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Abstract
The problem of designing connectivity oracles supporting vertex failures is one of the basic data
structures problems for undirected graphs. It is already well understood: previous works [Duan–
Pettie STOC’10; Long–Saranurak FOCS’22] achieve query time linear in the number of failed vertices,
and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the
graph and update time polynomial in the number of failed vertices.

We revisit this problem in the paradigm of algorithms with predictions: we ask if the query
time can be improved if the set of failed vertices can be predicted beforehand up to a small number
of errors. More specifically, we design a data structure that, given a graph G = (V, E) and a set
of vertices predicted to fail D̂ ⊆ V of size d = |D̂|, preprocesses it in time Õ(d|E|) and then can
receive an update given as the symmetric difference between the predicted and the actual set of
failed vertices D̂△D = (D̂ \ D) ∪ (D \ D̂) of size η = |D̂△D|, process it in time Õ(η4), and after
that answer connectivity queries in G \ D in time O(η). Viewed from another perspective, our
data structure provides an improvement over the state of the art for the fully dynamic subgraph
connectivity problem in the sensitivity setting [Henzinger–Neumann ESA’16].

We argue that the preprocessing time and query time of our data structure are conditionally
optimal under standard fine-grained complexity assumptions.
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1 Introduction

Connectivity is a fundamental problem in undirected graphs. For a static input graph, one
can compute its connected components in linear time; after such preprocessing it is easy to
answer, in constant time, queries asking whether two given vertices u and v are connected.

The problem becomes much more challenging when the graph may change over time –
for instance, when certain vertices may fail and have to be removed from the graph. Duan
and Pettie [8] were the first to propose a data structure that, after constructing it for graph
G = (V, E), can receive an update consisting of a set of failed vertices D ⊆ V , and then can
answer connectivity queries in G \D (i.e., in the subgraph of G induced on V \D). For a
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graph with n vertices and m edges, the data structure can be constructed in Õ(nm) time1,
the update takes time Õ(d6), where d = |D|, and each query runs in O(d) time.2 Under the
Online Matrix-Vector Multiplication (OMv) Hypothesis, this linear query time is optimal
(up to subpolynomial factors) if we require that preprocessing runs in time polynomial in the
graph size and the update time is polynomial in the number of failed vertices [14].

We study the problem of designing such connectivity oracles through the new lens of
algorithms with predictions. More specifically, we ask whether the query time can be improved,
beyond the fine-grained lower bound, if some quite-accurate-but-not-perfect prediction of the
set of failed vertices is available already during the preprocessing.

1.1 Our results
We define the problem of designing a connectivity oracle for predictable vertex failures as
follows. We ask for a data structure that:

in the preprocessing phase, receives an undirected graph G = (V, E), an upper bound
on the number of failed vertices d ∈ Z+, and a set D̂ ⊆ V of vertices predicted to fail
(|D̂| ⩽ d);
in the update phase, receives a set D ⊂ V of vertices that actually fail (|D| ⩽ d);
in the query phase, receives two vertices u, v ∈ V \D, and answers whether u and v are
connected in G \D := G[V \D].

We measure the prediction error as the size of the difference between the predicted and the
actual set of failed vertices η := |D̂△D| = |D̂ \D|+ |D \ D̂|. Our goal is to design a data
structure that improves upon the running time of classic (prediction-less) data structures
when η ≪ d. To allow for update time sublinear in d, we let the set D be given not explicitly
but as the symmetric difference D̂△D := (D̂ \D) ∪ (D \ D̂) instead.

Our main result is such data structure with the following guarantees:

▶ Theorem 1. There is a (deterministic) connectivity oracle for predictable vertex failures
with Õ(dm) preprocessing time and space, Õ(η4) update time, and O(η) query time.

Our result can also be interpreted outside of the realm of algorithms with predictions.
One can think of D̂ as of the set of vertices that are initially inactive. Then, in the update
phase, a small number η of vertices change their state – some inactive vertices become active
and some active come to be inactive. With this perspective, our result can be interpreted as
extending the type of the data structure of Duan and Pettie [8] with vertex insertions. Since
we want to keep the update and query times depending only on the number of affected vertices
we cannot even afford to read all the edges of an inserted vertex, which can potentially have
a high degree; hence, we need to know candidates for insertion already in the preprocessing
phase, and the initially inactive vertices are precisely these candidates.

The above perspective – of adding insertions to a Duan–Pettie-style oracle – actually
gives a good intuition of how our data structure works internally: we create a (prediction-less)
vertex-failure connectivity oracle for G \ D̂, we use it to further remove D \ D̂, and we extend
it so that it is capable of reinserting D̂ \D. We found that the original connectivity oracle
of Duan and Pettie [8], with its complex high-degree hierarchy tree, is not best suited for
such an extension. Instead, we base our data structure on a recent DFS-tree decomposition
scheme proposed by Kosinas [21].

1 We use the Õ notation to hide polylogarithmic (log n)O(1) factors.
2 Their data structure allows also for a certain trade-off between the preprocessing and update times.
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Comparison to prior work. Henzinger and Neumann [15] studied already the problem of
designing a data structure like ours, under the name of fully dynamic subgraph connectivity
in the sensitivity setting. Their proposed solution is a reduction to a Duan–Pettie-style
(i.e., any deletion-only) connectivity oracle. Plugging in the current best oracle of Long and
Saranurak [26], the reduction gives Ô(d3m) preprocessing time3, Ô(η4) update time, and
O(η2) query time. Because the oracle of [26] is (near-)optimal under plausible fine-grained
complexity assumptions, these running times turn out to be (nearly) the best we can hope
to get from that reduction.

Using algebraic techniques, van den Brand and Saranurak [36] tackle a more general
problem of answering reachability queries in directed graphs in the presence of edge insertions
and deletions. Note that in directed graphs edge updates can be used to simulate both vertex
failures and activating (initially inactive) vertices. This is done by splitting each vertex into
two – one only for incoming edges, one only for outgoing – and having a special edge from
the former to the later whenever the original vertex is meant to be active. Therefore, the
data structure that they provide also solves the problem that we study; it achieves Ô(nω)
preprocessing time, Ô(ηω) update time, and O(η2) query time, with high probability, where
ω ⩽ 2.372 denotes the matrix multiplication constant.

Our result offers a considerable improvement over the preprocessing and query times of
both [15] and [36].

Lower bounds. We argue that the preprocessing and update times of our data structure are
optimal under standard fine-grained complexity assumptions. For the query time, notice that
a classic (prediction-less) vertex-failure connectivity oracle can be simulated by setting D̂ = ∅
in the preprocessing; then η = d, and hence the lower bound of Henzinger et al. [14] implies
that the query time O(η1−ε) is impossible, for any ε > 0 (assuming the OMv Hypothesis
and requiring that the preprocessing time is polynomial in the graph size and the update
time is polynomial in d).

Regarding the preprocessing time, in Section 4 we give a lower bound based on the
Exact Triangle Hypothesis4, which is implied by both the 3SUM Hypothesis and the APSP
Hypothesis, so it is a weaker assumption than either of those popular fine-grained complexity
hypotheses. Our lower bound shows that the Õ(dm) complexity is conditionally optimal, up
to subpolynomial factors, as long as the update and query times depend polynomially only
on η, and not on the graph size nor on d.

▶ Theorem 2. Unless the Exact Triangle Hypothesis fails, there is no connectivity oracle for
predictable vertex failures with preprocessing time O(d1−εm) or O(dm1−ε) and update and
query times of the form f(η) · no(1), for any ε > 0.

We note that Long and Saranurak [26] give a similar lower bound for connectivity oracles
for vertex failures (without predictions), which is however based on the Boolean Matrix
Multiplication Hypothesis, and hence it holds only against “combinatorial” algorithms.

1.2 Related work
Vertex-failure connectivity oracles. Duan and Pettie [8] were the first to study connectivity
oracles supporting vertex failures, and they already achieved query time that turns out to be
(conditionally) optimal [14]. Their preprocessing time and update time were subsequently

3 The Ô notation hides subpolynomial no(1) factors.
4 The Exact Triangle Hypothesis says that there is O(n3−ε) time algorithm for finding in an n-node

edge-weighted graph a triangle whose edge weights sum up to 0, for any ε > 0.
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improved [9, 10, 26] to Õ(dm) and Õ(d2), respectively, which are optimal under standard
fine-grained complexity assumptions [26]. Recently, Kosinas [21] gave a data structure with
a slightly worse Õ(d4) update time, but much simpler than all the previous constructions.

On the other hand, Pilipczuk et al. [34] proposed a data structure that handles update and
query together, in time doubly exponential in d but with no dependence (even logarithmic)
on the graph size. Their approach is thus beneficial, for instance, when d is a constant.

Edge-failure connectivity oracles. Edge failures are much easier to handle than vertex
failures. In particular, there exist edge-failure connectivity oracles using Õ(m) space with
Õ(d) update time and Õ(1) query time [32, 19, 10], which is unconditionally optimal (up
to polylogarithmic factors). This difference can be explained by the fact that a single edge
deletion can only split the graph into two parts while deleting a high-degree vertex can create
multiple new connected components.

Fully dynamic subgraph connectivity. In the fully dynamic subgraph connectivity problem
every update consists in the activation or deactivation of a vertex, and there is no bound on
the number of vertices that may be active or inactive at any given point. In the meantime,
there are queries that ask whether two active vertices are connected through a path that visits
only active vertices. This model was introduced by Frigioni and Italiano [13] in the context
of planar graphs, where they show that one can achieve polylogarithmic time per operation.
For general undirected graphs, there are several solutions, deterministic and randomized,
that provide a trade-off between the update and query time [5, 7, 11, 2]. In all those cases,
both the update and the query time are Ω(mδ), for some δ > 0, which is in accordance with
known conditional lower bounds [1, 14, 18]. Thus, there is a clear distinction between the
complexity in this unrestricted model, against that in the fault-tolerant (sensitivity) setting.
In other words, we can achieve better performance if there is a bound on the number of
vertices at any given time whose state may be different from their original one.

Fault-tolerant labelling schemes. There is a recent line of work that provides efficient
labelling schemes for connectivity queries in the fault-tolerant setting [6, 30, 17, 31]. The
problem here is to attach labels to the vertices, so that one can answer connectivity queries in
the presence of failures given the labels of the query vertices and those of the failed vertices.
The most significant complexity measures are the size of the labels (ideally, the number of
bits per label should be polylogarithmic on the number of vertices), and the time to retrieve
the answer from the labels. There are many problems that admit efficient labelling schemes
(see, e.g., [33]). Such labellings have applications in the distributed setting, because they
allow to compute the answer without having to access a centralized data structure. All else
being equal, it is obviously a much harder problem to provide labels whose total size matches
that of the best centralized data structures.

Algorithms with predictions. The field of algorithms with predictions, also known as
learning-augmented algorithms, blossoms in the recent years, see surveys [28, 29] and an
updated list of papers [24]. While the majority of those works concern online algorithms,
data structures are also being studied in this paradigm, see, e.g., [22, 12, 23]. These are
however mostly index data structures, BSTs, etc., and not graph data structures.

Probably the closest to our work are three recent papers about dynamic graph algorithms
with predictions [25, 35, 16]. We note that [35] also manage to use predictions to go beyond
OMv-based conditional lower bounds, but they achieve it using algebraic algorithms for fast
matrix multiplication, while we only use simple combinatorial methods and benefit from the
fact that the predicted information is available already during the preprocessing time.
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Recent follow-up work. Following the initial submission of our manuscript and posting a
preprint on arXiv, Long and Wang [27] improved over our update time, from Õ(η4) down to
Õ(η2), which is conditionally optimal. Their data structure builds on the work of Long and
Saranurak [26], and is arguably much more complex than ours. In particular, our bounds
involve less logarithmic factors hidden in the Õ notation.

2 Preliminaries

Let G denote the input graph with n vertices and m edges. Let D̂ be the set of vertices
predicted to fail, and let D be the set of vertices that actually fail. Moreover, we let the size
of both D and D̂ to be at most d, and we let the prediction error η := |D \ D̂|+ |D̂ \D|.

Without loss of generality, we may assume that G \ D̂ is connected. Indeed, we may add
a new auxiliary vertex z to G, that is connected with an edge with every vertex of the graph.
Then, G \ D̂ is definitely connected, and in order to perform the updates, we always include
z in the set D of failed vertices. Notice that this does not affect the asymptotic complexity
of any of our measures of efficiency.

We build on the DFS-based tree decomposition scheme from [21]. Given the inputs G

and D̂, we grow an arbitrary DFS tree T of G \ D̂ rooted at some vertex r. Let T (v) denote
the subtree of T rooted at v. Let ND(v) denote the number of descendants of v, which is
equal to the size of T (v). Let pT (v) denote the parent of v in T .

Suppose we further remove some set of failed vertices D \ D̂ from T . Then T gets
decomposed into multiple connected components, which can be however connected to each
other through back-edges in (G\D̂)\ (D\D̂). We use rC to denote the root of each connected
component C. The presence of back-edges is important in that they establish connectivity
between the otherwise loose connected components of T \ (D \ D̂), so connectivity queries
between two vertices can be reduced to queries between the connected component(s) that
they reside in. Let low(v) denote the lowest proper ancestor of v that is connected to
T (v) through a back-edge. It is useful to extend the definition of low(v) to lowk(v), as is
introduced in [21, Section 2.1]. We identify low1(v) with low(v). Then for every k > 1, we
define lowk(v) to be the next lowest ancestor of v connected to T (v) through a back-edge
that is higher than lowk−1(v).

It is important to distinguish between two types of connected components: hanging
subtree and internal component, which are introduced in [21]. A connected component C of
T \ (D \ D̂) is called a hanging subtree if none of the failed vertices from D \ D̂ is a descendant
of it. Otherwise, C is called an internal component. (See [21, Section 3.3] for more properties
of these two types of components.) For a visual illustration of the decomposition, see the
left hand side of Figure 1. After the black vertices are removed, the white arrows represent
internal components, and the grey triangles represent hanging subtrees. The reason for this
distinction is that while the number of hanging subtrees can be close to n, the number of
internal components is bounded by the number of failed vertices, which is a convenient fact
that we leverage in the update phase. If C is an internal component and f ∈ D \ D̂ is a
failed vertex whose parent lies in C, then we call f a boundary vertex of C. The set of all
boundary vertices of C is denoted ∂(C). For instance, in Figure 1, C1 has two boundary
vertices and C3 has only one boundary vertex.

We also add structure to the vertices in D \ D̂ by putting them in a failed vertex forest F

(see [21, Section 3.3]). Basically each failed vertex f ∈ D \ D̂ has a parent pointer parentF (f)
to the largest (w.r.t. the DFS numbering) failed vertex that is an ancestor of f . Each f also
has a pointer to the list of its children in the forest. This forest can be built in O(η2) time.
To check whether a failed vertex f is a boundary vertex of some internal component C, we
can check whether parentF (f) ̸= pT (f) [21, Lemma 5].

ESA 2024
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3 Our data structure

Our oracle operates in three phases: preprocessing, update, and query.

Preprocessing. We begin with a DFS tree T for the graph G \ D̂, and prepare relevant
data structures, which are detailed in Section 3.1.

Update. In this phase, we are concerned with further removing the set of vertices D \ D̂

from G \ D̂, and adding back the vertices D̂ \D that were deleted in the previous phase
because of prediction errors. We build an auxiliary connectivity graph M, which captures
connectivity relations among so called internal components of T \ (D \ D̂) and the reinserted
vertices D̂ \D.

Query. Given two vertices s, t ∈ G \D, we find a representative connected component for
each of s and t, and answer the connectivity query based on M.

3.1 The preprocessing phase

In the preprocessing phase, we build a number of data structures around G \ D̂. It takes
Õ(dm) time. Our preprocessing data structures expand on the data structures introduced in
[21] (the first six in the list below). See Section 3.1 in [21] for more explanation and ways to
construct them.
1. A DFS-tree T for G \ D̂ rooted at some vertex r. For each vertex v in G \ D̂, we compute

its depth in T and number of descendants ND(v). We store the DFS numbering and
identify the vertices with the order in which they are visited.

2. A level-ancestor data structure on T [3]. For any vertex v ∈ T and any depth ℓ ∈ Z+,
this data structure can return in constant time the ancestor of v at depth ℓ in the tree.

3. A 2D-range-emptiness data structure [4] that can answer, in Õ(1) time, whether there
is a back-edge with one end in some segment5 [X1, X2] of T and the other end in some
segment [Y1, Y2] of T .

4. The lowi points of all vertices in T , for i ∈ {1, . . . , d}.
5. For every i ∈ {1, . . . , d}, we first sort the children of each vertex v in T in increasing

order with respect to their lowi points. Then we compute a new DFS numbering, which
we denote Ti, corresponding to the DFS traversal in which children of every vertex are
visited in that sorted order. Note that the ancestor-descendant relation in Ti is the same
as that in T .

6. For every Ti, a separate 2D-range-emptiness data structure described in item 3.
7. For every u ∈ D̂, we traverse the vertices in T in a bottom-up fashion and mark vertices

that have in their subtrees a neighbor of u. Then we create a tree Tu as follows: for
every vertex v in T , rearrange the children of v by putting unmarked vertices before
marked vertices, and do a DFS traversal under this rearrangement to get Tu. Note that
the ancestor–descendant relation in Tu is the same as that in T .

8. For every u ∈ D̂, a 2D-range-emptiness data structure on Tu as described in item 3.

5 When we talk about segments of a DFS tree T , we mean that we identify vertices w.r.t. their DFS
numbering, and a segment [X, Y ] of T is the set of vertices {X, X + 1, . . . , Y }.
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C1

C2
C3

C4

C5

r

f1 f2

f3

f4 f5
f6

f7

f8

T \ (D \ D̂) D̂ \D

u1

u2

u3

u4

u5

Figure 1 The decomposition graph after we further remove D \ D̂ from T and add back D̂ \ D.
On the left hand side we have T \ (D \ D̂). The black vertices f1, . . . , f8 are failed vertices in D \ D̂.
The white pentagonal arrows represent internal components. The light grey triangles represent
hanging subtrees. The blue edges represent back-edges between connected components of T \ (D \ D̂).
On the right hand side we have D̂ \ D. The edges with an end in D̂ \ D are colored green.

9. For every u, v ∈ D̂, u ≠ v, we sort the adjacent vertices of v in G \ D̂ in increasing order
with respect to their numbering in Tu and store them as neighborsu(v). Moreover, in
neighbors(v) we store the adjacent vertices of v in G \ D̂ in increasing order w.r.t. their
original DFS numbering in T .

▶ Remark 3. The purpose of items 1–9 will become clear when we describe how to add edges
to the auxiliary connectivity graph M in the update phase. Items 1–6 allow us to efficiently
establish connectivity within (G \ D̂) \ (D \ D̂). Items 7–9 allow us to efficiently establish
connectivity between D̂ \D and (G \ D̂) \ (D \ D̂).

The total time for initializing items 1–6 is Õ(dm). See [21, Section 3.1] for more
explanation. Items 7, 8, and 9 take Õ(dm) time because for every u ∈ D̂, we create a new
tree by taking the old tree T and rearranging its children lists in Õ(m) time. Hence, the
total preprocessing time is Õ(dm), and the created data structures take Õ(dm) space.

3.2 The update phase
In the update phase, we receive the real set of failed vertices D. Since D̂ has already been
removed from G before computing our DFS tree T , we just need to further remove D \ D̂

from T , and then add back D̂ \D, which we needlessly removed (because of prediction errors)
in the preprocessing phase. See Figure 1 for the decomposition of G after these operations
have been performed.

ESA 2024
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rC1

rC3rC2

rC5

rC4

u1

u2
u3

u4

u5

1

2 6

6

4
5

3

Figure 2 The connectivity graph M for the example shown in Figure 2. Edges are labeled with
their types. The left hand side of the dotted line are vertices representing the internal components
of T \ (D \ D̂); the right hand side of the dotted line are vertices in D̂ \ D. Edge (rC1 , rC3 ) is due to
a back-edge between C1 and C3. Edges (rC2 , rC5 ), (rC2 , u5), (rC5 , u5), (u1, u2) are all due to mutual
connections to a hanging subtree. Edges (rC4 , u1), (u3, u4) are both due to direct edges. Vertices in
the same connected component are filled with the same color.

An issue with the full decomposition graph is that the number of hanging subtrees can
be as large as order of n. We want to “shrink” the decomposition graph by getting rid of the
hanging subtrees while still preserving connectivity. For this purpose, we define an auxiliary
connectivity graph, which builds on and extends a similar construction already introduced in
[21].

▶ Definition 4. Let M be a graph with the vertex set

V (M) := (D̂ \D) ∪ {rC : C is an internal component of T \ (D \ D̂)}.

The edge set E(M) consists of edges of the following six types (the first two types are the
same as in [21]).
1. If there is a back-edge connecting two internal components C1, C2 of T \ (D \ D̂), then we

add an edge between rC1 and rC2 in M.
2. If there is a hanging subtree H of T \ (D \ D̂) which is connected to internal components

C1, . . . , Ck through back-edges, with Ck being an ancestor of all C1, . . . , Ck−1, then we
add edges (rCk

, rC1), . . . , (rCk
, rCk−1) in M.

3. If there is an edge connecting two vertices u1, u2 ∈ D̂ \D in G, then we also add an edge
between u1 and u2 in M.

4. If there is an edge connecting an internal component C of T \ (D \ D̂) and a vertex
u ∈ D̂ \D, then we add an edge between rC and u in M.

5. If there are two vertices u1, u2 ∈ D̂ \D and a hanging subtree H of T \ (D \ D̂) such that
both u1 and u2 are connected to H, then we add an edge between u1 and u2 in M.

6. If there are an internal component C of T \ (D \ D̂), a vertex u ∈ D̂ \D, and a hanging
subtree H of T \ (D \ D̂) such that there is a back-edge connecting C and H, and there is
an edge connecting u and H, then we add an edge between rC and u in M.

As an illustration, in Figure 2 we show the connectivity graph for the graph in Figure 1.

The validity of type-2 edges comes from the following property of back-edges: If e is a
back-edge of T \ (D \ D̂), then we have that either (i) the two ends of e are in two internal
components that are related as ancestor and descendant, or (ii) one end of e is in a hanging
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subtree H and the other end lies in an internal component that is an ancestor of H (see
Lemma 6 and Corollary 7 in [21] for a full proof). Hence, the internal components C1, . . . , Ck

in the characterization of type-2 edges are all ancestors of H, so it suffices to pick the
most ancestral internal component Ck and connect it by type-2 edges with the remaining
components C1, . . . , Ck−1.

In the next lemma we show that M correctly captures the connectivity between internal
components of T \ (D \ D̂) and D̂ \D in G \D.

▶ Lemma 5. Let S and S′ each be an internal component of T \ (D \ D̂) or a vertex in
D̂ \D. Then S and S′ are connected in G \D if and only if the vertices representing them
in M, SM and S′

M, are connected in M.

Proof. First, let us show the “only if” direction. Let S = P0−P1−P2−· · ·−Pk−1−Pk = S′

denote a path from S to S′ in G \ D, where each Pi is either an internal component of
T \(D\D̂), a hanging subtree of T \ (D \ D̂), or a vertex in D̂\D. Note that by the property
of back-edges above, we cannot have two consecutive hanging subtrees in the path.

Let us consider a segment (Pi − Pi+1) of this path. If neither Pi nor Pi+1 is a hanging
subtree, then we automatically have that their representatives in M are connected, by one
of the constructions of type-1, type-3, or type-4 edges.

However, if one of Pi and Pi+1 is a hanging subtree, and without loss of generality
we assume it is Pi, then it follows that Pi−1 exists and it is not a hanging subtree. If
Pi−1 and Pi+1 are both internal components, then their representatives in M are (perhaps
indirectly) connected by type-2 edges. If Pi−1 and Pi+1 are both vertices in D̂ \D, then
their representatives are connected in M by a type-5 edge. If one of them is an internal
component and the other is a vertex in D̂ \D, then their representatives are connected in
M by a type-6 edge. Therefore, by applying the connectivity to all segments of the path, we
get that the representatives of S and S′ in M are connected, as desired.

Now, let us show the more straightforward “if” direction. Suppose SM and S′
M are

connected in M. Then S and S′ are either directly connected with an edge in G \D, or
indirectly connected through a hanging subtree in G \D. In either case, we have that S and
S′ are connected. ◀

Note that only vertices from D̂ \D and the roots of internal components of T \ (D \ D̂)
are present in V (M). Hence, the number of vertices inM is O(η). We argue that we can add
in type-1 to type-6 edges in Õ(η4) time. Proposition 11 and Proposition 12 in [21] describe
how we can compute type-1 edges in Õ(η2) time and type-2 edges in Õ(η4) time. Computing
type-3 edges is also straightforward. Hence, we focus on computing type-4, type-5, and
type-6 edges in the following sections. We finish the update phase by computing connected
components of M, in time O(|V (M)|+ |E(M)|) = O(η2), so that in the query phase we are
able to decide in constant time whether two vertices in V (M) are connected.

3.2.1 Computing type-4 edges
In this section we describe our algorithm for adding type-4 edges to M, see Algorithm 1.
Recall that type-4 edges connect vertices from D̂ \D with internal components in which they
have neighbors.

For each vertex u ∈ D̂ \D and each internal component C of T \ (D \ D̂) we want to
efficiently establish if there is an edge between them. Let f1, f2, . . . , fk be the boundary
vertices of C. By Lemma 4(3) of [21], C can be written as the union of the following segments:
[rC , f1−1], [f1 +ND(f1), f2−1], . . . , [fk−1 +ND(fk−1), fk−1], [fk +ND(fk), rC +ND(rC)−1].
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For each of these segments we check whether neighbors(u) contains a vertex with the DFS
number in that segment and if it does we add an edge between u and rC in M. Each such
check can be performed efficiently, in time O(log(|neighbors(u)|)) = O(log n), by using binary
search. Indeed, for a segment [L, R], we first binary search in neighbors(u) the smallest
number greater than or equal to L, and then just check if it is less than or equal to R.

Algorithm 1 For each internal component C of T \ (D \ D̂) and u ∈ D̂ \ D, adds a type-4
edge between rC and u in M if there is an edge in G connecting u to C.

1 foreach u ∈ D̂ \D do
2 foreach internal component C of T \ (D \ D̂) do
3 f1, f2, . . . , fk ← boundary vertices of C sorted in increasing order;
4 for i = 0, . . . , k do
5 if i > 0 then L← fi + ND(fi) else L← rC ;
6 if i < k then R← fi+1 − 1 else R← rC + ND(rC)− 1;

// Check the condition below in O(log n) time using binary
search.

7 if neighbors(u) ∩ [L, R] ̸= ∅ then
8 add an edge between rC and u in M;

For each internal component C, the number of binary searches we make is O(|∂(C)|).
Since the total number of boundary vertices is O(η), we have that the total number of binary
searches in Algorithm 1 is O(η2), and hence its running time is O(η2 log n).

3.2.2 Computing type-5 edges
In this section we describe our algorithm for adding type-5 edges to M, see Algorithm 2.
Recall that type-5 edges join pairs of vertices in D̂ \D that are connected in G \D via a
hanging subtree.

For every u, v ∈ D̂ \D, we want to know whether they are connected to the same hanging
subtree H. If we checked this separately for every tuple (u, v, H), then it would be inefficient
because the number of hanging subtrees can be as large as order of n. However, if we
group together vertices that have edges to u in their subtrees, which is exactly what we
do in Tu, then we can process the hanging subtrees in batches. Let f be a failed vertex
in D \ D̂, and let Lu(f) be the sequence of children of f that are marked by u, sorted
by their DFS numbering in Tu. Since we only care about hanging subtrees, we disregard
vertices in Lu(f) which are roots of internal components. This breaks Lu(f) into O(η) slices
consisting of roots of hanging subtrees. Each such slice s = (L, . . . , R) ∈ Su(f) corresponds
to (potentially) multiple hanging subtrees – each subtree containing a neighbor of u – which
form a contiguous set of vertices [L, R + ND(R)− 1] in the DFS numbering for Tu. We can
efficiently check if v has a neighbor with the DFS number in that range. Indeed, we binary
search in neighborsu(v) the smallest number greater than or equal to L, and check if it is
less than or equal to R + ND(R)− 1. If this is the case, then u and v both have edges to a
common hanging subtree, so we add a type-5 edge between them.

We claim that the number of binary searches we make in line 8 of Algorithm 2 is O(η3).
Each of them corresponds to a tuple (u, v, f, s). We leverage the fact that the number of
internal components in T \ (D \ D̂) is O(η). Suppose f1, . . . , fk are all the failed vertices in
D \ D̂. Then |Su(f1)|+ |Su(f2)|+ · · ·+ |Su(fk)| = O(η) for every u ∈ D̂ \D. It follows that
Algorithm 2 runs in time O(η3 log n).
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Algorithm 2 Adds a type-5 edge in M between every u, v ∈ D̂ \ D that are connected to
the same hanging subtree.

1 foreach u ∈ D̂ \D do
// Consider the DFS tree Tu and the respective DFS numbering.

2 foreach v ∈ D̂ \D do
3 foreach failed vertex f ∈ D \ D̂ do
4 Su(f) ← the collection of contiguous slices of the sorted list of children of

f that are marked by u consisting only of roots of hanging subtrees;
5 foreach slice s ∈ Su(f) do
6 L← min(s);
7 R← max(s);

// Check the condition below in O(log n) time using binary
search.

8 if neighborsu(v) ∩ [L, R + ND(R)− 1] ̸= ∅ then
9 add an edge between u and v in M;

3.2.3 Computing type-6 edges
In this section we describe our algorithm for adding type-6 edges to M, see Algorithm 3.
Recall that type-6 edges join vertices from D̂\D with internal components that are connected
to them indirectly via a hanging subtree.

Conceptually, we want to query each (C, u, H)-tuple (where C is an internal component,
u is a vertex from D̂ \D, and H is a hanging subtree) whether H contains a neighbor of
u and a back-edge to C. Similarly to how we compute type-5 edges, for each u ∈ D̂ \ D

we group together relevant hanging subtrees in order to bound the number of queries we
make on them (line 3). Note that if C is an internal component connected to H through a
back-edge, then C is an ancestor of H (see Lemma 6 and Corollary 7 in [21]). Therefore,
once we have fixed a vertex u ∈ D̂ \D and a failed vertex f ∈ D \ D̂, we only need to traverse
Tu up from f and perform queries on each encountered internal component (the while-loop
in line 5). During that traversal, whenever we encounter an internal component C, we want
to check whether there exists a back-edge between C and a hanging subtree H whose root is
a child of f and which contains a neighbor of u. We do it in line 11 by sending a query to the
2D-range-emptiness data structure (created in item 8 of the preprocessing phase) indexed by
the DFS numbering of tree Tu. The validity of line 11 comes from two lemmas in [21], which
we reprint here:

▶ Lemma 6 ([21] Lemma 4(2)). Let C be an internal component of T \X, where X is any
set of failed vertices. For every vertex v that is a descendant of C, there is a unique boundary
vertex of C that is an ancestor of v.

▶ Lemma 7 ([21] Lemma 8). Let C, C ′ be two connected components of T \X, where X is
any set of failed vertices, such that C ′ is an internal component that is an ancestor of C. Let
b be the boundary vertex of C ′ that is an ancestor of C. Then there is a back-edge from C to
C ′ if and only if there is a back-edge from C whose lower end lies in [rC′ , pT (b)].

Now let us show the correctness of Algorithm 3. Suppose that a vertex u from D̂ \D and
an internal component C are both connected in G \D to a hanging subtree H, and denote
by f ∈ D \ D̂ the parent of the root of H. We claim that Algorithm 3 eventually finds C in
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Algorithm 3 Adds a type-6 edge in M between every u ∈ D̂ \ D and every internal
component C of T \ (D \ D̂) that are connected to the same hanging subtree H.

1 foreach u ∈ D̂ \D do
// Consider the DFS tree Tu and the respective DFS numbering.

2 foreach failed vertex f ∈ D \ D̂ do
3 Su(f) ← the collection of contiguous slices of the sorted list of children of f

that are marked by u consisting only of roots of hanging subtrees;
4 f ′ ← f ;
5 while f ′ ̸= null do
6 if pT (f ′) ̸= parentF (f ′) then

// Vertex f ′ is a boundary vertex of some internal
component.

7 C ← the internal component of T \ (D \ D̂) such that f ′ ∈ ∂(C);
8 foreach slice s ∈ Su(f) do
9 L← min(s);

10 R← max(s);
11 if 2D_range_queryu([L, R + ND(R)− 1]× [rC , pT (f ′)]) ̸= ∅ then
12 add an edge between u and rC in M;

13 f ′ ← parentF (f ′);

Tu by traversing up from f . Indeed, by Lemma 6, let f ′ be the boundary vertex of C that is
an ancestor of f . Then, by Lemma 7, we know that the 2D range query in line 11 returns
true. Conversely, if the 2D range query in line 11 returns true for some C and f ′, then we
can also conclude that u is connected with C through the mediation of a hanging subtree
whose root is a child of f .

By the same reasoning as for Algorithm 2, each query corresponds to a tuple (u, f, f ′, s).
For fixed u and f ′ the total number of segments s in Tu \ (D \ D̂), over all choices of f , is
O(η). Hence the number of 2D range queries Algorithm 3 makes is O(η3). Since each such
query takes O(log n) time [4], the total running time is Õ(η3).

3.3 The query phase

Finally, we describe our algorithm for the query phase, see Algorithm 4. Given s and t in G\D,
we first determine where they lie in. If they lie in some internal component(s) of T \ (D \ D̂)
or in the extra set of vertices D̂ \D, we can check whether these components/vertices are
connected in M. However, if s (or t) lies in a hanging subtree, we try to find a surrogate for
s (respectively t), namely a vertex in D̂ \D or an internal component of T \ (D \ D̂) that is
connected by an edge to the hanging subtree of s (respectively t).6 If we can find such a
surrogate, we can replace s (respectively t) with it, and refer to M as in the previous case.
However, if no such surrogate exists, either for s or for t, then s and t are connected if and
only if they reside in the same hanging subtree.

6 Note that in order to find a surrogate internal component it is sufficient to check the low1, . . . , lowη

points of the root of the hanging subtree.
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Algorithm 4 Given two vertices s, t ∈ V \ D, answers if they are connected in G \ D.

1 function find_representative(u)
2 if u ∈ D̂ \D then return u;
3 if u lies in an internal component C of T \ (D \ D̂) then return rC ;
4 H ← the hanging subtree of T \ (D \ D̂) where u lies in;

// Try to find an internal component as a surrogate.
5 for i ∈ {1, . . . , η} do
6 if lowi(rH) ̸= null and lowi(rH) /∈ D then
7 C ← the internal component of T \ (D \ D̂) where lowi(rH) lies in;
8 return rC ;

// Try to find a vertex in D̂ \D as a surrogate.
9 foreach v ∈ D̂ \D do

10 if rH is marked in Tv then return v;
// No surrogate found, return the hanging tree’s root as the

representative.
11 return rH ;
12 s← find_representative(s);
13 t← find_representative(t);
14 if s ∈ V (M) and t ∈ V (M) then
15 return whether s and t are connected in M;
16 else /* At least one vertex lies in an isolated hanging subtree,

represented by its root. */
17 return whether s = t;

Now let us justify the running time for Algorithm 4. Given that we have computed the
connected components of M at the end of the update phase, we can decide in O(1) time
the connectivity among internal components and vertices from D̂ \D. Locating the correct
connected component in T \ (D \ D̂) and deciding whether it is an internal component or a
hanging subtree takes O(η) time (see Proposition 13 in [21] for more detail). The for-loops
on lines 5 and 9, which are looking for a surrogate, both take O(η) time. Summing up,
Algorithm 4 answers a query in O(η) time.

4 Lower bound for preprocessing time

In this section, we show that the Õ(dm) preprocessing time of our oracle cannot be improved
by a polynomial factor assuming the Exact Triangle Hypothesis, which is implied by both
the 3SUM Hypothesis and the APSP Hypothesis.

To show this, we give a fine-grained reduction from the offline SetDisjointness problem.
This problem was introduced by Kopelowitz, Pettie, and Porat [20], who showed it is hard
under the 3SUM Hypothesis. Vassilevska Williams and Xu extended their hardness result to
hold under a weaker assumption, namely the Exact Triangle Hypothesis; as a consequence
the problem is also hard under the APSP Hypothesis. The input to the SetDisjointness
problem is a universe of elements U , a family of subsets F ⊆ 2U , and a collection of query
pairs (Si, Sj) ∈ F × F , whose number is denoted by q. For each query, one has to answer
whether Si ∩ Sj is empty or not. We use the following lower bound for SetDisjointness from
[37, Corollary 3.11].
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▶ Theorem 8 (Vassilevska Williams and Xu [37, Corollary 3.11]). For any constant γ ∈ (0, 1),
let A be an algorithm for offline SetDisjointness where |U | = Θ(n2−2γ), |F | = Θ(n), each set
in F has at most O(n1−γ) elements from U , and q = Θ(n1+γ). Assuming the Exact Triangle
Hypothesis, A cannot run in O(n2−ε) time, for any ε > 0.

Proof of Theorem 2. We reduce solving the offline SetDisjointness problem, in the parameter
regime specified in Theorem 8 (later, we set γ = 1− ε/2), to creating a connectivity oracle for
predictable vertex failures on an undirected graph with O(n + n2−2γ) vertices and O(n2−γ)
edges, with d = O(n), and then running the update and query phases q times each, with
η = O(1).

Here is how we construct the undirected graph G. Let V (G) consist of two disjoint sets
A and B. The vertices in A = {a1, a2, . . . , a|F |} represent the sets in F = {S1, S2, . . . , S|F |},
and the vertices in B = {bu | u ∈ U} represent the elements in U . We put edges between
A and B so that ai ∈ A is connected to bu ∈ B if and only if u ∈ Si. Note that, for
i ̸= j, Si ∩ Sj ̸= ∅ if and only if ai and aj are connected in the subgraph of G induced on
B ∪ {ai, aj}. The constructed graph has |A|+ |B| = |F |+ |U | = O(n + n2−2γ) vertices and
O(|F | ·maxi |Si|) = O(n2−γ) edges.

In the preprocessing phase we set D̂ = A. Then, for each input query pair (Si, Sj), we
set D = D̂ \ {ai, aj}, do the update, and then query connectivity between ai and aj .

Let t1 denote the preprocessing time; t2 denote the update time; and t3 denote the query
time. Then, the total time to solve SetDisjointness is t1 + q · (t2 + t3). By Theorem 8, we
get that t1 + q · (t2 + t3) ⩾ n2−o(1), unless the Exact Triangle Hypothesis fails. Since η = 2
is a constant, we know that t2 = no(1) and t3 = no(1), and hence q · (t2 + t3) = n1+γ+o(1).
This forces t1 ⩾ n2−o(1). Recall that d = |D̂| = |A| = |F | = O(n), and m = O(n2−γ). If
t1 = O(d1−εm) (or O(dm1−ε)), then by setting γ = 1−ε/2 we would get that t1 = O(n2−ε/2)
and hence the Exact Triangle Hypothesis would fail. ◀
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