, 2009. doi:
10.1137/070696854.

10 David Eppstein. Dynamic generators of topologically embedded graphs. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 599–608. ACM/SIAM, 2003.
URL: https://dl.acm.org/doi/10.5555/644108.644208.

11 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. Journal of Computer and
System Sciences, 52(1):3–27, 1996. doi:10.1006/jcss.1996.0002.

12 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing. In Proc.
24th Annual ACM Symposium on Theory of Computing (STOC), pages 495–506. ACM, 1992.
doi:10.1145/129712.129761.

13 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

14 Monika Rauch Henzinger and Johannes A. La Poutré. Certificates and fast algorithms
for biconnectivity in fully-dynamic graphs. In Proc. 3rd Annual European Symposium on
Algorithms (ESA), volume 979 of LNCS, pages 171–184. Springer, 1995. doi:10.1007/
3-540-60313-1_142.

15 Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory of
Computing Systems, 61(4):1054–1083, 2017. doi:10.1007/s00224-017-9768-7.

16 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time.
In Proc. 52nd Annual ACM–SIGACT Symposium on Theory of Computing (STOC), pages
167–180. ACM, 2020. doi:10.1145/3357713.3384249.

ESA 2024

https://doi.org/10.1145/2629341
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1007/BF01188716
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1007/978-3-030-35802-0_39
https://doi.org/10.1007/978-3-030-35802-0_39
https://doi.org/10.4230/LIPIcs.SoCG.2022.26
https://doi.org/10.4230/LIPIcs.SoCG.2022.26
https://doi.org/10.1137/070696854
https://doi.org/10.1137/070696854
https://dl.acm.org/doi/10.5555/644108.644208
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1145/129712.129761
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/3-540-60313-1_142
https://doi.org/10.1007/3-540-60313-1_142
https://doi.org/10.1007/s00224-017-9768-7
https://doi.org/10.1145/3357713.3384249


70:18 Dynamic Upward Planar Embeddings

17 Jacob Holm and Eva Rotenberg. Worst-case polylog incremental SPQR-trees: Embeddings,
planarity, and triconnectivity. In Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2378–2397. SIAM, 2020. doi:10.1137/1.9781611975994.146.

18 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974. doi:10.1145/321850.321852.

19 Michael D. Hutton and Anna Lubiw. Upward planar drawing of single-source acyclic digraphs.
SIAM Journal on Computing, 25(2):291–311, 1996. doi:10.1137/S0097539792235906.

20 Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. A sublinear bound on the page number
of upward planar graphs. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms,
(SODA), pages 963–978. SIAM, 2022. doi:10.1137/1.9781611977073.42.

21 David Kelly. Fundamentals of planar ordered sets. Discrete Mathematics, 63(2-3):197–216,
1987. doi:10.1016/0012-365X(87)90008-2.

22 Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph
drawings. Computational Geometry, 91:101668, 2020. doi:10.1016/j.comgeo.2020.101668.

23 Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vin-
cenzo Roselli. Upward planar morphs. Algorithmica, 82(10):2985–3017, 2020. doi:
10.1007/s00453-020-00714-6.

24 Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Proc. DIMACS
International Workshop on Graph Drawing (GD), volume 894 of LNCS, pages 298–306.
Springer, 1994. doi:10.1007/3-540-58950-3_385.

25 Mihai Patrascu. Lower bounds for dynamic connectivity. In Encyclopedia of Algorithms - 2008
Edition. Springer, 2008. doi:10.1007/978-0-387-30162-4_214.

26 Mihai Patrascu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proc.
36th Annual ACM Symposium on Theory of Computing (STOC), pages 546–553. ACM, 2004.
doi:10.1145/1007352.1007435.

27 C. R. Platt. Planar lattices and planar graphs. Journal of Combinatorial Theory, Series B,
21(1):30–39, 1976. doi:10.1016/0095-8956(76)90024-1.

28 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC), pages
706–715. ACM, 1994. doi:10.1145/195058.195439.

29 Aimal Rextin and Patrick Healy. Dynamic upward planarity testing of single source embedded
digraphs. The Computer Journal, 60(1):45–59, 2017. doi:10.1093/comjnl/bxw064.

30 Jeffery R. Westbrook. Fast incremental planarity testing. In Proc. 19th International Col-
loquium on Automata, Languages and Programming (ICALP), volume 623 of LNCS, pages
342–353. Springer, 1992. doi:10.1007/3-540-55719-9_86.

https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.1145/321850.321852
https://doi.org/10.1137/S0097539792235906
https://doi.org/10.1137/1.9781611977073.42
https://doi.org/10.1016/0012-365X(87)90008-2
https://doi.org/10.1016/j.comgeo.2020.101668
https://doi.org/10.1007/s00453-020-00714-6
https://doi.org/10.1007/s00453-020-00714-6
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/978-0-387-30162-4_214
https://doi.org/10.1145/1007352.1007435
https://doi.org/10.1016/0095-8956(76)90024-1
https://doi.org/10.1145/195058.195439
https://doi.org/10.1093/comjnl/bxw064
https://doi.org/10.1007/3-540-55719-9_86

	1 Introduction
	2 Preliminaries
	3 Dynamic Upward Planar Embeddings
	4 Supporting uplinkability queries

