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Abstract
The problem of finding a maximum 2-matching without short cycles has received significant attention
due to its relevance to the Hamilton cycle problem. This problem is generalized to finding a maximum
t-matching which excludes specified complete t-partite subgraphs, where t is a fixed positive integer.
The polynomial solvability of this generalized problem remains an open question. In this paper, we
present polynomial-time algorithms for the following two cases of this problem: in the first case
the forbidden complete t-partite subgraphs are edge-disjoint; and in the second case the maximum
degree of the input graph is at most 2t − 1. Our result for the first case extends the previous work
of Nam (1994) showing the polynomial solvability of the problem of finding a maximum 2-matching
without cycles of length four, where the cycles of length four are vertex-disjoint. The second result
expands upon the works of Bérczi and Végh (2010) and Kobayashi and Yin (2012), which focused
on graphs with maximum degree at most t + 1. Our algorithms are obtained from exploiting the
discrete structure of restricted t-matchings and employing an algorithm for the Boolean edge-CSP.
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1 Introduction

The matching problem and its generalizations have been one of the most primary topics
in combinatorial optimization, and have been the subject of a large number of studies. A
typical generalization of a matching is a t-matching for an arbitrary positive integer t: an
edge subset M in a graph is a t-matching1 if each vertex is incident to at most t edges in M .

While the problem of finding a t-matching of maximum cardinality can be solved in
polynomial time by a matching algorithm, the problem becomes much more difficult, typically
NP-hard, when additional constraints are imposed. The constraints discussed in this paper is

1 Such an edge set is sometimes called a simple t-matching in the literature, but we omit the adjective
“simple” because in this article a t-matching is always an edge subset and we never put multiplicities on
the edges.
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to exclude certain subgraphs. Let G = (V, E) be a graph and let K be a family of subgraphs
of G. For a subgraph K of G, let V (K) and E(K) denote the vertex set and the edge set of
K, respectively.

▶ Definition 1. An edge subset M ⊆ E is K-free if E(K) ̸⊆ M for any K ∈ K.2

The problem formulated below is the central issue in this paper, whose relevance will be
described in detail in Section 1.1.

Maximum K-Free t-Matching Problem

Given a graph G = (V, E) and a family K of subgraphs of G, find a K-free t-matching M ⊆ E

of maximum cardinality.

Here, we suppose that K is explicitly given as a list of its elements; see Remark 7.
Our primary contributions are the following two theorems, showing the polynomial

solvability of certain classes of Maximum K-Free t-Matching Problem. The first result
concerns the case where K is an edge-disjoint family of t-regular complete partite subgraphs of
G. While we defer the definition to Section 2.1, here we remark that a complete graph Kt+1
and a complete bipartite graph Kt,t are examples of a t-regular complete partite graph.

▶ Theorem 2. For a fixed positive integer t, Maximum K-Free t-Matching Problem
can be solved in polynomial time if all the subgraphs in K are t-regular complete partite and
pairwise edge-disjoint.

In the second result, instead of the edge-disjointness of the subgraphs in K, we assume
that the maximum degree of the input graph G is bounded.

▶ Theorem 3. For a fixed positive integer t, Maximum K-Free t-Matching Problem
can be solved in polynomial time if all the subgraphs in K are t-regular complete partite and
the maximum degree of G is at most 2t − 1.

Theorems 2 and 3 offer larger polynomially solvable classes of Maximum K-Free t-
Matching Problem than the previous results summarized in Section 1.1 below. In addition,
we will describe the relevance of Theorems 2 and 3 to the literature, together with their
extensions and variants in the subsequent sections. Here we just remark that the assumption
on the complete partiteness of the forbidden subgraphs in Theorems 2 and 3 is unavoidable,
because the problem is NP-hard without this assumption (see Proposition 4 below).

1.1 Previous Work on Restricted t-Matchings
Maximum K-Free t-Matching Problem has its origin in the case where t = 2 and K is
composed of short cycles. Let k be a positive integer. If K is the set of all cycles of length at
most k, then a K-free 2-matching is referred to as a C≤k-free 2-matching, and Maximum
K-Free 2-Matching Problem as the C≤k-free 2-matching problem. Similarly, if K is the
set of all cycles of length exactly k, then a K-free 2-matching is referred to as a Ck-free 2-
matching, and Maximum K-Free 2-Matching Problem as the Ck-free 2-matching problem.
The C≤k-free and Ck-free 2-matching problems have attracted significant attention because
of their relevance to the Hamilton cycle problem; for k ≥ |V |/2, a C≤k-free 2-matching of
cardinality |V | is a Hamilton cycle. When k is small, the C≤k-free 2-matching problem is

2 Each forbidden subgraph is not a subgraph isomorphic to K, but a subgraph K itself.
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not directly used to find Hamilton cycles, but it can be applied to designing approximation
algorithms for related problems such as the graph-TSP and the minimum 2-edge-connected
spanning subgraph problem. For example, in a recent paper [16], an approximation algorithm
for the minimum 2-edge-connected spanning subgraph problem is provided using a maximum
C≤3-free 2-matching.

The complexity of the C≤k-free 2-matching problem depends on the value of k. It is
straightforward to see that this problem can be solved in polynomial time for k ≤ 2. For
k = 3, Hartvigsen [8, 10] gave a polynomial-time algorithm for the C≤3-free 2-matching
problem. For k ≥ 5, Papadimitriou proved the NP-hardness of the C≤k-free 2-matching
problem (see [6]).

For the case k = 4, it is open whether the C≤4-free and C4-free 2-matching problems can
be solved in polynomial time, and these problems have rich literature of polynomial-time
algorithms for several special cases. First, for subcubic graphs, i.e., graphs with maximum
degree at most three, polynomial-time algorithms for the C4-free and the C≤4-free 2-matching
problems were given by Bérczi and Kobayashi [3] and Bérczi and Végh [4], respectively. Simpler
algorithms for both problems in subcubic graphs (and for some of their weighted variants) were
designed by Hartvigsen and Li [11] and by Paluch and Wasylkiewicz [23]. It is worth noting
that a connection between the C4-free matching problem and a connectivity augmentation
problem is highlighted in [3], underscoring the significance of the C4-free matching problem.
Second, for the graphs in which the cycles of length four are vertex-disjoint, Nam [22] gave a
polynomial-time algorithm for the C4-free 2-matching problem. Finally, for bipartite graphs,
min-max theorems [7, 9, 13, 14,28] and polynomial-time algorithms [2, 9, 24, 29] were devised.

Let t be an arbitrary positive integer. The Ck-free 2-matching problem is generalized
to Maximum K-Free t-Matching Problem for general t in the following way. Let Kt

denote the complete graph with t vertices, and Kt,t the complete bipartite graph in which
each color class has t vertices (see Section 2.1 for a formal definition). Here, note that a
cycle of length three is isomorphic to K3. Thus, the C3-free 2-matching problem can be
naturally generalized to Maximum K-Free t-Matching Problem, where K is the set
of all subgraphs that are isomorphic to Kt+1. We refer to this special case of Maximum
K-Free t-Matching Problem as the Kt+1-free t-matching problem. Similarly, by noting
that a cycle of length four is isomorphic to K2,2, we can generalize the C4-free 2-matching
problem to the Kt,t-free t-matching problem. This is another special class of Maximum
K-Free t-Matching Problem, where K is the set of all subgraphs isomorphic to Kt,t.

The polynomial solvability of these two problems are open. For certain special cases of
Maximum K-Free t-Matching Problem, however, several polynomial-time algorithms are
presented, corresponding to those for the C≤k-free and Ck-free 2-matching problems. First,
Bérczi and Végh [4] gave a polynomial-time algorithm for Maximum K-Free t-Matching
Problem for the case where K consists of Kt+1’s and Kt,t’s and the input graph G has
maximum degree at most t + 1. This implies that the C≤4-free 2-matching problem in
subcubic graphs can be solved in polynomial time. Second, Kobayashi and Yin [18] presented
a polynomial-time algorithm for Maximum K-Free t-Matching Problem for the case
where K consists of all the subgraphs isomorphic to a fixed t-regular complete partite graph
and the input graph G has maximum degree at most t + 1. Kobayashi and Yin [18] also
proved that this assumption on K is inevitable.

▶ Proposition 4 (follows from Kobayashi and Yin [18]). If H is a connected t-regular graph
which is not complete partite and K is the set of all subgraphs isomorphic to H, then
Maximum K-Free t-Matching Problem is NP-hard even when the maximum degree of
G is at most t + 1 and the subgraphs in K are pairwise edge-disjoint.3

3 Although the edge-disjointness is not explicitly stated in [18], one can see that their NP-hardness proof
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As mentioned above, this NP-hardness explains that the assumption on the complete
partiteness of the forbidden subgraphs in Theorems 2 and 3 is unavoidable.

Finally, for the Kt,t-free t-matching problem in bipartite graphs, polynomial-time algo-
rithms were designed, extending those for the C4-free 2-matching problem in bipartite graphs
(see [27] and references therein).

1.2 Our Contribution
We have seen that the polynomial solvability of the Kt+1-free t-matching and Kt,t-free
t-matching problems is unknown. As well as these problems, the polynomial solvability
of Maximum K-Free t-Matching Problem in general graphs for K being an arbitrary
family of t-regular complete partite subgraphs is unknown. The main contribution of this
paper is polynomial-time algorithms for several classes of this problem, which are described
in Theorems 2 and 3 above.

1.2.1 Implications and Extensions of the Main Theorems
Here we present some implications of Theorems 2 and 3. Recall Theorem 2, solving the case
where K is an edge-disjoint family of t-regular complete partite subgraphs of G. By setting
t = 2, we immediately obtain the following corollary.

▶ Corollary 5. Maximum K-Free 2-Matching Problem can be solved in polynomial time
if all the subgraphs in K are isomorphic to C3 or C4, and are pairwise edge-disjoint.

Corollary 5 extends the result by Nam [22], solving the C4-free 2-matching problem where
the cycles of length four are vertex-disjoint. Namely, Corollary 5 extends vertex-disjointness
to edge-disjointness, and allows K to include not only C4 but also C3.

Next, recall Theorem 3, which solves the case where the maximum degree of the input
graph is at most 2t − 1. Theorem 3 expands upon the works of Bérczi and Végh [4] and
Kobayashi and Yin [18], which focused graphs with maximum degree at most t + 1. That is,
Theorem 3 improves the degree bound from t + 1 to 2t − 1, where 2t − 1 > t + 1 if t > 2.

We then present some extensions of Theorems 2 and 3. Below is one extension of Theorem
2, which will be used in our proof for Theorem 3. The pairwise edge-disjointness of the
subgraphs in K is relaxed to the following condition:
(RD) The subgraph family K is partitioned into subfamilies K1, . . . , Kℓ such that

for each subfamily Ki (i = 1, . . . , ℓ), the number
∣∣⋃

K∈Ki
V (K)

∣∣ of its vertices is
bounded by a fixed constant (under the assumption that t is a fixed constant), and
for distinct subfamilies Ki and Kj (i, j ∈ {1, . . . , ℓ}) and for each pair of subgraphs
K ∈ Ki and K ′ ∈ Kj , it holds that K and K ′ are edge-disjoint.

Here “(RD)” stands for “Relaxed Disjointness.”

▶ Theorem 6. For a fixed positive integer t, Maximum K-Free t-Matching Problem
can be solved in polynomial time if K is a family of t-regular complete partite subgraphs of G

satisfying the condition (RD).

Further results include extensions from t-matchings to b-matchings (Theorems 13, 16,
17, 18, and 20). For a vector b ∈ ZV , a b-matching is an edge subset M ⊆ E such that each
vertex v ∈ V is incident to at most b(v) edges in M . Namely, we can deal with inhomogeneous
degree constraints.

uses only disjoint forbidden subgraphs.
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1.2.2 Technical Ingredients: Jump Systems and Boolean Edge-CSP

Technically, our algorithms are established by exploiting two important previous results, one
is on the discrete structure of K-free t-matchings and the other is on the constraint satisfaction
problem (CSP). This is in contrast to the fact that the previous algorithms [4, 18, 22] are
based on graph-theoretical methods.

The first result is on jump systems, and is outlined as follows. Let b ∈ ZV with b(v) ≤ t

for each v ∈ V and let J ⊆ ZV be the set of the degree sequences of all K-free b-matchings
in G. Kobayashi, Szabó, and Takazawa [17] proved that J forms a constant-parity jump
system if all the subgraphs in K are t-regular complete partite (see Theorem 9 below). Here a
constant-parity jump system is a subset of ZV , which offers a discrete structure generalizing
matroids; see Section 2.2 for the definition.

The second result is on the polynomial-time solvability of a class of the CSP. The Boolean
edge-CSP is the problem of finding an edge subset M ⊆ E of a given graph G = (V, E)
such that the set of edges in M incident to each vertex v ∈ V satisfies a certain constraint
associated with v; see Section 2.3 for formal description. While the Boolean edge-CSP is
NP-hard in general, Kazda, Kolmogorov, and Rolínek [12] showed that this problem can be
solved in polynomial time if the constraint associated with v is described by a constant-parity
jump system for each v ∈ V (see Theorem 12 below).

The most distinctive part of this paper is a reduction of Maximum K-Free t-Matching
Problem to the Boolean edge-CSP. It appears in the proof of Theorem 13 below, which
deals with the problem of finding a K-free b-factor, i.e., a t-matching with specified degree
sequence b ∈ ZV . Here, on the basis of the relationship between K-free b-matchings and
jump systems (Theorem 9), we construct a polynomial reduction of the problem of finding a
K-free b-factor to the Boolean edge-CSP with constant-parity jump system constraints.

Theorem 2 is then derived from Theorem 13. In order to prove Theorem 2, we iteratively
solve subproblems of finding a K-free b-factor. We remark that constant-parity jump systems
play a key role here, as well as the reduction mentioned above. The fact that J is a constant-
parity jump system guarantees that the number of iterations is polynomially bounded by the
input size (see Lemma 11 below). Theorem 6 is proved in the same manner.

We then derive Theorem 3 from Theorem 6 by constructing a subfamily K′ ⊆ K such that
K′ satisfies (RD), a K′-free t-matching exists in G if and only if a K-free t-matching exists in
G, and we can construct a K-free t-matching from a K′-free t-matching in polynomial time.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present the basic definitions
and results in a formal manner. In Section 3, we solve the problem under the assumption
that the subgraphs in K are pairwise edge-disjoint, and then under the relaxed condition
(RD). Section 4 is devoted to a solution to the graphs with maximum degree at most 2t − 1.

2 Preliminaries

Let Z+ denote the set of nonnegative integers, and 0 (resp. 1) denote the all-zero (resp. all-
one) vector of appropriate dimension. For a finite set V , its subset U ⊆ V , and a vector
x ∈ ZV , let x(U) =

∑
u∈U x(u).

ESA 2024
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2.1 Basic Definitions on Graphs
Throughout this paper, we assume that graphs have no self-loops to simplify the description,
while they may have parallel edges. Let G = (V, E) be a graph. For a subgraph H of G,
let V (H) and E(H) denote the vertex set and edge set of H, respectively. For a vertex set
X ⊆ V , let G[X] denote the subgraph induced by X.

Let F ⊆ E be an edge subset and let v ∈ V be a vertex. The set of edges in F incident
to v is denoted by δF (v). If F = E(H) for some subgraph H of G, then δE(H)(v) is often
abbreviated as δH(v). When no confusion arises, δG(v) is further abbreviated as δ(v). The
number of edges incident to v, i.e., |δ(v)|, is referred to as the degree of v. The degree sequence
dF of F ⊆ E is a vector in ZV

+ defined by dF (u) = |δF (u)| for each u ∈ V .
For a positive integer t, a graph is called t-regular if every vertex has degree t. A graph

G = (V, E) is said to be a complete partite graph if there exists a partition {V1, . . . , Vp} of
V such that E = {uv : u ∈ Vi, v ∈ Vj , i ̸= j} for some positive integer p. In other words, a
complete partite graph is the complement of the disjoint union of complete graphs. Each Vi

is called a color class of G.
As defined in Section 1, for a positive integer t, an edge set M ⊆ E is called a t-matching

if dM (v) ≤ t for every v ∈ V . In particular, if dM (v) = t holds for every v ∈ V , then
M is called a t-factor. For a vector b ∈ ZV

+, an edge set M ⊆ E is called a b-matching
(resp. b-factor) if dM (v) ≤ b(v) (resp. dM (v) = b(v)) for every v ∈ V .

In what follows, we deal with the following slightly generalized problems.

K-Free b-Factor Problem

Given a graph G = (V, E), b ∈ ZV
+, and a family K of subgraphs of G, find a K-free b-factor

(if one exists).

Maximum K-Free b-Matching Problem

Given a graph G = (V, E), b ∈ ZV
+, and a family K of subgraphs of G, find a K-free b-matching

with maximum cardinality.

Note that Maximum K-Free t-Matching Problem is a special case of Maximum
K-Free b-Matching Problem, where b(v) = t for each v ∈ V .
▶ Remark 7. In this paper, we only consider the case where K consists of subgraphs of size
bounded by a fixed constant (e.g., t-regular complete partite subgraphs for a fixed integer t,
whose vertex set size is at most 2t). In such a case, since |K| is polynomially bounded by the
size of the input graph, the representation of K does not affect the polynomial solvability of
the problem. Therefore, we suppose that K is explicitly given as the list of its elements.
▶ Remark 8. Let G = (V, E) be a graph, b ∈ ZV

+ with b(v) ≤ t for each v ∈ V , and K a
connected t-regular subgraph of G. We can see that, if a b-matching M ⊆ E of G contains
K, then K forms a connected component of the induced subgraph (V, M) of G by M .

2.2 Jump System
Let V be a finite set. For a subset U ⊆ V , let χU ∈ {0, 1}V denote the characteristic vector
of U , that is, χU (v) = 1 for v ∈ U and χU (v) = 0 for v ∈ V \ U . If U = {u} for an element
u ∈ V , then χ{u} is simply denoted by χu.

For two vectors x, y ∈ ZV , a vector s ∈ ZV is called an (x, y)-increment if s = χu and
x(u) < y(u) for some u ∈ V , or s = −χu and x(u) > y(u) for some u ∈ V . A nonempty set
J ⊆ ZV is said to be a jump system if it satisfies the following exchange axiom (see [5]):
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For any x, y ∈ J and for any (x, y)-increment s with x + s ̸∈ J , there exists an
(x + s, y)-increment t such that x + s + t ∈ J .

In particular, a jump system J ⊆ ZV is called a constant-parity jump system if x(V ) − y(V )
is even for any x, y ∈ J .

Constant-parity jump systems include several discrete structures as special classes. First,
for a matroid with a basis family B, it follows from the exchange property of matroid bases
that {χB : B ∈ B} is a constant-parity jump system. Second, the characteristic vectors of
all the feasible sets of an even delta-matroid form a constant-parity jump system (see [5]).
Finally, for a graph G = (V, E), the set {dF : F ⊆ E} of the degree sequences of all the edge
subsets is also a constant-parity jump system. See [5, 19,20] for details on jump systems.

The following theorem shows a relationship between K-free b-matchings and jump systems.

▶ Theorem 9 (follows from [17, Proposition 3.1]). Let G = (V, E) be a graph, let t be a
positive integer, and let b ∈ ZV

+ be a vector such that b(v) ≤ t for each v ∈ V . For a family
K of complete partite t-regular subgraphs in G, the degree sequences of all K-free b-matchings
in G form a constant-parity jump system.

▶ Remark 10. Theorem 9 is a modest extension of the original statement [17, Proposition 3.1],
in which b(v) = t for each v ∈ V and K is the set of all subgraphs in G that are isomorphic
to a graph in a given list of complete partite t-regular subgraphs. The same proof, however,
works for Theorem 9 as well.

If the degree sequences of all the K-free b-matchings form a constant-parity jump system,
then Maximum K-Free b-Matching Problem reduces to K-Free b-Factor Problem
which is formally stated as follows.

▶ Lemma 11. Let G = (V, E) be a graph, K be a family of subgraphs of G, and let b ∈ ZV
+.

If the degree sequences of all the K-free b-matchings in G form a constant-parity jump system,
then a K-free b-matching in G with maximum cardinality can be computed by testing the
existence of a K-free b′-factor in G for polynomially many vectors b′ ∈ ZV

+ with b′ ≤ b.

Proof. Denote by J ⊆ ZV the constant-parity jump system consisting of the degree sequences
of all the K-free b-matchings in G. Given an initial vector in J , we can maximize a given
linear function over J by using the membership oracle of J at most polynomially many
times [1, 5, 26]. Here, the membership oracle of J is an oracle that answers whether a given
vector is in J or not.

Since an empty edge set is a K-free b-matching, it holds that 0 ∈ J . That is, we can take
0 as the initial vector in J . Now the lemma follows because accessing the membership oracle
of J corresponds to testing the existence of a K-free b′-factor in G. ◀

We here describe a few basic operations on jump systems, which are used in the proofs.

Intersection with a box. A box is a set of the form {x ∈ RV : b ≤ x ≤ b} for some vectors
b ∈ (R ∪ {−∞})V and b ∈ (R ∪ {+∞})V . If J ⊆ ZV is a constant-parity jump system, then
the intersection

J ∩ {x ∈ RV : b ≤ x ≤ b}

of J and a box is also a constant-parity jump system unless it is empty.

ESA 2024
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Minkowski sum. For two sets J1, J2 ⊆ ZV , their Minkowski sum J1 + J2 is a subset of ZV

defined by

J1 + J2 = {x + y : x ∈ J1, y ∈ J2}.

It was shown by Bouchet and Cunningham [5] that the Minkowski sum of two constant-parity
jump systems is also a constant-parity jump system.

Splitting. Let {Uv : v ∈ V } be a family of nonempty disjoint finite sets indexed by v ∈ V ,
and let U =

⋃
v∈V Uv. For a set J ⊆ ZV , we define the splitting of J to U as

J ′ = {x′ ∈ ZU : x′(Uv) = x(v) for each v ∈ V for some x ∈ J}.

The splitting of a constant-parity jump system is also a constant-parity jump system [15,21].

2.3 Boolean Edge-CSP
The constraint satisfaction problem (CSP) is a fundamental topic in theoretical computer
science and has been intensively studied in various fields (see, e.g., [25]).

Let Γ denote a collection of subsets of {0, 1}n for positive integers n, where a subset of
{0, 1}n is referred to as a relation. In this paper, we focus on the Boolean edge-CSP with
respect to Γ, which is formulated as follows.

Boolean Edge-CSP(Γ)

Given a graph G = (V, E) and an edge subset family Fv ⊆ 2δ(v) whose corresponding relation
{χF : F ∈ Fv} belongs to Γ for each vertex v ∈ V , find an edge set M ⊆ E such that
δM (v) ∈ Fv for each v ∈ V (if one exists).

We remark that the relation Fv ⊆ 2δ(v) (v ∈ V ) is not given by membership oracles but
by the list of the edge subsets, and hence the input size is O(|V | + |E| +

∑
v∈V

∑
F ∈Fv

|F |).
Kazda, Kolmogorov, and Rolínek [12] proved that Boolean Edge-CSP(Γ) belongs

to class P if every relation in Γ is an even delta-matroid. For the unity of terminology,
hereafter we refer to an even delta-matroid as a constant-parity jump system, since an even
delta-matroid can be identified with a constant-parity jump system with each coordinate
being in {0, 1}. Let Γcp-jump denote the set of all constant-parity jump systems over the
Boolean domain.

▶ Theorem 12 (Kazda, Kolmogorov, and Rolínek [12]). Boolean Edge-CSP(Γcp-jump) can
be solved in polynomial time.

3 Edge-Disjoint Forbidden Subgraphs

In this section, we consider the case when K is an edge-disjoint family of t-regular complete
partite subgraphs. We first give a polynomial-time algorithm for K-Free b-Factor Problem
by reducing the problem to Boolean Edge-CSP(Γcp-jump) in Theorem 13. Then, by using
this algorithm as a subroutine, we present a polynomial-time algorithm for Maximum K-
Free b-Matching Problem (Theorem 16), which implies Theorem 2. Finally, we prove
the polynomial solvability under the condition (RD) in Theorem 17, which will be used in
the next section.
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rK

Figure 1 The graph on the left shows the edge set E(K) of the t-regular complete partite graph
K by the thick edges, while the thin edges belong to E \ E(K). In this example, K is a 3-regular
complete bipartite graph. The thick edges in the graph on the right depict the newly added three
parallel edges between rK and each vertex v ∈ V (K).

▶ Theorem 13. For a fixed positive integer t, K-Free b-Factor Problem can be solved in
polynomial time if b(v) ≤ t for each v ∈ V and all the subgraphs in K are t-regular complete
partite and pairwise edge-disjoint.

Proof. We prove the theorem by constructing a polynomial reduction to Boolean Edge-
CSP(Γcp-jump). Let (G, b, K) be an instance of K-Free b-Factor Problem, where G =
(V, E), b ∈ ZV

+, and K is a family of subgraphs in G.
Recall that an input of the Boolean edge-CSP consists of a graph and a constraint on each

vertex. Our input graph G′ = (V ′, E′) of the Boolean edge-CSP is constructed as follows
(see also Figure 1):

Introduce a new vertex rK for each K ∈ K, and define the vertex set V ′ by

V ′ = V ∪ {rK : K ∈ K}.

For each K ∈ K and v ∈ V (K), introduce t new parallel edges between rK and v, and let
E′

v,K denote the set of these t new parallel edges. Define the edge set E′ by

E′ =

E ∪
⋃

K∈K

⋃
v∈V (K)

E′
v,K

 \
⋃

K∈K
E(K).

Our input constraint Fv ⊆ 2δG′ (v) (v ∈ V ′) is constructed as follows:
For each subgraph K ∈ K, compute a set DK ⊆ ZV (K)

+ of the degree sequences in the
K-free b-matchings in K, i.e.,

DK =
{

dF ∈ ZV (K)
+ : F is a K-free b-matching in K

}
=
{

dF ∈ ZV (K)
+ : F is a b-matching in K

}
\ {(t, . . . , t)}.

Then, for each vertex v ∈ V ′, define Fv ⊆ 2δG′ (v) by

Fv =
{

{F ′ ⊆ δG′(v) : |F ′| = b(v)} if v ∈ V ,

{F ′ ⊆ δG′(v) : (dF ′(u))u∈V (K) ∈ DK} if v = rK for some K ∈ K.
(1)

Note that each DK and each Fv can be computed efficiently in a brute force way: |V (K)| =
O(t) and hence DK has tO(t) elements for the fixed integer t; and Fv has a polynomial size.

Now we have constructed an instance of the Boolean edge-CSP consisting of G′ = (V ′, E′)
and (Fv)v∈V ′ . We first show the following claim, which implies that this instance actually
belongs to Boolean Edge-CSP(Γcp-jump).
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▷ Claim 14. For each v ∈ V ′, the set {χF ′ ∈ ZδG′ (v) : F ′ ∈ Fv} of the characteristic vectors
of the edge sets in Fv is a constant-parity jump system.

Proof of Claim 14. If v ∈ V , then the claim follows from the fact that Fv is the basis
family of a uniform matroid. Suppose that v = rK for K ∈ K. By applying Theorem 9
with G = K and K = {K}, we obtain that DK is a constant-parity jump system. Now,
{χF ′ ∈ ZδG′ (v) : F ′ ∈ Fv} is obtained from splitting DK to

⋃
u∈V (K) E′

u,K and then taking
the intersection with a box {x ∈ RδG′ (v) : 0 ≤ x ≤ 1}, and thus is a constant-parity jump
system; recall Section 2.2. ◁

It follows from Claim 14 and Theorem 12 that the instance (G′, (Fv)v∈V ′) belongs to
Boolean Edge-CSP(Γcp-jump) and can be solved in polynomial time, respectively. Namely,
we can find an edge set M ′ ⊆ E′ such that

δM ′(v) ∈ Fv for each v ∈ V ′ (2)

or conclude that such M ′ does not exist in polynomial time. In what follows, we show that
the existence of such an edge set M ′ ⊆ E′ is equivalent to the existence of a K-free b-factor
in the original graph G.

▷ Claim 15. The graph G′ has an edge set M ′ ⊆ E′ satisfying (2) if and only if the original
graph G has a K-free b-factor M ⊆ E.

Proof of Claim 15. We first show the sufficiency (“if” part). Let M ⊆ E be a K-free b-factor
in G. We construct an edge set M ′ ⊆ E′ satisfying (2) in the following way. For each
subgraph K ∈ K, let FK ⊆ δG′(rK) be an edge set in G′ composed of exactly dM∩E(K)(u)
parallel edges between u and rK for each vertex u ∈ V (K). Note that such an edge set FK

must exist, because M is a b-factor, b(u) ≤ t, and G′ has t parallel edges between u and rK .
Now define M ′ ⊆ E′ by

M ′ =
(

M \
⋃

K∈K
E(K)

)
∪
⋃

K∈K
FK .

Here we show that this edge set M ′ satisfies (2). If v ∈ V , it holds that δM ′(v) ∈ Fv,
since |δM ′(v)| = |δM (v)| = b(v). Let K ∈ K and v = rK . The fact that M is K-free implies
(dM∩E(K)(u))u∈V (K) ∈ DK . Since dFK

(u) = dM∩E(K)(u) for each vertex u ∈ V (K), it
follows from the definition (1) of FrK

that FK ∈ FrK
, and hence δM ′(rK) = FK ∈ FrK

. We
thus conclude that M ′ satisfies (2).

We next show the necessity (“only if” part). Let M ′ ⊆ E′ be an edge set satisfying (2).
We construct a K-free b-factor M in G in the following manner. For each subgraph K ∈ K,
let FK := δM ′(rK). It follows from (2) that FK ∈ FrK

, namely, there exists a b-matching
NK ⊊ E(K) such that dNK

(u) = dFK
(u) for each vertex u ∈ V (K). Now define M ⊆ E by

M =
(

M ′ \
⋃

K∈K
FK

)
∪
⋃

K∈K
NK .

We complete the proof by showing that M is a K-free b-factor in G. Let v ∈ V be an
arbitrary vertex in G. Since dFK

(u) = dNK
(u) for each K ∈ K and each u ∈ V (K), it holds

that dM (v) = dM ′(v) = b(v), where the last equality follows from δM ′(v) ∈ Fv. We thus
have that M is a b-factor. Furthermore, since NK ⊊ E(K) for each K ∈ K, we conclude that
M is K-free. ◁
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The proof of Claim 15 provides a polynomial-time construction of a K-free b-factor M in
G from an edge set M ′ ⊆ E′ satisfying (2). We thus conclude that the original instance
(G, b, K) of K-Free b-Factor Problem can be solved in polynomial time. ◀

By using Theorem 13, we can give a polynomial-time algorithm for Maximum K-Free
b-Matching Problem under the same assumptions.

▶ Theorem 16. For a fixed positive integer t, Maximum K-Free b-Matching Problem
can be solved in polynomial time if b(v) ≤ t for each v ∈ V and all the subgraphs in K are
t-regular complete partite and pairwise edge-disjoint.

Proof. It follows from Theorem 9 that the set of the degree sequences of all K-free b-matchings
in G is a constant-parity jump system. Therefore, by Lemma 11 and Theorem 13, we can
solve Maximum K-Free b-Matching Problem in polynomial time. ◀

We remark that Theorem 2 is immediately derived from Theorem 16 by setting b(v) = t

for every v ∈ V .
As described in Section 1, the edge-disjointness of the subgraphs in K is relaxed to the

condition (RD).

▶ Theorem 17. For a fixed positive integer t, K-Free b-Factor Problem and Maximum
K-Free b-Matching Problem can be solved in polynomial time if b(v) ≤ t for each v ∈ V

and K is a family of t-regular complete partite subgraphs of G and satisfies the condition
(RD).

Proof. It follows from Theorem 9 and Lemma 11 that Maximum K-Free b-Matching
Problem can also be solved in polynomial time if K-Free b-Factor Problem can. Hence,
below we prove that K-Free b-Factor Problem can be solved in polynomial time in a
similar way to Theorem 13.

Let (G, b, K) be an instance of K-Free b-Factor Problem, where G = (V, E), b ∈ ZV
+,

and K is a family of subgraphs in G satisfying the condition (RD). Let K1, . . . , Kℓ be the
partition of K in the condition (RD).

For each i ∈ {1, . . . , ℓ}, execute the following procedure. Let Hi be the graph defined as
the union of all K ∈ Ki, i.e.,

Hi :=
( ⋃

K∈Ki

V (K),
⋃

K∈Ki

E(K)
)

.

Then,
add a new vertex ri and t parallel edges between ri and v for each v ∈ V (Hi), and remove
the original edges in E(Hi); and
compute a set DHi ⊆ ZV (Hi)

+ of the degree sequences in the Ki-free b-matchings in Hi,
i.e.,

DHi =
{

dF ∈ ZV (Hi)
+ : F is a Ki-free b-matching in Hi

}
.

For each i ∈ {1, . . . , ℓ}, it follows from Theorem 9 that the set DHi
is a constant-parity

jump system. We also remark that DHi can be computed efficiently in a brute force way,
since |V (Hi)| and t are bounded by a fixed constant.

Now, by the same argument as in the proof of Theorem 13, we can solve K-Free
b-Factor Problem in polynomial-time with the aid of Theorem 12. ◀
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4 Degree Bounded Graphs

In this section, we consider the case where the maximum degree of G is at most 2t − 1.

▶ Theorem 18. For a fixed positive integer t, K-Free b-Factor Problem can be solved in
polynomial time if the maximum degree of G is at most 2t − 1, b(v) ≤ t for each v ∈ V , and
all the subgraphs in K are t-regular complete partite.

Proof. If t = 1, then the problem is trivial, because the maximum degree is one and a
t-regular complete partite subgraph must be composed of a single edge. Therefore, it suffices
to consider the case where t ≥ 2.

Without loss of generality, we may assume that each subgraph K ∈ K satisfies

b(v) = t for each vertex v ∈ V (K), (3)

since otherwise we can remove K from K.
Define a vertex subset family X ⊆ 2V by X = {V (K) : K ∈ K}. Construct a subfamily

X ∗ ⊆ X of disjoint vertex subsets in X in the following manner: start with X ∗ = ∅; and
while there exists a set in X disjoint from every set in X ∗, add an inclusionwise maximal one
to X ∗. We denote X ∗ = {X1, X2, . . . , Xℓ}. It follows from the construction that X ∗ ⊆ X
satisfies the following property:

for each X ∈ X \ X ∗, there exists Xi ∈ X ∗ such that X ∩ Xi ̸= ∅ and Xi ̸⊆ X. (4)

For each Xi ∈ X ∗, let Ki = {K ∈ K : V (K) ⊆ Xi} and let Hi be the union of all
subgraphs in Ki, i.e.,

Hi =
(

Xi,
⋃

K∈Ki

E(K)
)

.

Let K∗ =
⋃ℓ

i=1 Ki. Note that K1, . . . , Kℓ form a partition of K∗, and they satisfy the
condition (RD).

By using Theorem 17, in polynomial time, we can find a K∗-free b-factor M in G or
conclude that G has no K∗-free b-factor. In the latter case, we can conclude that G has no
K-free b-factor, because K∗ is a subfamily of K. In the former case, we transform M into a
K-free b-factor as shown in the following claim.

▷ Claim 19. Given a K∗-free b-factor M in G, we can construct a K-free b-factor in
polynomial time.

Proof of Claim 19. For a b-factor M in G, define a subgraph family K(M) by

K(M) = {K ∈ K : E(K) ⊆ M},

the set of forbidden subgraphs included in M . Obviously, M is K-free if and only if K(M) = ∅.
In what follows, given a K∗-free b-factor M , we modify M so that K(M) becomes smaller.

Let M be a K∗-free b-factor and suppose that K(M) ̸= ∅. Then, there exists a subgraph
K ∈ K \ K∗ such that K ∈ K(M), i.e., E(K) ⊆ M . It follows from K ∈ K \ K∗ that
V (K) ∈ X \ X ∗. Then, (4) implies that there exists Xi ∈ X ∗ such that V (K) ∩ Xi ̸= ∅
and Xi ̸⊆ V (K). It holds that Xi = V (K∗) for some K∗ ∈ Ki, which follows from the
construction of X ∗ and the definition of Ki. We thus obtain V (K) ∩ V (K∗) ̸= ∅ and
V (K∗) ̸⊆ V (K).
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V (K) V (K∗)

u

u′ v′

v

e e∗

f

f ′

Figure 2 All of the edges are in E(K∗) and, particularly, all of the solid edges are in M . The
solid bold edge is in E(K∗) ∩ E(K) and the other thin edge is in E(K∗) \ E(K).

Take a vertex u in V (K) ∩ V (K∗). Since |δK(u)| = |δK∗(u)| = t and |δG(u)| ≤ 2t − 1,
there exists an edge e ∈ δK(u) ∩ δK∗(u), in particular e ∈ E(K) ∩ E(K∗). We denote e = uu′.
Note that e ∈ M since E(K) ⊆ M .

Since V (K∗) ̸⊆ V (K), there exists a vertex v ∈ V (K∗) \ V (K). From (3) and K∗ ∈ K,
we obtain |δM (v)| = b(v) = t. It then follows from |δG(v)| ≤ 2t − 1 and |δK∗(v)| = t that
δM (v) ∩ δK∗(v) ̸= ∅, that is, there exists an edge e∗ ∈ δK∗(v) contained in M . We denote
e∗ = vv′. Since K is a connected component of the subgraph induced by M (see Remark 8),
it holds that v′ ∈ V (K∗) \ V (K); see Figure 2.

Since e, e∗ ∈ E(K∗) and K∗ is a complete partite graph, u and u′ are contained in
different color classes of K∗, and so are v and v′. This shows that K∗ contains two edges: uv

and u′v′; or uv′ and u′v. Without loss of generality, assume that f = uv and f ′ = u′v′ are
contained in K∗; see Figure 2 again. Note that f and f ′ are not contained in M , because
δM (u) = δK(u) and δM (u′) = δK(u′) hold.

Define M ′ = (M \ {e, e∗}) ∪ {f, f ′}, which is also a b-factor. In what follows, we prove
that M ′ is the desired K∗-free b-factor, i.e., K(M ′) ⊊ K(M). Since K ̸∈ K(M ′), it suffices to
show that K(M ′) ⊆ K(M).

Assume to the contrary that there exists a subgraph K ′ ∈ K(M ′) \ K(M). Then, K ′

must contain at least one of f and f ′, and without loss of generality assume that f ∈ E(K ′).
Since K − e is connected by t ≥ 2 and M ′ contains (E(K) \ {e}) ∪ {f} by e∗ /∈ E(K), it
follows from Remark 8 that V (K) ∪ {v} is contained in K ′, in particular u, u′, v ∈ V (K ′).

Since all the edges in δM (u′) are contained in K and v ̸∈ V (K), M has no edge connecting
u′ and v, and neither does M ′. It then follows from K ′ ∈ K(M ′), i.e., E(K ′) ⊆ M ′, that
u′v ̸∈ E(K ′). Since e is the only edge in M connecting u and u′, we have uu′ ̸∈ M ′, which
implies that uu′ ̸∈ E(K ′). It now follows from u′v, uu′ ̸∈ E(K ′) that u, u′ and v are contained
in the same color class of K ′, since K ′ is complete partite. This contradicts the fact that K ′

contains f = uv, and thus we conclude that K(M ′) ⊊ K(M).
By repeating the above procedure, we obtain a b-factor M with K(M) = ∅, i.e., M is

K-free. It is straightforward to see that this procedure can be executed in polynomial time,
which completes the proof. ◁

Therefore, we conclude that K-Free b-Factor Problem can be solved in polynomial
time. ◀

From Theorem 18, we can derive the following theorem by applying the same argument
as Theorem 16.

▶ Theorem 20. For a fixed positive integer t, Maximum K-Free b-Matching Problem
can be solved in polynomial time if the maximum degree of G is at most 2t − 1, b(v) ≤ t for
each v ∈ V , and all the subgraphs in K are t-regular complete partite.

From Theorem 20, we immediately obtain Theorem 3 by setting b(v) = t for every v ∈ V .

ESA 2024



75:14 Finding a Maximum Restricted t-Matching via Boolean Edge-CSP

References
1 Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh. A greedy algorithm for minimizing

a separable convex function over a finite jump system. Journal of the Operations Research
Society of Japan, 38(3):362–375, 1995. doi:10.15807/jorsj.38.362.

2 Maxim A. Babenko. Improved algorithms for even factors and square-free simple b-matchings.
Algorithmica, 64:362–383, 2012. doi:10.1007/s00453-012-9642-6.

3 Kristóf Bérczi and Yusuke Kobayashi. An algorithm for (n − 3)-connectivity augmentation
problem: Jump system approach. Journal of Combinatorial Theory, Series B, 102:565–587,
2012. doi:10.1016/j.jctb.2011.08.007.

4 Kristóf Bérczi and László A. Végh. Restricted b-matchings in degree-bounded graphs. In
F. Eisenbrand and B. Shepherd, editors, Integer Programming and Combinatorial Optimization:
Proceedings of the 14th IPCO, LNCS 6080, pages 43–56. Springer, 2010. doi:10.1007/
978-3-642-13036-6_4.

5 André Bouchet and William H. Cunningham. Delta-matroids, jump systems, and bisub-
modular polyhedra. SIAM Journal on Discrete Mathematics, 8:17–32, 1995. doi:10.1137/
S0895480191222926.

6 Gérard Cornuéjols and William Pulleyblank. A matching problem with side conditions.
Discrete Mathematics, 29:135–159, 1980. doi:10.1016/0012-365X(80)90002-3.

7 András Frank. Restricted t-matchings in bipartite graphs. Discrete Applied Mathematics,
131:337–346, 2003. doi:10.1016/S0166-218X(02)00461-4.

8 David Hartvigsen. Extensions of Matching Theory. PhD thesis, Carnegie Mellon University,
1984.

9 David Hartvigsen. Finding maximum square-free 2-matchings in bipartite graphs. Journal of
Combinatorial Theory, Series B, 96:693–705, 2006. doi:10.1016/j.jctb.2006.01.004.

10 David Hartvigsen. Finding triangle-free 2-factors in general graphs. Journal of Graph Theory,
available online, 2024. doi:10.1002/jgt.23089.

11 David Hartvigsen and Yanjun Li. Maximum cardinality simple 2-matchings in subcubic graphs.
SIAM Journal on Optimization, 21:1027–1045, 2011. doi:10.1137/090760416.

12 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and the
complexity of planar boolean CSPs. ACM Transactions on Algorithms, 15(2):22:1–22:33, 2019.
doi:10.1145/3230649.

13 Zoltán Király. C4-free 2-factors in bipartite graphs. Technical Report TR-2001-13, Egerváry
Research Group, 1999. www.cs.elte.hu/egres.

14 Zoltán Király. Restricted t-matchings in bipartite graphs. Technical Report QP-2009-04,
Egerváry Research Group, 2009. www.cs.elte.hu/egres.

15 Yusuke Kobayashi, Kazuo Murota, and Ken’ichiro Tanaka. Operations on M-convex functions
on jump systems. SIAM Journal on Discrete Mathematics, 21(1):107–129, 2007. doi:10.1137/
060652841.

16 Yusuke Kobayashi and Takashi Noguchi. An approximation algorithm for two-edge-connected
subgraph problem via triangle-free two-edge-cover. In Satoru Iwata and Naonori Kakimura,
editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December
3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 49:1–49:10. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ISAAC.2023.49.

17 Yusuke Kobayashi, Jaćint Szabó, and Kenjiro Takazawa. A proof of Cunningham’s conjecture
on restricted subgraphs and jump systems. Journal of Combinatorial Theory, Series B,
102:948–966, 2012. doi:10.1016/J.JCTB.2012.03.003.

18 Yusuke Kobayashi and Xin Yin. An algorithm for finding a maximum t-matching excluding
complete partite subgraphs. Discrete Optimization, 9:98–108, 2012. doi:10.1016/J.DISOPT.
2012.02.003.

19 László Lovász. The membership problem in jump systems. Journal of Combinatorial Theory,
Series B, 70(1):45–66, 1997. doi:10.1006/jctb.1997.1744.

https://doi.org/10.15807/jorsj.38.362
https://doi.org/10.1007/s00453-012-9642-6
https://doi.org/10.1016/j.jctb.2011.08.007
https://doi.org/10.1007/978-3-642-13036-6_4
https://doi.org/10.1007/978-3-642-13036-6_4
https://doi.org/10.1137/S0895480191222926
https://doi.org/10.1137/S0895480191222926
https://doi.org/10.1016/0012-365X(80)90002-3
https://doi.org/10.1016/S0166-218X(02)00461-4
https://doi.org/10.1016/j.jctb.2006.01.004
https://doi.org/10.1002/jgt.23089
https://doi.org/10.1137/090760416
https://doi.org/10.1145/3230649
https://doi.org/10.1137/060652841
https://doi.org/10.1137/060652841
https://doi.org/10.4230/LIPICS.ISAAC.2023.49
https://doi.org/10.1016/J.JCTB.2012.03.003
https://doi.org/10.1016/J.DISOPT.2012.02.003
https://doi.org/10.1016/J.DISOPT.2012.02.003
https://doi.org/10.1006/jctb.1997.1744


Y. Iwamasa, Y. Kobayashi, and K. Takazawa 75:15

20 Kazuo Murota. M-convex functions on jump systems: A general framework for minsquare
graph factor problem. SIAM Journal on Discrete Mathematics, 20(1):213–226, 2006. doi:
10.1137/040618710.

21 Kazuo Murota. On basic operations related to network induction of discrete convex functions.
Optimization Methods and Software, 36(2-3):519–559, 2021. doi:10.1080/10556788.2020.
1818080.

22 Yunsun Nam. Matching Theory: Subgraphs with Degree Constraints and Other Properties.
PhD thesis, University of British Columbia, 1994.

23 Katarzyna Paluch and Mateusz Wasylkiewicz. A simple combinatorial algorithm for restricted
2-matchings in subcubic graphs - via half-edges. Information Processing Letters, 171:106146,
2021. doi:10.1016/j.ipl.2021.106146.

24 Gyula Pap. Combinatorial algorithms for matchings, even factors and square-free 2-factors.
Mathematical Programming, 110:57–69, 2007. doi:10.1007/s10107-006-0053-9.

25 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

26 Akiyoshi Shioura and Ken’ichiro Tanaka. Polynomial-time algorithms for linear and convex
optimization on jump systems. SIAM Journal on Discrete Mathematics, 21(2):504–522, 2007.
doi:10.1137/060656899.

27 Kenjiro Takazawa. A weighted Kt,t-free t-factor algorithm for bipartite graphs. Mathematics
of Operations Research, 34:351–362, 2009. doi:doi.org/10.1287/moor.1080.0365.

28 Kenjiro Takazawa. Decomposition theorems for square-free 2-matchings in bipartite graphs.
Discrete Applied Mathematics, 233:215–223, 2017. doi:10.1016/j.dam.2017.07.035.

29 Kenjiro Takazawa. Finding a maximum 2-matching excluding prescribed cycles in bipartite
graphs. Discrete Optimization, 26:26–40, 2017. doi:10.1016/j.disopt.2017.05.003.

ESA 2024

https://doi.org/10.1137/040618710
https://doi.org/10.1137/040618710
https://doi.org/10.1080/10556788.2020.1818080
https://doi.org/10.1080/10556788.2020.1818080
https://doi.org/10.1016/j.ipl.2021.106146
https://doi.org/10.1007/s10107-006-0053-9
https://doi.org/10.1137/060656899
https://doi.org/doi.org/10.1287/moor.1080.0365
https://doi.org/10.1016/j.dam.2017.07.035
https://doi.org/10.1016/j.disopt.2017.05.003

	1 Introduction
	1.1 Previous Work on Restricted t-Matchings
	1.2 Our Contribution
	1.2.1 Implications and Extensions of the Main Theorems
	1.2.2 Technical Ingredients: Jump Systems and Boolean Edge-CSP

	1.3 Organization

	2 Preliminaries
	2.1 Basic Definitions on Graphs
	2.2 Jump System
	2.3 Boolean Edge-CSP

	3 Edge-Disjoint Forbidden Subgraphs
	4 Degree Bounded Graphs

