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Abstract
Flexible network design deals with building a network that guarantees some connectivity requirements
between its vertices, even when some of its elements (like vertices or edges) fail. In particular, the
set of edges (resp. vertices) of a given graph are here partitioned into safe and unsafe. The goal is
to identify a minimum size subgraph that is 2-edge-connected (resp. 2-vertex-connected), and stay
so whenever any of the unsafe elements gets removed.

In this paper, we provide improved approximation algorithms for flexible network design problems,
considering both edge-connectivity and vertex-connectivity, as well as connectivity values higher than
2. For the vertex-connectivity variant, in particular, our algorithm is the first with approximation
factor strictly better than 2.
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1 Introduction

Survivable network design is an important area of combinatorial optimization. In a classical
setting, we are given a network represented as a graph, and the goal is to select the cheapest
subset of edges that guarantee some connectivity requirements among its vertices, even when
some of its elements (like vertices or edges) may fail.

Two fundamental problems in this area are the 2-edge-connected spanning subgraph
(2ECSS) and the 2-vertex-connected spanning subgraph (2VCSS). These problems aim at
building a network resilient to a possible failure of an edge or of a vertex, respectively. More
in detail, in 2ECSS, we are given in input a graph G = (V, E), and the goal is to select
a subset F ⊆ E of minimum-cardinality such that the graph (V, F ) is 2-edge-connected:
that is, (V, F ) contains 2 edge-disjoint paths between any pair of vertices. In 2VCSS, the
input is the same, but here we require that our selected set F is such that (V, F ) is 2-vertex
connected, i.e., it contains 2 vertex-disjoint paths between any pair of vertices. Both 2ECSS
and 2VCSS have been extensively studied in the literature. They are APX-hard(see [11])
but admit constant-factor approximation algorithms (see e.g. [3, 13, 17, 20]). Currently, the
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best approximation for 2ECSS is 118
89 [13]1, while the best approximation for 2VCSS is 4

3 [3].
The problems have been investigated also in the weighted setting. That is, when the input
graph G comes equipped with an edge-weight function w ∈ R+, and the goal is to minimize
the total weight of the selected set F , rather than its cardinality. For this more general case,
nothing better than a 2-approximation is known [15, 16].

In recent years, an interesting generalization has been introduced by Adjiashvili et al. [1],
which soon received a lot of attention in the network design community. This generalization
is called flexible graph connectivity and is the focus of this paper. Specifically, the authors
in [1] considered a scenario in which not all edges are subject to potential failures. The set
of edges is partitioned into safe and unsafe, and the goal is to construct a network resilient
to the failure of unsafe edges. A formal definition is given below.

▶ Definition 1 (Flexible Graph Connectivity Problem (FGC)). Given a graph G = (V, E) and a
partition of E into safe edges ES and unsafe edges EU , the goal is to find the smallest subset
E′ of E such that (1) H = (V, E′) is connected, (2) and for every edge e ∈ EU ∩ E′, the
graph (V, E′ \ e) is connected.

Next, we define the vertex-connectivity version of the problem, investigated first in [5].
Recall that a cut-vertex of a graph is a vertex u such that if we remove u and all its incident
edges the number of connected components of the graph increases.

▶ Definition 2 (Flexible Vertex Connectivity Problem (FVC)). Given a graph G = (V, E) and
a partition of V into safe vertices VS and unsafe vertices VU , the goal is to find the smallest
subset E′ of E such that (1) H = (V, E′) is connected, (2) and for every vertex u ∈ VU , u is
not a cut-vertex of H.

Note that, when ES = ∅, FGC reduces to 2ECSS. Similarly, when VS = ∅, FVC reduces
to 2VCSS. Hence, these problems are at least as hard as 2ECSS and 2VCSS, respectively.

For FGC and some further generalizations, several approximation results have been
developed in the past few years (see e.g. [1, 2, 4, 5, 6, 7, 8, 9, 19], and application of flexible
graph based techniques). This list shows a growing interest in this problem and its variants
in the literature.

The current best known approximation factor for FGC is given in [8], which is based on
the best 2ECSS approximation ratio. At the moment, using the best approximation result
available in the literature for 2ECSS, [13], this translates into a bound of 472

385 ≈ 1.45.2
Of course, a first natural question is the following:
Can the approximation factor for FGC be improved?

Problems involving vertex-connectivity rather than edge-connectivity often turn out to be
more challenging to address, and in fact approximation results on FVC are more scarce.
The authors in [5] studied the problem in the weighted setting, and give a 2-approximation
under the assumption to have at least one safe vertex (they target a more general setting of
removing k unsafe vertices). Note that a 2-approximation is known for the weighted setting
of FGC as well, however as mentioned before, for the standard FGC a significantly better
approximation is known. This raises the question of whether a better-than-2 approximation
is possible also for FVC.

Is there an algorithm for FVC with approximation factor better than 2?

1 Recently a 1.3-approximation was presented for 2ECSS (see [18]) with the assumption that there exists
a polynomial time algorithm for maximum triangle-free 2-matching problem.

2 If one applies the aforementioned 1.3-approximation found in [18], then this approximation becomes 1.4̄.
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Finally, we observe that both 2ECSS and 2VCSS have been studied in a generalized
setting, called kECSS and kVCSS respectively, where one requires k-edge-disjoint paths
(resp. k-vertex-disjoint paths) between each pair of vertices. It turns out that for higher
values of connectivity requirements, much better approximations can be developed. In
particular, [10, 12] show an approximation factor of 1 + O( 1

k ) for kECSS and kVCSS. It is
natural to ask what happens if we generalize FGC and FVC in a similar way. Specifically,
we could aim at building graphs that are k-edge-connected (resp. k-vertex-connected) after
the removal of any unsafe edge. The last question we are interested in is then the following:

Can we obtain similar approximation bounds as observed for kECSS or kVCSS, if we
consider FGC and VFC with a higher value of k as connectivity requirement?

Our Results

In this paper, we focus on the above questions and answer them in a positive way.
In Section 3, we prove Theorem 3, which improves the best known approximation factor

for FGC. The theorem is proved by giving a refined analysis of the algorithm developed
in [8]. Their algorithm relies on an approximation algorithm for 2ECSS as a subroutine,
whose analysis is used mainly when the size of the optimal solution is large enough compared
to the number of vertices n. Our improvement stems from realizing that 2ECSS can be
approximated better than the current best known factor whenever the optimal solution is
large compared to n see Lemmas 30 and 31.

▶ Theorem 3. There is a polynomial time 10
7 -approximation algorithm for FGC.

In Section 2 we prove Theorem 4, which yields the first approximation algorithm for FVC
with an approximation factor strictly better than 2. Its proof constitutes the most technical
part of our paper. It combines two different main algorithms, which rely on non-trivial
combinatorial ingredients, like ear-decompositions and matroid intersection.

▶ Theorem 4. There is a polynomial time 11
7 -approximation algorithm for FVC.

Finally, we answer the last question we raised, for FGC specifically. In particular, we
consider the FGC problem for higher values of k, formally defined below.

▶ Definition 5 (k-Flexible Graph Connectivity Problem (k-FGC)). Given a graph G = (V, E)
and a partition of E into safe edges ES and unsafe edges EU , the goal is to find the smallest
subset E′ of E such that (1) H = (V, E′) is 1-edge-connected, (2) and for every k unsafe
edges {e1, . . . , ek} ⊆ EU ∩ E′, the graph (V, E′ \ {e1, . . . , ek}) is 1-edge-connected.

Theorem 6 shows that also k-FGC becomes somewhat easier to approximate when k

grows, as it happens for kECSS.3 Due to space limitations, its proof can be found in the full
version of this paper.

▶ Theorem 6. There is a polynomial time 1 + O
(

1√
k

)
-approximation algorithm for k-FGC.

We were not able to extend our arguments to FVC with higher values of connectivity
requirement k in a similar manner to k-FGC. We leave this as an open question.

3 We note that a (stronger) approximability of 1 + O
(

1
k

)
for k-FGC was previously claimed by [1], but

their proof is flawed as we explain in the full version of this paper

ESA 2024
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1.1 Preliminaries
Here, we begin with some preliminaries to define and construct some tools that will be helpful
later on in the paper.

Given a graph G = (V, E) and a subset of vertices U ⊆ V . We denote by G/U the
(multi-)graph obtained by first replacing the vertices of U by a single vertex Û , and then for
every edge uv ∈ E such that u ∈ U and v ∈ V \U we add an edge Ûv to E (Note that there
can be multiple copies of the same edge Ûv in G/U , and there will be no loops on Û). We
sometimes refer to this as contracting G by the vertices U . We can define a similar operation
on a subset of edges F ⊆ E, by taking the vertex sets of connected components of (V, F ),
and contracting G by these sets one by one. We denote this operation by G/F .

Given a graph G = (V, E), and a subset of vertices U ⊆ V , we define G[U ] = (U, {u1u2 ∈
E|u1, u2 ∈ U}), the induced subgraph of U . Similarly, we can define an induced subgraph on
a subset of edges F ⊆ E, and by abuse of notation we use the same notation G[F ] = ({v ∈
V |∃u ∈ V, uv ∈ F}, F ). We also say a graph H = (V ′, E′) is a spanning subgraph of G if H

is a subgraph of G and V ′ = V .

▶ Definition 7 (Ear-Decomposition). Let G = (V, E) be a graph. An ear-decomposition is a
sequence P1, . . . , Pk, where P1 is a cycle of G, and for each i ∈ {2, . . . , k}, Pi is either:

a path sharing exactly its two endpoints with V (P1) ∪ . . . ∪ V (Pi−1), or;
a cycle that shares exactly one vertex with V (P1) ∪ . . . ∪ V (Pi−1).

P1, . . . , Pk are called ears. Pi is an open ear if it is a path. An ear-decomposition is open if
for every i ∈ {2, ..., k}, Pi is an open ear. We refer to |E(P )| as the length of P .

Given an open ear-decomposition P1, . . . , Pk, we say that P ′ is a potential open ear
of P1, . . . , Pk if P1, . . . , Pk, P ′ is itself an open ear-decomposition. P1, . . . , Pk is an open
ear-decomposition of a graph G = (V, E) if (V (P0) ∪ . . . ∪ V (Pk) = V and for each i,
E(Pi) ⊆ E.

We will often abbreviate the adjective ‘2-vertex-connected’ with ‘2VC’. The following well
known result on open ear-decompositions can be found in Chapter 4 of [21].

▶ Lemma 8 ([21]). A graph G is 2VC if and only if it has an open-ear decomposition.

An important tool for the analysis of our algorithm in Section 2.2 is the following, which
will let us characterize the vertex connectivity of a graph.

▶ Definition 9 (Blocks). Let G = (V, E) be a graph such that |V (G)| ≥ 2. A block of G is a
maximal connected subgraph of G that has at least one edge and has no cut vertex. Therefore
if G has no self-loops, a block is either an induced connected subgraph on two vertices or it is
a maximal 2VC subgraph on at least three vertices.

We end this section by introducing some useful properties of blocks. For proofs and more
details on these, we refer the reader to Chapter 4 of [21].

▶ Lemma 10 ([21]). Let G = (V, E) be a graph, and let {B1, . . . , Bk} be the set of all blocks
of G. The following properties hold
1. Two blocks share at most one vertex.
2. The blocks B1, . . . , Bk of G partition E, that is E = ∪k

i=1E(Bi), and E(Bi) ∩E(Bj) = ∅,
for i ̸= j.

3. For two distinct edges e1 and e2, e1 and e2 belong to the same block Bi if and only if
there is a cycle in Bi that contains e1 and e2.

4. If G is connected, G has at most |V | − 1 blocks.
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We also use the following useful Lemma, whose proof can be found in the full version of
this paper.

▶ Lemma 11. Let G = (V, E) be a connected graph with B(G) many blocks. Let H be a
connected, spanning subgraph of G with B(H) > B(G) many blocks. In polynomial time, we
can find an edge e ∈ E(G)\E(H) such that H ′ := (V (H), E(H) ∪ {e}) has fewer than B(H)
blocks.

2 11
7 -Approximation for FVC

In this section we provide a 11
7 -approximation algorithm for Flexible Vertex Connectivity

Problem. We assume that our given graph G = (V, E), is a simple graph, that is, G does not
contain any loops or parallel edges (note that even if G were not simple, parallel edges and
loops would not help in finding a feasible solution), and has n := |V | vertices.

We begin this section by showing that in order to obtain a β-approximation one can
assume that the input graph (i.e. G) has some additional properties, such as not containing
specific subgraphs that we call forbidden cycles.

▶ Definition 12 (Forbidden Cycle). We say that a 4-cycle C in G is a forbidden cycle if C

has two vertices w and z such that wz /∈ E(C) and degG(w) = degG(z) = 2.

The following Lemma allows us to assume without loss of generality that our input graph G

is 2VC and does not contain a forbidden cycle. Its proof can be found the full version of this
paper.

▶ Lemma 13. If there is a β-approximation for FVC instances that are 2VC and do not
contain forbidden cycles, then there is a β-approximation for FVC.

Furthermore, using the next Lemma we assume throughout Section 2 that OPT ≥ n as
otherwise we can solve the problem optimally in polynomial time. The proof of this Lemma
is straightforward can be found in the full version of this paper for completeness sake.

▶ Lemma 14. Let OPT be an optimal solution to FVC instance G = (V, E). We have
|OPT | ≥ n − 1. Furthermore, if |OPT | = n − 1, then we can find such a solution in
polynomial time.

2.1 Approximation 1
By applying Lemma 13, we can assume without loss of generality that G is 2VC and does not
contain a forbidden cycle. We also assume that G has at least 5 vertices, as we can handle
smaller instances by enumeration. Our algorithm relies on the construction of a certain open
ear-decomposition which we outline here. Start with D being a cycle of length at least four.
We remark that such a cycle must exist, as n ≥ 4, and G is 2VC (see [21]). Moreover one
can find such a cycle in polynomial time. Now, until there exists a potential open ear of D

that has a length of at least 4 for D, we find and add one such potential open ear to D. We
observe by Lemma 8 that D is 2VC. To show that this procedure terminates in polynomial
time we rely on the following simple claim, proven in the full version of this paper.

▷ Claim 15. Let D be an open-ear decomposition. If there exists a potential open ear of D

with a length of at least 4, it can be detected in polynomial time.

ESA 2024
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The following Lemma, provides an upper bound on the number of edges in D. The
proof of this lemma is very straightforward and is proven in the full version of this paper for
completeness.

▶ Lemma 16. When the algorithm terminates, we have |E(D)| ≤ 4
3 (|V (D)| − 1).

With this open ear decomposition D, the following key Lemma, proven in the full version
of this paper, shows that the edges of G[V \ V (D)] have a useful structure, that will be
critical to our approximation algorithms. Critically, the proof of this lemma relies on the
assumption that G contains no forbidden cycles.

▶ Lemma 17. The edges of G[V \ V (D)] form a (not necessarily perfect) matching.

Since the edges of G[V \V (D)] form a matching, each connected component of G[V \V (D)]
is either a singleton or an edge. We will now partition the vertices of V \ V (D) into the sets
K1,1, K1,2, K2,2, and K2,3.

We define K1,1 ⊆ V \ V (D) as the singletons of G[V \ V (D)] that have a safe vertex
neighbour in V (D). We define K1,2 ⊆ V \V (D) as the singletons of G[V \V (D)] that do not
have a safe vertex neighbour in V (D). We define K2,2 ⊆ V \ V (D) as the endpoints of edges
uv in G[V \ V (D)] that satisfy one of the following: u and v are both adjacent to a (possibly
equal) safe vertex in V (D), or one of u or v are safe, and that safe vertex is adjacent to a
safe vertex in V (D). Finally, we define K2,3 = V \ (V (D) ∪K1,1 ∪K1,2 ∪K2,2).

Intuitively, we imagine the set Ki,j to represent vertices of the components of G[V \V (D)]
with i vertices, where any feasible FVC of solution of G must have at least j edges with
endpoints in a component.

We now describe our first algorithm, which will compute a feasible solution APX1.
Starting with APX1 := ∅. We first add the edges of D to APX1. If V \V (D) = ∅, then
APX1 is feasible since D is 2VC, and we are done. Otherwise, we buy edges in the following
way to make APX1 feasible.

First, for every v ∈ K1,1, buy an edge uv ∈ E where u ∈ V (D) is safe (such a u exists, by
definition of K1,1). Second, for every v ∈ K1,2, we buy arbitrary pair of edges uv, u′v ∈ E,
where u ̸= u′ (these edges exists since G is assumed to be 2VC). Third, for every edge uv of
G[K2,2], if u and v are both adjacent to (potentially equal) safe vertices u′ and v′ in V (D),
then we buy the edges uu′ and vv′. If at least one of u and v, is not adjacent to a safe vertex
in V (D), then by definition of K2,2, (without loss of generality) v is safe and is adjacent to
a safe vertex in v′ ∈ V (D); In that case, we buy edges uv, vv′. Lastly, for each edge uv in
G[K2,3], we buy edge uv and arbitrary pair of edges uu′ and vv′, where u′ ≠ v′. Observe
that such edges must exist again as G is 2VC and n ≥ 4.

We now state the following Lemma, which is proven in the full version of the paper.

▶ Lemma 18. Our algorithm computes a feasible FVC solution, APX1, in polynomial time.

By our construction of APX1, |APX1| ≤ |E(D)|+ |K1,1|+ 2|K1,2|+ |K2,2|+ 3
2 |K2,3|. The

following Lemma is clear since |E(D)| ≤ 4
3 (|V (D| − 1), by Lemma 16.

▶ Lemma 19. |APX1| ≤ 4
3 (|V (D)| − 1) + |K1,1|+ 2|K1,2|+ |K2,2|+ 3

2 |K2,3|.

We fix an optimal solution OPT to the instance G = (V, E). The following Lemma provides
a lower bound on |OPT |. The proof can be found in the full version of the paper.

▶ Lemma 20. |OPT | ≥ max{n, |K1,1|+ 2|K1,2|+ |K2,2|+ 3
2 |K2,3|}.
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In the next Lemma show that even with the tools we have already developed, we have
a 5

3 -approximation, answering the question if there exists an approximation factor less
than 2 in the affirmative. We spend the remainder of the section improving on this easier
approximation. The proof can be found in the full version of the paper.

▶ Lemma 21. APX1 is a 5
3 -approximate solution for FVC. Furthermore, if |K1,2|+|K2,3| ≤ 2,

then APX1 is a 4
3 -approximate solution.

2.2 Approximation 2
In this section, we will provide a second algorithm that relies on the vertex sets defined in
Section 2.1, that were computed by our first algorithm. Namely, we are interested in V (D),
K1,1, K1,2, K2,2, and K2,3. This algorithm, when combined with the algorithm of Section 2.1
will achieve a 11

7 -approximation. Applying Lemma 21, we assume that at least one of K1,2
or K2,3 is non-empty, as otherwise we immediately have a 4

3 -approximation algorithm.
As in the previous section, we will rely on the fact that D is constructed as a 2VC subgraph

of G, and the fact that any feasible solution must take edges incident to vertices in K1,1, K1,2,
K2,2, and K2,3. However this time we start by buying a minimal set of edges E′ incident to
K1,1, K1,2, K2,2, and K2,3 that are required for feasibility and then we complement these
edges with a subset of edges of G[D] to obtain a feasible solution APX2. One important
ingredient for our second algorithm is to use the following well-studied problem.

▶ Definition 22 (Maximum Rainbow Connection Problem). Given a (multi-)graph G and a
coloring c : E → N of the edges, find a spanning subgraph of G that minimizes the number of
components, while choosing exactly one edge from each colour.

This problem can be solved to optimality using matroid intersection between the graphic
matroid, and the partition matroid on the colour classes. Furthermore, we remark that
this problem has been studied in the area of Survivable Network Design [13, 20]. In the
following Lemma, which is proven the full version of the paper, we in fact consider a slight
generalization of this problem where the number of isolated vertices is also minimized. This
additional property (minimizing the number of isolated vertices) is a key part of our algorithm
analysis.

▶ Lemma 23. Given an instance of the Maximum Rainbow Connection Problem with (multi)-
graph G = (V, E), with coloring c : E → N. We can find in polynomial time, an optimal
solution P such that the number of isolated vertices (vertices of degree 0) in (V, P ) is minimal
with respect to replacing an edge with another edge of the same colour class.

Our goal with the Maximum Rainbow Connection problem is to more cleverly find a minimal
set E′ than simply taking an arbitrary minimal set of edges incident on at least one vertex
of V \ V (D). Our goal is to select such an E′ that also minimizes the number of connected
components of (V, E′). To do this we use the edges of E that are incident on K1,1, K1,2,
K2,2, and K2,3 to create an instance of Maximum Rainbow Connection Problem (and solve
it with Lemma 23).

We define a set of so-called pseudo-edges Ẽ with endpoints in V (D) (named pseudo-edges
in order to distinguish them from the “real” edges, E), and assign to each pseudo-edge a
unique colour indexed by vertices in K1,2 and pairs of adjacent vertices in K2,3. For every
u ∈ K1,2, and every distinct pair of edges uv1 and uv2 ∈ E, we add pseudo-edge v1v2 to
Ẽ. Assign v1v2 the colour cu. Intuitively, a pseudo-edge xy with colour cv (for example)
corresponds to a path in E from x to v to y.

ESA 2024
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For every ordered pair (u, v) ∈ K2,3 ×K2,3 such that uv ∈ E, we add pseudo-edges to Ẽ

in the following way: (1) for every pair of edges uu′ and vv′ with u′ ≠ v′, we add pseudo-edge
u′v′ to Ẽ. Assign u′v′ the colour cuv. (2) If u is adjacent to safe vertex u′ ∈ V (D), and
for any two neighbours v′

1, v′
2 ∈ V (D) of v (if v has at least two neighbours in V (D)), we

add pseudo-edge v′
1v′

2 to Ẽ. We assign v′
1v′

2 the colours cuv (note v is not adjacent to a safe
vertex since u, v /∈ K2,2). (3) If u is safe, then for every distinct pair of edges uv1 and uv2,
we add pseudo-edge v1v2 to Ẽ. Assign v1v2 the colour cuv.

Again, a pseudo-edge xy with colour cuv corresponds to a path from x to y created by a
minimum selection of the edges incident on x and y of a feasible FVC solution.

Notice that with (V (D), Ẽ) (along with the corresponding edge colours we provide)
describe an instance of the Maximum Rainbow Connection problem. We use Lemma 23 to
compute a solution to the Maximum Rainbow Connection problem, which we denote by P .
Say that P has α many components, and αlarge many components with at least two vertices.
Then we use the following three algorithms one by one to obtain a feasible solution. We
have one last tool we need to provide before we can define for the next step of our algorithm,
which is inspired by techniques employed in [3]. This tool will be useful for letting us decide
which edges of Ẽ to buy.

▶ Definition 24 (Good Cycles). Let Π = (V1, . . . , Vk), k ≥ 2, be a partition of the vertex-set
of a 2VC simple graph G.

A good cycle C of Π is a subset of edges with endpoints in distinct subsets of Π such
that: (1) C is a cycle of length at least 2 in the graph obtained from G by contracting each Vi

into a single vertex one by one ( that is, G/V1/V2/ . . . /Vk); (2) given any two edges of C

incident to some Vi, these edges are incident to distinct vertices of Vi unless |Vi| = 1; (3) C

has an edge incident to at least one Vi with |Vi| ≥ 2, and; (4) |C| = 2 only if both Vi and Vj

incident to C have |Vi|, |Vj | ≥ 2.

The following Lemma allows us to compute good cycles in polynomial time. Its proof
can be found in the full version of this paper.

▶ Lemma 25. Let Π = {V1, . . . , Vk}, k ≥ 2, be a partition of the vertex-set of a 2VC simple
graph G with the following conditions: G[Vi] is connected for all i = 1, . . . , k, with at least
one set of size at least 2. Furthermore, if there is exactly one Vi ∈ Π with |Vi| ≥ 2, then there
are at least two singletons in Π that are adjacent in G.

Then in polynomial time, one can compute a good cycle C of Π.

In our algorithm we will distinguish between connected components that have one vertex
(i.e. singletons) and connected components with at least two vertices. Given a graph H,
we say that a connected component is large if it has at least two vertices. Now we have all
the ingredients required to finalize the description of our approximation algorithm. After
computation of P , we initialize the set that will eventually be our solution as APX2 ← ∅.

Our plan is to gradually build APX2. We have three steps, Algorithm 1, 2 and 3, which
we apply one after another. These algorithms return edge sets S1, S2 and S3, respectively
that will be part of our solution APX2. We now take time to describe these algorithms in
more details.

First we use Algorithm 1, which takes the pseudo-edges P , and find the large components
and a subset X1 of singletons of (V (D), P ), buying a subset of edges, S1, to connect them
into a single component A in (V (D), S1 ∪ P ) using Lemma 25. Upon termination of this
algorithm, we will obtain the additional property that V (D)\V (A) is an independent set
in G.
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Algorithm 1 Buying Good Cycles.

1 Input: pseudo-edges P

2 Let Y denote the singletons of (V (D), P )
3 S1 ← ∅
4 while There is a good cycle C in G[V (D)] with connected components of

(V (D), P ∪ S1) being the vertex partitioning do
5 S1 ← S1 ∪ E(C)
6 A← unique large component of (V (D), S1 ∪ P )
7 Let X1 ← Y ∩ V (A)
8 Return (X1, Y, S1, A)

In Algorithm 2, our goal is to buy a minimal set S2 of edges between V (A) and compute
a subset of V (D)\V (A) (which we denote by X2), such that (V (A) ∪ X2, P ∪ S1 ∪ S2)
has one block. We remark that after termination of this algorithm any vertex of X3 :=
V (D) \ V (A) ∪X2) is a singleton in (V (D), P ∪ S1 ∪ S2)

Algorithm 2 Making Large Component 2VC.

1 Input: Edges S1 ⊆ E, pseudo-edges P , large component A

2 X2, S2 ← ∅
3 while G[V (A) ∪X2] ∪ P has more than one block do
4 Find v ∈ V (D)\(V (A) ∪X2) such that G[V (A) ∪X2 ∪ {v}] ∪ P has fewer blocks

than G[V (A) ∪X2] ∪ P

5 Find edges e1 = vu, e2 = vw ,v ̸= w ∈ V (A), such that
(V (A) ∪X2 ∪ {v}, P ∪ S1 ∪ S2 ∪ {e1, e2}) has fewer blocks than
(V (A) ∪X2, P ∪ S1 ∪ S2)

6 X2 ← X2 ∪ {v}
7 S2 ← S2 ∪ {e1, e2}
8 while There exists an edge e3 = uz ∈ E\S such that (V (A) ∪X2, P ∪ S1 ∪ S2 ∪ {e3})

has fewer blocks than (V (A) ∪X2, P ∪ S1 ∪ S2) do
9 S2 ← S2 ∪ {e3}

10 Return (X2, S2)

In Algorithm 3, the goal is to buy a subset S3 of edges such that (V (D), S1 ∪S2 ∪S3 ∪P )
is a feasible FVC solution on V (D) (i.e. (V (D), S1 ∪ S2 ∪ S3 ∪ P ) is connected and has
no unsafe cut-vertices). For every vertex in v ∈ X3 := V (D)\(V (A) ∪X2) that has a safe
neighbour in V (A) ∪X2, we buy one edge from v to one of its safe neighbour in V (A) ∪X2.
For any other vertex in X3 we buy two distinct edges from it to V (A)∪X2. We define α′

1 as
the number of vertices of X3 that have a safe neighbour, and α′

2 is the number of vertices
of X3 that do not have a safe neighbour. Thus |X3| = α′

1 + α′
2. To maintain a consistent

notation for number of components we define α′ := |X3| = α′
1 + α′

2. Note that this implies,
α = αlarge + |X1|+ |X2|+ |X3| = αlarge + |X1|+ |X2|+ α′.

We finalize our solution for the instance by computing SP , edges with endpoints in
K1,1, K1,2, K2,2, and K2,3, by considering each pseudo-edge ẽ = v1v2 ∈ P . If ẽ has colour cu,
then u ∈ K1,2. We add edges uv1 and uv2 to SP .
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Algorithm 3 Making Solution Feasible.

1 Input: Singletons X2, large component A

2 S3 ← ∅
3 X3 ← V (D)\(V (A) ∪X2)
4 α′

1 ← 0, α′
2 ← 0

5 for every v ∈ X3 do
6 if v is adjacent to safe vertex u ∈ V (A) ∪X2 then
7 S3 ← S3 ∪ {uv}, α′

1 ← α′
1 + 1

8 else
9 Find u, w ∈ V (A) ∪X2 adjacent to v

10 S3 ← S3 ∪ {uv, uw}, α′
2 ← α′

2 + 1

11 Return (X3, S3, α′
1, α′

2)

X1

(a)

u1
v1 X2(b)

c

u2

(c) v1

X3u3

v3

Figure 1 A depiction of the edges and vertex sets found by Algorithms 1, 2, and 3 in V (D). Here
the unsafe vertices are depicted by black circles. In this example there is only one safe vertex, v1 in
the set V (D) that is shown by a square.
(a) The dashed edges are pseudo-edges P found by Lemma 23. Algorithm 1 first computes good
cycle on green edges that merges two large components of pseudo-edges, then it finds the red cycle
that merges the new large component and 2 singletons. X1 = {u1, v1} (b) The yellow edges of the
second figure are found by Algorithm 2 which cover the cut-vertex c in the component. The interior
vertex is X2 = {u2}. (c) The blue edges of the third figure are the edges found by Algorithm 3,
which add edges to the solution that bring u3 and v3 into V (D) form a feasible FVC solution. The
vertex v1 is a safe vertex so we only add one edge (x3v1) incident on v3.

If ẽ has colour cuv, then u, v ∈ K2,3. We add edges to SP in exactly one of the following
ways (breaking ties in an arbitrary but fixed manner): (1) we add uv1, vv2 and uv to SP if
uv1, vv2 ∈ E; (2) we add uv2, vv1 and uv to SP if uv2, vv1 ∈ E; (3) we add uv1, uv2, and uv

to SP if u is safe, and uv1, uv2, uv ∈ E; (4) we add vv1, vv2, and uv to SP if v is safe, and
vv1, vv2, uv ∈ E; (5) we add vv1, vv2, and uu1 to SP if there exist a safe vertex u1 ∈ V (D)
such that uu1 ∈ E, and vv1, vv2 ∈ E, and; (6) we add uv1, uv2, and vu1 to SP if there exist
a safe vertex u1 ∈ V (D) such that vu1 ∈ E, and uv1, uv2 ∈ E.

For every v ∈ K1,1, buy an edge uv ∈ E where u ∈ V (D) is safe. By definition of K1,1, u

exists. Also, for every uv ∈ E(K2,2), if u and v are both adjacent to safe vertices u′ and v′

in V (D), then we buy the edges uu′ and vv′. If at least one of u and v, (wlog say u) is not
adjacent to a safe vertex in V (D), then by definition of K1,2, v must be safe, and v must be
adjacent to a safe vertex v′ ∈ V (D) in G. In this case we buy edges vv′, uv. Observe that
by construction, |SP | = |K1,1|+ 2|K1,2|+ 2|K2,2|+ 3

2 |K2,3|. The output of our algorithm
is APX2 := SP ∪ S1 ∪ S2 ∪ S3. The following Lemma shows that APX2 is feasible, can be
computed in polynomial time, as well as an upper bound on APX2. Its proof can be found
in the full version of this paper.
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▶ Lemma 26. Our algorithm computes a feasible solution APX2 = SP ∪ S1 ∪ S2 ∪ S3, in
polynomial time and |APX2| ≤ |V (D)| − 1 + |SP |+ α− 1− ( α−α′

2 + αlarge

2 + α′
1).

2.3 Approximation Factor
We fix an optimal solution, OPT , for the instance G = (V, E). The following Lemma, proven
in the full version of this paper, finds a set of lower bounds on |OPT | that depend on terms
found by our algorithm, in particular K1,1, K1,2, K2,2, K2,3, α, αlarge, α′

1, and α′
2. We Recall

that |SP | = |K1,1|+ 2|K1,2|+ 2|K2,2|+ 3
2 |K2,3|.

▶ Lemma 27. |OPT | ≥ max{|SP |+ α− 1, 2K1,2 − 2αlarge + α′
1 + 2α′

2, n}.

With Lemma 27, Lemma 19, and Lemma 26 we have the tools necessary to prove Theorem 4.

Proof of Theorem 4. Given instance of (1, 1)-FVC, G = (VS ∪VU , E). We apply Lemma 13
to assume without loss of generality that G does not contain any forbidden cycles and G

is 2VC. We first find solution APX1, and vertex sets D, K1,1, K1,2, K2,2, and K2,3. By
Lemma 18, APX1 is a feasible solution that we obtain in polynomial time. By Lemma 19, we
have |APX1| ≤ 4

3 (|V (D)| − 1) + |K1,1|+ 2|K1,2|+ |K2,2|+ 3
2 |K2,3| = 4

3 (|V (D)| − 1) + |SP |.
Using sets V (D), K1,1, K1,2, K2,2, and K2,3 we apply Lemma 23 to compute a set of

pseudo-edges P on V (D) with α many components and αlarge many large components (at
least 2 vertices). We then apply Algorithms 1, 2, and 3 as described in Section 2.2 to
compute edge sets S1, S2, and S3, as well as α′

1 and α′
2, where α′ = α′

1 + α′
2. We then

find edge set SP by replacing pseudo-edges with corresponding edges, and let APX2 =
SP ∪ S1 ∪ S2 ∪ S3. By Lemma 26 computing APX2 in this way takes polynomial time and
|APX2| ≤ |V (D)| − 1 + |SP |+ α− 1− ( α−α′

2 + αlarge

2 + α′
1).

By Lemma 27, we have |OPT | ≥ max{|SP | + α − 1, 2K1,2 − 2αlarge + α′
1 + 2α′

2, n}.
Therefore, we have min{AP X1,AP X2}

|OP T | is at most:

min{ 4
3 (|V (D)| − 1) + |SP |, |V (D)| − 2 + |SP |+ α− ( α−α′

2 + αlarge

2 + α′
1)}

max{|SP |+ α− 1, 2K1,2 − 2αlarge + α′
1 + 2α′

2, n}
≤ 11

7 .

Where the last inequality will be proven in the full version of this paper. ◀

3 FGC Improvement

The goal of this section is to prove Theorem 3. We use the algorithm described by [8], and
provide a tighter analysis. In particular, their algorithm combines two different algorithms,
and takes the best solution output among the two. Our improvement is based on a better
analysis of the second one.

The lemma below comes from [8], in particular using their first algorithm. The authors
prove the following (see Claim 6.4 of [8]).

▶ Lemma 28 ([8]). Given a FGC instance with optimal solution OPT, one can compute in
polynomial time a solution F1 with |F1| ≤ |OPT ∩ ES |+ 3

2 |OPT ∩ EU |.

The second algorithm used in [8] needs to be described fully, as we modify its analysis.
Algorithm 2. Given a FGC instance defined on a graph G, consider the graph G′′ obtained

from G by duplicating every safe edge in E. Run a β-approximation algorithm for the 2ECSS
problem on G′′, and let F2 be the output. Drop extra copies of safe edges from F2.

The authors prove the following claim (see Claim 6.5 of [8]).
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P1

P2

E1
E2

E3

Figure 2 Here we have an example of a “nice” ear decomposition, consisting of ears E1, E2, E3, P1

and P2, each represented with a different colour or edge shape. Note that the only short ears P1

and P2 are open and “pendant”. That is, the internal vertices are only on their respective ears.

▶ Lemma 29 ([8]). We have |F2| ≤ 2β|OPT ∩ ES |+ β|OPT ∩ EU |.

In order to improve this algorithm we show that one can find a better approximation for
2ECSS if the size of the optimal solution is far enough from n, the number of vertices in G:

▶ Lemma 30. Let G be a 2ECSS instance. One can find in polynomial time a solution APX

of size 2
3 n + 2

3 |OPT | − 2
3 .

Instead of proving Lemma 30, we here prove the following lemma, which assumes the
instance is 2VC. Lemma 30 is proved the full version of this paper by considering the blocks
of G.

▶ Lemma 31. Let G be a 2ECSS instance that is 2VC. One can find in polynomial time a
solution APX of size 2

3 n + 2
3 |OPT | − 2

3 .

Proof. We provide a refined analysis of the algorithm provided in [20].
The authors in [20] first find what they call a “nice” ear decomposition. To define it,

let’s introduce some terminology. The minimum number of ears of 1 one are called trivial,
while ears of length 2 and 3 are called short. A vertex is pendant if it is not an endpoint of
any non-trivial ear, and an ear is pendant if it is non-trivial and all its internal vertices are
pendant. A nice ear decomposition is an ear decomposition with minimum number of even
ears, in which there are no trivial ears, all short ears are pendant, and internal vertices of
distinct short ears are non-adjacent. See Figure 2 for an example of a nice ear decomposition,
and a clarification of short ears. Now consider the nice ear decomposition found in [20] and
let π denote the number of short ears, πi denote the number of ears of length i, and ϕ(G)
denote the number of even length ears.

The authors define two algorithms and take the minimum output of the two. The
first algorithm (see Section 5.3 of [20]) outputs a solution ALG1 which satisfies |ALG1| ≤
3
2 |OPT | − π. The second algorithm simply returns as a solution a nice ear decomposition
(which they show exists for a 2VC graph, and can be computed efficiently). Let us call this
solution ALG2. We now provide a bound on the size of ALG2.

|ALG2| =
∑
i≥2

iπi = 2π2 + 3π3 + 4π4 +
∑
i≥5

iπi

≤ (5
4 + 3

4)π2 + (5
4 · 2 + 1

2)π3 + (5
4 · 3 + 1

4)π4 +
∑
i≥5

5
4(i− 1)πi

≤ 5
4(n− 1) + 3

4π2 + 1
2π3 + 1

4π4 = 5
4(n− 1) + 1

4(π2 + π4) + 1
2(π3 + π2)

≤ 5
4(n− 1) + 1

4ϕ(G) + 1
2π.
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The second to last inequality follows since an ear of length i has i− 1 internal vertices,
and every vertex of the graph but 1 is an internal vertex of exactly one ear. So the algorithm
in [20] returns a solution of size ≤ min{|ALG1|, |ALG2|} ≤ 1

3 |ALG1|+ 2
3 |ALG2| which is

≤1
3

(
3
2OPT − π

)
+ 2

3

(
5
4(n− 1) + 1

4ϕ(G) + 1
2π

)
= 1

2OPT + 5
6(n− 1) + 1

6ϕ(G).

To prove our claim it is enough to show that the latter term is bounded by 4
3 n + 2

3 (x− 1).
For this, we need to employ Theorem 5 of [20] which states that n + ϕ(G)− 1 ≤ |OPT |, and
hence ϕ(G)− 1 ≤ x. We then get

4
3n + 2

3(x− 1)−
(

1
2OPT + 5

6(n− 1) + 1
6ϕ(G)

)
=4

3n + 2
3(x− 1)−

(
4
3n + 1

2x + 1
6ϕ(G)− 5

6

)
= 1

6(x− ϕ(G) + 1) ≥ 0. ◀

We are now ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 28, we have that ALG1 ≤ |OPT ∩ ES |+ 3
2 |OPT ∩ EU |.

Let opt(G′′) be the size of an optimal solution for the 2ECSS instance G′′ considered by
Algorithm 2. It is important to observe that opt(G′′) ≤ 2|OPT ∩ES |+ |OPT ∩EU |. Let us
denote OPTS := OPT ∩ ES and OPTU := OPT ∩ EU . Using Lemma 30, we can see that

|ALG2| ≤
4
3n + 2

3(opt(G′′)− n− 1) ≤ 4
3n + 2

3(2|OPTS |+ |OPTU | − n− 1)

= 2
3(n− 1) + 4

3 |OPTS |+
2
3 |OPTU | ≤ (4

3 + 2
3)|OPTS |+

4
3 |OPTU |.

Thus our algorithm provides a solutions of size at most min{|ALG1|, |ALG2|} which is

≤min
{
|OPTS |+

3
2 |OPTU |,

(
4
3 + 2

3

)
|OPTS |+

4
3 |OPTU |

}
≤3

7(2|OPTS |+
4
3 |OPTU |) + 4

7(|OPTS |+
3
2 |OPTU |) = 10

7 |OPTS |+
10
7 |OPTU |. ◀
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