
Towards Communication-Efficient Peer-To-Peer
Networks
Khalid Hourani #

Department of Computer Science, University of Houston, TX, USA

William K. Moses Jr. #

Department of Computer Science, Durham University, UK

Gopal Pandurangan #

Department of Computer Science, University of Houston, TX, USA

Abstract
We focus on designing Peer-to-Peer (P2P) networks that enable efficient communication. Over

the last two decades, there has been substantial algorithmic research on distributed protocols for
building P2P networks with various desirable properties such as high expansion, low diameter,
and robustness to a large number of deletions. A key underlying theme in all of these works is to
distributively build a random graph topology that guarantees the above properties. Moreover, the
random connectivity topology is widely deployed in many P2P systems today, including those that
implement blockchains and cryptocurrencies. However, a major drawback of using a random graph
topology for a P2P network is that the random topology does not respect the underlying (Internet)
communication topology. This creates a large propagation delay, which is a major communication
bottleneck in modern P2P networks.

In this paper, we work towards designing P2P networks that are communication-efficient
(having small propagation delay) with provable guarantees. Our main contribution is an efficient,
decentralized protocol, Close-Weaver, that transforms a random graph topology embedded in
an underlying Euclidean space into a topology that also respects the underlying metric. We then
present efficient point-to-point routing and broadcast protocols that achieve essentially optimal
performance with respect to the underlying space.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Probabilistic algorithms; Mathematics of computing → Discrete mathematics

Keywords and phrases Peer-to-Peer Networks, Overlay Construction Protocol, Expanders, Broadcast,
Geometric Routing

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.71

Related Version Full Version: https://arxiv.org/abs/2406.16661 [20]

Funding Khalid Hourani: K. Hourani was supported in part by NSF grants CCF-1540512, IIS-
1633720, and CCF-1717075 and BSF grant 2016419.
William K. Moses Jr.: Part of the work was done while William K. Moses Jr. was a postdoctoral
fellow at the University of Houston, Houston, TX, USA. W. K. Moses Jr. was supported in part by
NSF grants CCF-1540512, IIS-1633720, and CCF-1717075 and BSF grant 2016419.
Gopal Pandurangan: G. Pandurangan was supported in part by NSF grants CCF-1540512, IIS-
1633720, and CCF-1717075 and BSF grant 2016419.

1 Introduction

There has been a long line of algorithmic research on building Peer-to-Peer (P2P) networks
(also called overlay networks) with desirable properties such as connectivity, low diameter,
high expansion, and robustness to adversarial deletions [35, 28, 16, 8, 9, 22, 5]. A key
underlying theme in these works is a distributed protocol to build a random graph that
guarantees these desirable properties. The high-level idea is for a node to connect to a

© Khalid Hourani, William K. Moses Jr., and Gopal Pandurangan;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 71; pp. 71:1–71:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@khourani.com
https://orcid.org/0000-0002-2367-7124
mailto:wkmjr3@gmail.com
https://orcid.org/0000-0002-4533-7593
mailto:gopal@cs.uh.edu
https://orcid.org/0000-0001-5833-6592
https://doi.org/10.4230/LIPIcs.ESA.2024.71
https://arxiv.org/abs/2406.16661
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Towards Communication-Efficient Peer-To-Peer Networks

small, but random, subset of nodes. In fact, this random connectivity mechanism is used in
real-world P2P networks. For example, in the Bitcoin P2P network, each node connects to 8
neighbors chosen in a random fashion [30]. It is well-known that a random (bounded-degree)
graph is an expander with high probability.12 An expander graph on n nodes has high
expansion and conductance, low diameter (logarithmic in the network size) and robustness
to adversarial deletions – even deleting ϵn nodes (for a sufficiently small constant ϵ) leaves a
giant component of Θ(n) size which is also an expander [19, 6].

Unfortunately, a major drawback of using a random graph as a P2P network is that
the connections are made to random nodes and do not respect the underlying (Internet)
communication topology. This causes a large propagation latency or delay. Indeed, this
is a crucial problem in the Bitcoin P2P network, which has delays as high as 79 seconds
on average [10, 30]. A main cause for the delay is that the P2P (overlay) network induced
by random connectivity can be highly sub-optimal, since it ignores the underlying Internet
communication topology (which depends on geographical distance, among other factors).3
The main problem we address in this paper is to show how one can efficiently modify a given
random graph topology to build P2P networks that also have small propagation latency, in
addition to other properties such as low (hop) diameter and high expansion, with provable
guarantees.

1.1 Motivation, Model, and Definitions
Motivation. We consider a random graph network that is used in several prior P2P network
construction protocols (e.g. [35, 28, 8, 5]). As mentioned earlier, real-world P2P networks,
such as Bitcoin, also seek to achieve a random graph topology (which are expanders with
high probability [32, 19]). Indeed, random graphs have been used extensively to model P2P
networks (see e.g. [28, 35, 16, 8, 29]).

Before we formally state the model that is based on prior works [30, 11, 21], we explain
the motivation behind it; we refer to [30] for more details and give a brief discussion here.
Many of today’s P2P (overlay) networks employ the random connectivity algorithm; in
fact, this is widely deployed in many cryptocurrency systems.4 In this algorithm, nodes
maintain a small number of connections to other nodes chosen in a random fashion. In such
a topology, for any two nodes u and v, any path (including the shortest path) would likely go
through nodes that are not located close to the shortest geographical route (i.e., the geodesic)
connecting u and v. Such paths that do not respect the underlying geographical placement
of nodes often lead to higher propagation delay. Indeed, it can be shown that a random
topology yields paths with propagation delays much higher than those of paths on topologies
that respect the underlying geography [30].

To model the underlying propagation costs, several prior works (see e.g., the Vivaldi
system [11]) have empirically shown that nodes on the Internet can be embedded on a low-
dimensional metric space (e.g., R5) such that the distance between any two nodes accurately

1 In this paper, by expander, we mean one with bounded degree, i.e., the degree of all nodes is bounded
by a constant or a slow-growing function of n, say O(polylog n), where n is the network size.

2 For a graph with n nodes, we say that it has a property with high probability when the probability is
at least 1 − 1/nc for some c ≥ 1.

3 It also ignores differences in bandwidth, hash-strength, and computational power across peers as well as
malicious peers. Addressing these issues is beyond the scope of this paper.

4 In particular, the real-world Bitcoin P2P network, constructed by allowing each node to choose 8 random
(outgoing) connections ([31, 30]) is likely an expander network if the connections are chosen (reasonably)
uniformly at random [34].

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:3

captures the communication delay between them. In fact, the Vivaldi system demonstrates
that even embedding the nodes in a 2-dimensional metric space (e.g., R2) and using the
corresponding distances captures the communication delay quite well. In contrast, the paths
on a random graph topology are highly sub-optimal, since they are unlikely to follow the
optimal path on the embedded metric space.

The work of Mao et al. [30] illustrates the above disparity using the following example
motivated by the above discussion. Consider a network embedded in the unit square
[0, 1] × [0, 1]. The set of nodes (points) V is drawn uniformly at random within the square.
The Euclidean distance, ∥u − v∥2, between any two nodes u, v ∈ V represents the delay or
latency of sending a message from u to v (or vice-versa). We construct a random graph on V

by connecting each node in the unit-square randomly to a small constant number of other
nodes. Since the random graph does not respect the underlying geometry, the propagation
cost between u and v – defined as the sum of the Euclidean distances of the edges in the
shortest path – is significantly greater than the point-to-point (geodesic) distance (∥u − v∥2)
between them. We formally show this in Theorem 3.

By comparison, consider a random geometric graph on V , where the uniformly distributed
nodes are connected as follows: any two nodes u and v are connected by an edge if they are
within a distance ρ of each other [38, 33]. This model, called the G(n, ρ) random geometric
graph model, has connections which respect the underlying geometry. In this graph, we can
show that the shortest path between any two nodes u and v is much closer to the geodesic
shortest path (the straight line path) between u and v [33, 13].

We note that, while the work of Mao et al. [30] showcases the disparity between a random
graph and a random geometric graph (as discussed above) it does not give any theoretical
results on how to convert a random graph topology into a random geometric graph topology.
On the other hand, it gives heuristics to transform a P2P graph constructed on real-world data
to a graph that has smaller propagation delays. The heuristics are based on rewiring edges
to favor edges between nodes that have smaller round-trip delays. It presents experimental
simulations to show that these heuristics do well in practice. However, they do not formally
analyze their algorithm and do not give any theoretical guarantees.

Network Model. Motivated by the above discussion, and following prior works [30, 11, 21],
we model a P2P network G as follows. We assume G to be a d-regular expander (where d is
a constant).5 Note that our results will also apply if G has a random connectivity topology
modeled by a d-regular (or bounded degree) random graph or a G(n, p) random graph (with
p = Θ(log n/n)). We note that such random graphs are expanders with high probability (see
Definition 9) [26]. Our model is quite general in the sense that we only assume that the
topology is an expander; no other special properties are assumed. Furthermore, we assume
that the nodes of G correspond to points that are distributed uniformly at random in a
unit square [0, 1] × [0, 1].6 Although, the assumption of nodes being uniformly distributed is
strong, based on our experiments on the Bitcoin P2P network, this appears to be a reasonable
first approximation.7 Considering more general distribution models is a good direction for
future work (cf. Section 1.4).

5 We assume a d-regular graph for convenience; we could have also assumed that the degree is bounded
by some small growing function of n, say O(log n).

6 Our model can be generalized to higher dimensions by embedding nodes in an m-dimensional hypercube
[0, 1]m.

7 We embedded nodes in the Bitcoin P2P network in a 2-dimensional grid using the Vivaldi algorithm and
although there were many outliers, a significant subset of nodes ended up being reasonably uniformly
distributed.

ESA 2024

71:4 Towards Communication-Efficient Peer-To-Peer Networks

We assume each node u knows its ID and, while node u need not know its coordinates, it
is able to determine its distance (which captures propagation delay) to any node v given
only the ID of v.8 In particular, we assume for convenience that a node can determine the
Euclidean and the Manhattan distances (i.e., L2 and L∞ norms respectively) between itself
and another node if it knows the ID of that node.

An important assumption is that nodes initially have only local knowledge, i.e., they
have knowledge of only themselves and their neighbors in G. In particular, they do not have
any knowledge of the global topology or of the IDs of other nodes (except those of their
neighbors) in the network. We assume that nodes have knowledge of the network size n (or
a good estimate of it).

We assume a synchronous network where computation and communication proceeds
in a sequence of discrete rounds. Communication is via message passing on the edges of
G. Note that G is a P2P (overlay) network in the sense that a node u can communicate
(directly) with another node v if u knows the ID of v. This is a typical assumption in the
context of P2P and overlay networks, where a node can establish communication with another
node if it knows the other node’s IP address, and has been used in several prior works (see
e.g. [5, 4, 22, 36, 17]). Note that u can know the ID of v either directly, because u and v are
neighbours in G, or indirectly, through received messages. In the latter case, this is equivalent
to adding a “virtual” edge between u and v. Since we desire efficient protocols, we require
each node to send and receive messages of size at most polylog (n) bits in a round. In fact, a
node will also communicate with only polylog (n) other nodes in a round. Additionally, the
number of bits sent per edge per round is O(polylog (n)).

1.2 Preliminaries
We need the following concepts before we formally state the problem that we address and
our contributions.

Embedded Graph. We define an embedded graph as follows.

▶ Definition 1. Let G = (V, E) be any graph and consider a random embedding of the
nodes V into the unit square, i.e., a uniform and independent assignment of coordinates
in [0, 1] × [0, 1] to each node in V . This graph, together with this embedding, is called an
embedded graph, and we induce weights on the edge set E, with the weight of an edge (u, v)
equal to the Euclidean distance between the coordinates assigned to u and v, respectively.

Routing Cost. We next define propagation cost to capture the cost of routing along a path
in an embedded graph.

▶ Definition 2. Let G be an embedded graph. For any path P = (v1, v2, . . . , vk−1, vk) the
propagation cost, also called the routing propagation cost, of the path P is the weight of
the path P given by dG(P) =

∑k−1
i=1 d(vi, vi+1), i.e., the sum of the weights (the Euclidean

distances) of edges along the path. The value k, denoted by hopcountG(P), is the hop count
(or hop length) of the path P . The minimum propagation cost between the nodes u and v is
the weight of the shortest path between u and v in the embedded graph.

8 Note that this assumption has to do only with implementing our protocols in a localized manner (which
is relevant in practice) and does not affect their correctness or efficiency. In the Internet, for example,
point-to-point propagation delay can be measured locally: a node can determine the round-trip-time to
another node using the ping network utility [7]. On the other hand, it is also possible for a node to
determine its coordinates – as mentioned earlier, systems such as Vivaldi [11] can assign coordinates in
a low dimensional space (even R2) that accurately capture the propagation delay between nodes.

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:5

Note that the propagation cost between two nodes is lower bounded by the Euclidean
distance between them. Given two nodes, we would like to route using a path of small
propagation cost, i.e., a path whose propagation cost is close to the Euclidean distance
between the two nodes. In particular, we would like the ratio between the two to be small.
(We would also like the hop count to be small.)

The following theorem shows that, in a d-regular random graph G embedded in the unit
square, the ratio of the propagation cost of the shortest path between two nodes u and v in
G to the Euclidean distance between those nodes can be as high as Ω(

√
n) on expectation.

Thus a P2P topology that is modeled by a random graph topology has a high propagation
cost for some node pairs.

▶ Theorem 3. Let G be a d-regular random graph embedded in the unit square. Then, there
exists a pair of nodes u and v in G such that dG(P)/d(u, v), the ratio of the propagation cost
of the shortest path P between u and v to the Euclidean distance between them is Ω(

√
n) on

expectation.

We use propagation cost to measure the performance of a routing algorithm in G. The
goal is to construct a graph topology so that one can find paths of small propagation costs
between every pair of nodes. Moreover, we want a routing algorithm that routes along paths
of small propagation cost while also keeping the hop length small.

Broadcast Performance Measures. Next, we quantify the performance of a broadcasting
algorithm.

▶ Definition 4. Consider a broadcast algorithm A that broadcasts a single message from
a given source to all other nodes in some connected embedded graph G. The broadcast
propagation cost of algorithm A on graph G is defined as the the sum of the Euclidean
distance of the edges used by A to broadcast the message.

Notice that the broadcast propagation cost roughly captures the efficiency of a broadcast
algorithm. We note that the best possible broadcast propagation cost for a graph is
broadcasting by using only the edges of the minimum spanning tree (MST) on G. In
particular, this yields the following lower bound for a graph whose nodes are embedded
uniformly at random in the unit square. The proof follows from a bound on the weight of a
Euclidean MST on a set of points distributed uniformly in a unit square [2].

▶ Theorem 5 (follows from [2]). The broadcast propagation cost of any algorithm A on an
embedded graph G whose nodes are distributed uniformly in a unit square is Ω(

√
n) with high

probability.

On the other hand, we show that the broadcast propagation cost of the standard flooding
algorithm [37] on a random graph embedded in a unit square is high compared to the above
lower bound.

▶ Theorem 6. Let G be a d-regular random graph embedded in the unit square. The standard
flooding algorithm on G has Θ(n) expected broadcast propagation cost.

We also use other metrics to measure the quality of a broadcast algorithm A. The broadcast
completion cost and broadcast completion time measure, respectively, the propagation cost
and the number of hops needed to reach any other node v from a given source u.

ESA 2024

71:6 Towards Communication-Efficient Peer-To-Peer Networks

▶ Definition 7. Consider a broadcast algorithm A that broadcasts a single message from
some source node z to all other nodes in some connected graph G(V, E). The broadcast
completion cost of A on G is the maximum value of the minimum propagation cost between
the source node s and any node u considering paths taken by the message in A, taken over
all nodes u ∈ V and all possible source nodes s ∈ V . More precisely, let PropA(s, u) be the
minimum propagation cost for a message sent from the node s to reach node u using broadcast
algorithm A and define PropA(s) = maxu∈V PropA(s, u). Then, broadcast completion cost is
maxs∈V PropA(s). The broadcast completion time of A on G is simply the number of rounds
before the message from the source node reaches all nodes.

Conductance and Expanders. We recall the notions of conductance of a graph and that of
an expander graph.

▶ Definition 8 (Conductance). The conductance ϕ(G) of a graph G = (V, E) is defined as:
ϕ(G) = minS⊆V

|E(S,S)|
min{Vol S,Vol S}

where, for any set S, E(S, S) denotes the set of all edges
with one vertex in S and one vertex in S = V − S, and Vol(S), called the volume of S, is
the sum of the degrees of all nodes in S.

▶ Definition 9 (Expander Graph). A family of graphs Gn on n nodes is an expander family
if, for some constant α with 0 < α < 1, the conductance ϕn = ϕ(Gn) satisfies ϕn ≥ α for all
n ≥ n0 for some n0 ∈ N.

Random Geometric Graph.

▶ Definition 10 (Random Geometric Graph). A random geometric graph, G(n, ρ) = (V, E),
is a graph of n points, independently and uniformly at random placed within [0, 1] × [0, 1]
(the unit square). These points form the node set V , and for two nodes u and v, (u, v) ∈ E

if and only if the distance d(u, v) is at most ρ, for parameter 0 < ρ = f(n) ≤ 1.

We note that the distance between points is the standard Euclidean distance. The G(n, ρ)
graph exhibits the threshold phenomenon for many properties, such as connectivity, coverage,
presence of a giant component, etc. [38, 33]. For example, the threshold for connectivity
is ρ = Θ(

√
log n/n), i.e., if the value of ρ is Ω(

√
log n/n), the graph G(n, ρ) is connected

with high probability; on the other hand, if ρ = o(
√

log n/n), then the graph is likely to
be disconnected. It is also known [14] that the diameter of G(n, ρ) (above the connectivity
threshold) is Θ̃(1/ρ) with high probability.9

1.3 Problems Addressed and Our Contributions
As shown in Theorems 3 and 6, routing (even via the shortest path) and the standard flooding
broadcast protocol in an embedded random graph G have a relatively large point-to-point
routing propagation cost and broadcast propagation cost, respectively.

Given a P2P network modeled as a random graph G embedded on a unit square, the
goal is to design an efficient distributed protocol to transform G into a network G∗ that
admits efficient communication primitives for the fundamental tasks of routing and broadcast,
in particular, those that have essentially optimal routing and broadcast propagation costs.
Furthermore, we want to design optimal routing and broadcast protocols on G∗. (Broadcasting
is a key application used in P2P networks that implement blockchain and cryptocurrencies
in which a block must be quickly broadcast to all (or most) nodes in the network.)

9 Throughout, the Õ notation hides a polylog n factor and Ω̃ hides a 1/(polylog n) factor.

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:7

Our contributions are as follows:
1. We develop a theoretical framework to model and analyze P2P network protocols, specifi-

cally point-to-point routing and broadcast (see Section 1.1).
2. We present an efficient distributed P2P topology construction protocol, Close-Weaver,

that takes a P2P expander network G and improves it into a topology G∗ that admits
essentially optimal routing and broadcast primitives (see Section 2). Our protocol uses only
local knowledge and is fast, using only O(polylog n) rounds. Close-Weaver is based
on random walks which makes it quite lightweight (small local computation overhead)
and inherently decentralized and robust (no single point of action, no construction of
tree structure, etc). It is also scalable in the sense that each node sends and receives
only O(polylog n) bits per round and communicates with only O(polylog n) nodes at any
round. We assume only that the given topology G is an expander graph; in particular, G

can be random graph (modeling a random connectivity topology, see Section 1.1).
3. To show the efficiency of G∗, we develop a distributed routing protocol Greedy-Routing

as well as broadcast protocols Geometric-Flooding and Compass-Cast that have
essentially optimal routing and broadcast propagation costs, respectively (see Section 3).

For lack of space, we refer to the full paper for proofs, additional details, and figures.

1.4 Other Related Work

There are several works (see e.g., [3, 15, 17]) that begin with an arbitrary graph and reconfigure
it to be an expander (among other topologies). The expander topology constructed does
not deal with the underlying (distance) metric. Our work, on the other hand, starts with
an arbitrary expander topology (and here one can use algorithms such as the one in these
papers to construct an expander overlay to begin with) and reconfigures it into an expander
that also optimizes the propagation delay with respect to the underlying geometry. Thus our
work can be considered as orthogonal to the above works.

There has been significant amount of work on a related problem, namely, constructing
distributed hash tables (DHTs) and associated search protocols that respect the underlying
metric [40, 39, 23, 1, 12, 18]. In this line of work, nodes store data items and they can
also search for these items. The cost of the search, i.e., the path a request takes from the
requesting node to the destination node, is measured with respect to an underlying metric.
The goal is to build an overlay network and a search algorithm such that the cost of all
paths is close to the metric distance. Our work is broadly in same spirit as these works,
with a key difference. While the previous works build an overlay network while assuming
global knowledge of costs between all pairs of nodes, our work assumes that we start with
a sparse (expander) topology with only local knowledge of costs (between neighbors only),
which is more realistic in a P2P network. Furthermore, in these works, the underlying
metric is assumed to be growth-restricted which is more general than the 2-dimensional plane
assumed here. In a growth-restricted metric, the ball of radius 2r around a point x contains
at most a (fixed) constant fraction of points more than the ball of radius r around x. This is
more general than the uniform distribution in a 2-dimensional plane assumed here (which
is a special case of growth-restricted) since, in a growth-restricted metric, points need not
be uniformly dense everywhere. An interesting direction of future work is extending our
protocols to work in general growth-restricted metrics.

ESA 2024

71:8 Towards Communication-Efficient Peer-To-Peer Networks

Routing protocols (that are similar in spirit to ours) that assume that each node knows
its position and that of its neighbors and that the position of the destination is known to
the source are sometimes referred to as geometric routing and greedy approaches to such
routing have been explored extensively in the literature (e.g, [25], [24], [27] and the references
therein).

2 Close-Weaver: A P2P Topology Construction Protocol

We show how to convert a given d-regular (d is a constant) expander graph embedded in the
Euclidean plane (Definition 1) into a graph that, in addition to having the desired properties
of an expander, also allows more efficient routing and broadcasting with essentially optimal
propagation cost.10 The main result of this section is the Close-Weaver protocol, running
in polylog n rounds, that yields a network with O(log2 n) degree and contains a random
geometric graph as a subgraph.

2.1 The Protocol
Brief Description. Starting with an embedded, d-regular expander G = (V, E), the algo-
rithm constructs a series of expander graphs, one per phase, such that in each phase i, each
node u connects to some O(log n) random neighbors located in a square (box) of side-length
ri centered at u (that intersects the unit square), where 0 < r < 1 is a fixed constant (we can
fix r = 1/4 due to technical considerations in Section 3.1). In the final phase, κ, each node u

connects to all O(log n) neighbors contained in the square of side length rκ at its center. In
this manner, we construct a final graph, which is the union of the original graph and all graphs
constructed in each phase, which has low degree (O(log2 n)) and low diameter (O(log n)).
We note that we require r2κn = Θ(log n), and hence κ = Θ(log n − log log n)/(log 1/r).

Our protocol makes extensive use of random walks and the following lemma is useful in
bounding the rounds needed to perform many random walks in parallel under the bandwidth
constraints (polylog n bits per edge per round).

▶ Lemma 11 (Adapted from Lemma 3.2 in [42]). Let G = (V, E) be an undirected graph and
let each node v ∈ V , with degree deg(v), initiate η deg(v) random walks, each of length λ.
Then all walks finish their respective λ steps in O(ηλ log n) rounds with high probability.

Detailed Description. Let Bu(ℓ) denote the intersection of the unit square (recall that the
Euclidean plane is constrained to a square grid of side length 1) and the square of side-length
ℓ centered at node u. Note that if u is located at least distance ℓ/2 from every edge of the
grid, then Bu(ℓ) is merely the square with side-length ℓ centered on u. Run the following
algorithm for κ = c log n phases, for appropriately chosen constant c, starting from phase 1.
The first κ − 1 phases are described below and the final phase is described subsequently.

In each phase 1 ≤ i ≤ κ − 1, we associate a graph with each node u that contains all
nodes and their associated edges inside Bu(ri) created in phase i – which we denote by
Gu(i). Denote the initial graph for a node u by Gu(0) (note that Gu(0) ≡ G). Define
G(i) = ∪u∈V Gu(i), i.e., the union of these graphs across all nodes (note that G(0) ≡ G).

10 As mentioned earlier, our protocol will also work for d-regular random graphs which are expanders
with high probability. Also, the graph need not be regular; it is enough if the degree is bounded, say
O(polylog n), to get the desired performance bounds.

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:9

First κ − 1 phases: Each phase i ∈ {1, 2, . . . , κ − 1}, consists of two major steps outlined
below: (Note that we assume at the beginning of phase i, graphs Gu(i − 1) have been
constructed for all u.) In phase i, we construct Gu(i) for all u using lazy random walks.

(1) For each node u, perform Θ(log n) lazy random walks of length 2τ , where τ = a log n

(for a constant a sufficiently large to guarantee rapid mixing, i.e., reaching close to the
stationary distribution), in Gu(i − 1), which is assumed to be an expander (this invariant
will be maintained for all i).
A lazy random walk is similar to a normal random walk except that, in each step, the
walk stays at the current node u with probability 1 − deg(u)/(∆ + 1), otherwise it travels
to a random neighbor of u (in Gu(i − 1), i.e., in box Bu(ri−1)). Here, deg(u) is the
degree of u and ∆ is an upper bound on the maximum degree, which is O(log n) in
Gu(i − 1) (by protocol design). We maintain the ratio deg(u)/(∆ + 1) = O(1) in every
phase (by protocol design), hence the slowdown of the lazy random walk (compared to
the normal random walk) is at most a constant factor. It is known that the stationary
distribution of a lazy random walk is uniform and such a walk, beginning at a node u,
will arrive at a fixed node v in Gu(i − 1) with probability 1/n ± 1/n3 after τ number
of steps [41]. Thus, a lazy random walk from u gives a way to sample a node nearly
uniformly at random from the graph Gu(i − 1). Each lazy random walk starting from
u is represented by a token containing the ID of u, the current phase number, and the
number of steps remaining in the lazy random walk; in phase i, this token is passed from
node to node to simulate a random walk within Bu(ri−1).11

Note that each node v that receives the token only considers the subset of its neighbors
that are within Bu(ri−1) when considering nodes to pass the token to. After 2τ steps, if
the token lands within Bu(ri), the random walk is successful. By Lemma 11, all walks will
finish in O(log3 n) rounds in the first phase and O(log2 n) rounds in subsequent phases
with high probability. Note that, to maintain synchronicity, all nodes participate and
wait for O(log3 n) rounds to finish in the first phase and O(log2 n) rounds in subsequent
phases.

(2) The graph Gu(i) = (Vu(i), Eu(i)) is constructed as follows: its node set Vu(i) is the set
of all nodes in the box Bu(ri). Edges from nodes in Vu(i) are determined as follows.
Suppose a lazy random walk from a node x ∈ Vu(i) successfully ends at y, i.e., y is within
the box of Bx(ri) (note that, unless u = x, this box is different from Bu(ri), but does
overlap with at least 1/4 of Bu(ri). Node y will send a message to x informing it that
its random walk successfully terminated at y. Among all such nodes that notify x, x will
sample (without replacement) a subset of b log n nodes (for a fixed constant b) and add
undirected edges to these sampled nodes. The edge set Eu(i) of Gu(i) consists only of
edges between nodes in Vu(i).

Last phase: The final phase is similar, except that each node u initiates a larger number
of random walks, so that with high probability all nodes within the box Bu(rκ) (note that
rκ = Θ(

√
log n/n)) are sampled and thus u is able to form connections to all nodes in Bu(rκ)

(which contains Θ(log n) nodes). This will ensure that G(κ) = ∪u∈V Gu(κ) contains a random
geometric graph G(n, ρ) with ρ = Θ(

√
log n/n). More precisely, in the final phase (phase κ),

each node u runs Θ(log2 n) random walks on G(κ − 1) to all nodes within Bu(rκ) to form
graph G(κ).

11 As assumed in Section 1.1, a node on the random walk path can check whether it is within the box
Bu(ri−1) centered at the source node u, since it knows the ID Of u and hence the L∞ distance from u.

ESA 2024

71:10 Towards Communication-Efficient Peer-To-Peer Networks

The final graph G∗ is the union of the graphs G(i), 0 ≤ i ≤ κ. Algorithm 1 gives a
high-level summary of the protocol.

Algorithm 1 Close-Weaver Construction Protocol.

1: for each node u and phase i in {1, 2, . . . , κ − 1} do
2: u performs Θ(log n) random walks of length 2τ = Θ(log n) in Gu(i − 1)
3: u connects to Θ(log n) nodes where random walks are successful
4: end for each
5: for each node u do
6: u initiates Θ(log2 n) lazy random walks in Bu(rκ) and connects to nodes where walk ends

successfully
7: end for each

2.2 Protocol Analysis
We prove that, with high probability, the protocol takes O(log3 n) rounds and constructs a
graph G∗ that has maximum degree O(log2 n) and contains a random geometric graph as a
subgraph (besides being an expander).

To argue that the constructed graph G∗ contains a random geometric graph, we show
that the series of graph constructions proceeds correctly in each phase, resulting in the last
phase constructing G(κ), the desired random geometric graph. Each phase i crucially relies
on the fact that the subgraph induced by a given node u in phase i − 1, Gu(i − 1), is an
expander. In each phase i, we perform several lazy random walks starting from each node u

on Gu(i − 1). Since the lengths of lazy random walks starting at u performed on Gu(i − 1)
are Ω(log n), we see that they run longer than the mixing time of Gu(i − 1), resulting in the
final destination of the walk, i.e, the neighbor of u in that phase resulting from the random
walk, being chosen uniformly at random from the vertices of Gu(i − 1). This property is
useful in the analysis. The random walks performed by each node u in phase i result in
at least Ω(log n) neighbors that can be used by u to construct its part of the graph G(i).
Finally, with high probability, the subgraph induced by edges of length less than rκ forms a
random geometric graph(see full version).

To argue about the maximum degree of the graph, notice first that we construct at most
κ = O(log n) subgraphs, one per phase. By showing that each of these subgraphs has a
maximum degree of O(log n) with high probability, we show that the maximum degree of the
graph is O(log2 n) with high probability. The degree of any node in G(i) does not exceed
O(log n), for all phases i excluding the final phase κ (see full paper). In our analysis, we
bound the number of nodes in a box surrounding a given node, and in particular show that
the degree of each node in the final phase does not exceed O(log n) with high probability,
i.e., the maximum degree of the graph G(κ) is O(log n).

All these properties of the final graph G∗ are captured by Theorem 12. We argue about
the run time directly in the proof of Theorem 12.

The key lemma is showing that each graph G(i) formed at the end of each phase i is an
expander. It can be proved by induction on i. The base case is given, since Gu(0) ≡ G and
G is an expander. For the induction hypothesis, we assume that Gu(i − 1) is an expander
and prove that Gu(i) is an expander as well. The main technical idea behind the proof is
to show that, with high probability, every subset of nodes (that is of size at most half the
size of Vu(i)) has a conductance that is at least some fixed constant. The protocol initiates
random-walks by each node in each phase of the algorithm to construct an expander, and
the random walks occur over different subgraphs (regions). This make it non-trivial to show
that the constructed subgraph around each node is an expander at each phase. Since each

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:11

node does random walks in a local region around itself, the expansion proof has to be done
carefully. To save space, we leave the required lemmas and proof of Theorem 12 for the full
version of the paper.

▶ Theorem 12. The Close-Weaver protocol (Algorithm 1) takes an embedded d-regular
expander graph and constructs a graph in O(log3 n) rounds such that:

(i) its degree is O(log2 n) with high probability
(ii) and it contains a random geometric graph G(n, ρ) (where ρ = Θ(

√
(log n)/n) with high

probability.

3 Efficient Communication Protocols

In this section, we present efficient routing and broadcast algorithms for the graph G∗ that
was constructed using the P2P protocol Close-Weaver in Section 2. Since the properties
of G∗ hold with high probability, the correctness of the protocols and the associated bounds
in the theorems hold with high probability.

3.1 Efficient Broadcasting Protocols
Let us assume that we are given a source node source with a message that must be broadcast
to every node in the graph. In this section, we design broadcast algorithms to be run on the
graph G∗ that is constructed by the P2P construction protocol in Section 2. In order to argue
about the efficiency of broadcast, we use broadcast propagation cost, broadcast completion
cost, and broadcast completion time (see Section 1.2).

First, we present a simple flooding-based broadcast algorithm called Geometric-
Flooding, in Section 3.1.1, that has optimal broadcast propagation cost (up to polylog n

factors) and optimal broadcast completion cost (up to polylog n factors) but at the expense
of a very bad broadcast completion time. In particular, the broadcast propagation cost is
Õ(

√
n), the broadcast completion cost is Õ(1), and the broadcast completion time is Õ(

√
n).

From Theorem 5, we see that this broadcast propagation cost is asymptotically optimal
up to polylog n factors for any broadcast algorithm run by nodes uniformly distributed in
Euclidean space.

In order to obtain optimal bounds (up to polylog n factors) for all three metrics, we
design a more sophisticated algorithm called Compass-Cast, in Section 3.1.2, that requires
that each node knows its own coordinates (instead of merely the distance between itself
and some other node). Compass-Cast has broadcast propagation cost Õ(

√
n), broadcast

completion cost O(1), and broadcast completion time Õ(1).

3.1.1 Algorithm Geometric-Flooding
Brief Description. The algorithm consists of each node participating in flooding over G(κ).
Initially, the source node sends the message to all its neighbors in G(κ). Subsequently, each
node, once it receives the message for the first time, transmits that message over each of its
edges in G(κ).

Analysis. In G(κ), each node has O(log n) neighbors and the weight of each edge is O(rκ).
So, the sum of the edge weights in the graph, i.e., the broadcast propagation cost, is
O(n · log n · rκ) = O(n · log n ·

√
log n/n) = O(

√
n log3 n).

The broadcast completion time corresponds to the diameter of the random geometric
graph G(κ). From [14], we see that the diameter of a random geometric graph G(n, ρ)
embedded in a unit grid is Θ̃(1/ρ). For the graph G(κ), ρ = Θ(

√
log n/n). So the broadcast

completion time is Θ̃(
√

n).

ESA 2024

71:12 Towards Communication-Efficient Peer-To-Peer Networks

The broadcast completion cost is upper bounded by the product of diameter and edge
weight, so it is Õ(1).

The following theorem captures the relevant properties of the algorithm.

▶ Theorem 13. Algorithm Geometric-Flooding, when run by all nodes on G∗, results in
a message being sent from a source node source to all nodes in Õ(

√
n) broadcast completion

time with broadcast completion cost Õ(1) and broadcast propagation cost O(
√

n log3 n), which
are all asymptotically optimal up to polylog n factors.

3.1.2 Algorithm Compass-Cast
Note that for this section, due to technical considerations, we assume that the parameter
r in the P2P construction protocol is chosen so that r ≤ 0.25 and 1/r is an integer. We
additionally assume that nodes know their own coordinates.

In order to describe the algorithm, we make use of the following notation for ease of
explanation. Let Hi represent the partition of the unit grid into a 1/ri by 1/ri grid of 1/r2i

equal size squares.

Brief Description. The efficient broadcast of a message can be done in three phases. In
phase one, the message is propagated to exactly one node in each square of H2 using G(1).
Phase two is used to propagate the message to exactly one node in each square in Hκ in a
recursive manner as follows. Each node that received a message at the end of phase one
takes “ownership” of all square of H3 that lie within its square of H2 and sends the message
to exactly one node in each such square of H3. In this manner, each node u with the message
in a square in Hi, i ≤ 2 < κ, chooses one node per square of Hi+1 that lies within u’s square
of Hi and sends the message to them. Finally, exactly one node in each square of Hκ will
have the message. Phase three is used to propagate the message to every node in G∗ by
having each node in the proceedings phase transmit the message to all its neighbors in G∗.
Subsequently, each node that received the message further transmits it to all its neighbors
in G∗.

To save space, the analysis of algorithm Compass-Cast, which yields Theorem 14, is
left for the full version.

▶ Theorem 14. Algorithm Compass-Cast, when run by all nodes on G∗, results in a
message being sent from a source node source to all nodes with broadcast completion cost
O(1), and O(log n) broadcast completion time and broadcast propagation cost O(

√
n log3 n),

which are asymptotically optimal up to polylog n factors.

3.2 An Efficient Routing Protocol
In this section, we present an efficient routing algorithm, Algorithm Greedy-Routing
(pseudocode in Algorithm 2), which allows us to route a packet from any source S to
any destination F in O(log n) hops using G∗ such that the path taken has propagation
cost O(d(S, F)), where d(S, F) is the Euclidean distance between S and F . An important
property of this routing protocol is that it is localized and greedy: any node needs only local
information (of itself and its neighbors) to route a given message to its final destination.

Due to a lack of space, we give only the theorem statement below. A full analysis may be
found in the full version.

▶ Theorem 15. Consider the graph G∗ obtained at the end of Algorithm 1. For any source
node S and any destination node F , routing a packet from S to F using Algorithm 2 takes
O(log n) hops and the propagation cost of the routed path is O(d(S, F)), where d(S, F) is the
Euclidean distance between S and F .

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:13

Algorithm 2 Greedy Routing – forwarding a message m from node S to node F .
1: current = S
2: dist = ∞
3: while current ̸= F do
4: Send a message to every neighbor of current requesting d(neighbor, F)
5: for each neighbor of current do
6: new-dist = d(neighbor, F)
7: if new-dist < dist then
8: dist = new-dist
9: closest-neighbor = neighbor

10: end if
11: end for each
12: forward message to closest-neighbor (which then becomes current)
13: end while

4 Conclusion and Future Work

We consider this work as a theoretical step towards the design and analysis of P2P topologies
and associated communication protocols. While our theoretical framework is only a rough
approximation to real-world P2P networks, it provides a rigorous model for the design and
analysis of P2P protocols that takes into account propagation delays that depend on not
only the graph topology but also on the distribution of nodes across the Internet. Our model
is inspired by several studies on the Internet, particularly the Vivaldi system [11], which
posits how nodes on the Internet can be assigned coordinates in a low-dimensional, even
2-dimensional, Euclidean space, that quite accurately captures the point-to-point latencies
between nodes. We have additionally performed empirical research, via simulation, on
the Bitcoin P2P network that suggests that the model is a reasonable approximation to a
real-world P2P network. We have also performed preliminary simulations of our routing
and broadcast protocols which broadly support our theoretical bounds. We leave a detailed
experimental study for future work.

An open problem would be to devise a protocol that has similar guarantees to Close-
Weaver, but with a better degree guarantee, such as a constant degree.

References

1 Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch (1 + epsilon) locality-aware
networks for dhts. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 550–559. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.
982873.

2 D. Aldous and J.M. Steele. Asymptotics for euclidean minimal spanning trees on random
points. Probab. Th. Rel. Fields, (92):247–258, 1992.

3 Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construction of
overlay networks. In Phillip B. Gibbons and Paul G. Spirakis, editors, SPAA 2005: Proceedings
of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures, July 18-20,
2005, Las Vegas, Nevada, USA, pages 145–154. ACM, 2005. doi:10.1145/1073970.1073991.

4 John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine agreement in
dynamic networks. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 74–83, 2013.

5 John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli Upfal. Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks. In IEEE 56th
Annual Symposium on Foundations of Computer Science (FOCS), pages 350–369, 2015.

ESA 2024

http://dl.acm.org/citation.cfm?id=982792.982873
http://dl.acm.org/citation.cfm?id=982792.982873
https://doi.org/10.1145/1073970.1073991

71:14 Towards Communication-Efficient Peer-To-Peer Networks

6 Amitabha Bagchi, Ankur Bhargava, Amitabh Chaudhary, David Eppstein, and Christian
Scheideler. The effect of faults on network expansion. Theory Comput. Syst., 39(6):903–928,
2006. doi:10.1007/s00224-006-1349-0.

7 Free BSD. ping(8), 2022. URL: https://man.freebsd.org/cgi/man.cgi?query=ping&
sektion=8.

8 Colin Cooper, Martin E. Dyer, and Catherine S. Greenhill. Sampling regular graphs and
a peer-to-peer network. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 980–988. SIAM, 2005.

9 Colin Cooper, Martin E. Dyer, and Catherine S. Greenhill. Sampling regular graphs and a
peer-to-peer network. Combinatorics, Probability & Computing, 16(4):557–593, 2007.

10 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, An-
drew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer.
On scaling decentralized blockchains. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan,
Dan Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data
Security, pages 106–125, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

11 Frank Dabek, Russ Cox, M. Frans Kaashoek, and Robert Tappan Morris. Vivaldi: a decen-
tralized network coordinate system. In Raj Yavatkar, Ellen W. Zegura, and Jennifer Rexford,
editors, ACM SIGCOMM, pages 15–26, 2004.

12 Maximilian Drees, Robert Gmyr, and Christian Scheideler. Churn- and dos-resistant overlay
networks based on network reconfiguration. In Christian Scheideler and Seth Gilbert, editors,
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 417–427.
ACM, 2016. doi:10.1145/2935764.2935783.

13 Tobias Friedrich, Thomas Sauerwald, and Alexandre Stauffer. Diameter and broadcast time
of random geometric graphs in arbitrary dimensions. Algorithmica, 67(1):65–88, 2013.

14 Ghurumuruhan Ganesan. Stretch and diameter in random geometric graphs. Algorithmica,
80:300–330, 2018.

15 Seth Gilbert, Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dconstructor:
Efficient and robust network construction with polylogarithmic overhead. In Yuval Emek
and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, August 3-7, 2020, pages 438–447. ACM, 2020. doi:10.1145/
3382734.3405716.

16 C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks: Algorithms
and evaluation. Performance Evaluation, 63(3):241–263, 2006.

17 Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. In Avery Miller, Keren Censor-Hillel, and Janne H.
Korhonen, editors, ACM Symposium on Principles of Distributed Computing (PODC), pages
457–468, 2021.

18 Kirsten Hildrum, John Kubiatowicz, Sean Ma, and Satish Rao. A note on the nearest neighbor
in growth-restricted metrics. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA,
January 11-14, 2004, pages 560–561. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?
id=982792.982874.

19 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

20 Khalid Hourani, William K. Moses Jr., and Gopal Pandurangan. Towards communication-
efficient peer-to-peer networks, 2024. arXiv:2406.16661.

21 Zi Hu, John S. Heidemann, and Yuri Pradkin. Towards geolocation of millions of IP addresses.
In Proceedings of the 12th ACM SIGCOMM Internet Measurement Conference, IMC, pages
123–130, 2012.

22 Tim Jacobs and Gopal Pandurangan. Stochastic analysis of a churn-tolerant structured
peer-to-peer scheme. Peer-to-Peer Networking and Applications, 6(1):1–14, 2013.

https://doi.org/10.1007/s00224-006-1349-0
https://man.freebsd.org/cgi/man.cgi?query=ping&sektion=8
https://man.freebsd.org/cgi/man.cgi?query=ping&sektion=8
https://doi.org/10.1145/2935764.2935783
https://doi.org/10.1145/3382734.3405716
https://doi.org/10.1145/3382734.3405716
http://dl.acm.org/citation.cfm?id=982792.982874
http://dl.acm.org/citation.cfm?id=982792.982874
https://arxiv.org/abs/2406.16661

K. Hourani, W. K. Moses Jr., and G. Pandurangan 71:15

23 David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics. In
John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada, pages 741–750. ACM, 2002. doi:10.1145/
509907.510013.

24 Brad Karp and Hsiang-Tsung Kung. Gpsr: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th annual international conference on Mobile computing and
networking, pages 243–254, 2000.

25 Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing on geometric
networks. In Proceedings of the 11th Canadian Conference on Computational Geometry, UBC,
Vancouver, British Columbia, Canada, August 15-18, 1999, 1999. URL: http://www.cccg.ca/
proceedings/1999/c46.pdf.

26 Mike Krebs and Anthony Shaheen. Expander families and Cayley graphs: a beginner’s guide.
Oxford University Press, 2011.

27 Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing:
Of theory and practice. In Proceedings of the twenty-second annual symposium on Principles
of distributed computing, pages 63–72, 2003.

28 C. Law and K.-Y. Siu. Distributed construction of random expander networks. In IEEE
INFOCOM, pages 2133–2143, 2003.

29 Peter Mahlmann and Christian Schindelhauer. Distributed random digraph transformations
for peer-to-peer networks. In Proceedings of the Eighteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 308–317, 2006.

30 Yifan Mao, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan, and Kannan
Srinivasan. Perigee: Efficient peer-to-peer network design for blockchains. In ACM Symposium
on Principles of Distributed Computing (PODC), pages 428–437, 2020.

31 Andrew K. Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil Spring,
and Bobby Bhattacharjee. Discovering bitcoin ’ s public topology and influential nodes, 2015.

32 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2nd edition, 2017.

33 S. Muthukrishnan and Gopal Pandurangan. Thresholding random geometric graph properties
motivated by ad hoc sensor networks. J. Comput. Syst. Sci., 76(7):686–696, 2010.

34 Edgar M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.
John Wiley & Sons, Inc., USA, 1985.

35 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter P2P networks.
In IEEE Symposium on the Foundations of Computer Science (FOCS), pages 492–499, 2001.

36 Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dex: self-healing expanders.
Distributed Computing, 29(3):163–185, 2016.

37 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

38 Mathew D. Penrose. Random Geometric Graphs. Oxford University Press, 2003.
39 C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies of

replicated objects in a distributed environment. Theory Comput. Syst., 32(3):241–280, 1999.
doi:10.1007/s002240000118.

40 Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware 2001: IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Germany, November 12–16, 2001
Proceedings 2, pages 329–350. Springer, 2001.

41 Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Distributed computation
in dynamic networks via random walks. Theor. Comput. Sci., 581:45–66, 2015. doi:10.1016/
j.tcs.2015.02.044.

42 Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Distributed
random walks. J. ACM, 60(1):2:1–2:31, 2013. doi:10.1145/2432622.2432624.

ESA 2024

https://doi.org/10.1145/509907.510013
https://doi.org/10.1145/509907.510013
http://www.cccg.ca/proceedings/1999/c46.pdf
http://www.cccg.ca/proceedings/1999/c46.pdf
https://doi.org/10.1007/s002240000118
https://doi.org/10.1016/j.tcs.2015.02.044
https://doi.org/10.1016/j.tcs.2015.02.044
https://doi.org/10.1145/2432622.2432624

	1 Introduction
	1.1 Motivation, Model, and Definitions
	1.2 Preliminaries
	1.3 Problems Addressed and Our Contributions
	1.4 Other Related Work

	2 Weaver: A P2P Topology Construction Protocol
	2.1 The Protocol
	2.2 Protocol Analysis

	3 Efficient Communication Protocols
	3.1 Efficient Broadcasting Protocols
	3.1.1 Algorithm Geometric-Flooding
	3.1.2 Algorithm CompassCast

	3.2 An Efficient Routing Protocol

	4 Conclusion and Future Work

