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Abstract
In the Steiner Tree problem we are given an undirected edge-weighted graph as input, along with a
set K of vertices called terminals. The task is to output a minimum-weight connected subgraph that
spans all the terminals. The famous Dreyfus-Wagner algorithm running in 3|K|poly(n) time shows
that the problem is fixed-parameter tractable parameterized by the number of terminals. We present
fixed-parameter tractable algorithms for Steiner Tree using structurally smaller parameterizations.

Our first result concerns the parameterization by a multiway cut S of the terminals, which is a
vertex set S (possibly containing terminals) such that each connected component of G − S contains
at most one terminal. We show that Steiner Tree can be solved in 2O(|S| log |S|)poly(n) time and
polynomial space, where S is a minimum multiway cut for K. The algorithm is based on the insight
that, after guessing how an optimal Steiner tree interacts with a multiway cut S, computing a
minimum-cost solution of this type can be formulated as minimum-cost bipartite matching.

Our second result concerns a new hybrid parameterization called K-free treewidth that simul-
taneously refines the number of terminals |K| and the treewidth of the input graph. By utilizing
recent work on H-Treewidth in order to find a corresponding decomposition of the graph, we
give an algorithm that solves Steiner Tree in time 2O(k)poly(n), where k denotes the K-free
treewidth of the input graph. To obtain this running time, we show how the rank-based approach for
solving Steiner Tree parameterized by treewidth can be extended to work in the setting of K-free
treewidth, by exploiting existing algorithms parameterized by |K| to compute the table entries of
leaf bags of a tree K-free decomposition.
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1 Introduction

Steiner Tree is a famous problem in algorithmic graph theory [9, 22, 26]. In this problem,
we are given an undirected edge-weighted graph G and a set K of terminal vertices that we
need to connect using edges of the graph. The goal is to find a minimum-weight connected
subgraph that spans all these terminals, commonly known as a Steiner tree. The problem has
a wide array of applications in industry, such as telecommunications, designing integrated
circuits, molecular biology, and object detection (e.g., [15, 21, 22, 27, 28]).

Since the Steiner Tree problem is NP-hard, we cannot hope to design an exact
polynomial-time algorithm for this problem [19]. However, a popular approach is to bound
the running time not just in terms of the input size n, but to also take the influence of a
secondary measurement k (referred to as the parameter) into account. In particular, we
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are interested in parameters that allow for fixed-parameter tractable (FPT) algorithms, i.e.,
algorithms that run in time f(k) · poly(n) where n is the size of the input, k the parameter,
and f(·) some computable function. One of the most natural parameters to consider for
Steiner Tree is |K|, the number of terminals. The famous algorithm by Dreyfus and
Wagner [10] computes a minimum Steiner tree of an n-vertex graph in time 3|K| · poly(n)
using exponential space, which was later improved by several authors [13, 23]. In particular,
Fomin, Kaski, Lokshtanov, Panolan, and Saurabh [12] present an algorithm that runs in
single-exponential time 7.97|K| · poly(n) and uses polynomial space. Another commonly-used
parameter for Steiner Tree is the treewidth tw(G) of the input graph G, which measures
its structural similarity to a tree. A straight-forward dynamic program solves the problem in
time 2O(tw(G) log tw(G))poly(n). Using representative sets, a single-exponential running time
of 2O(tw(G))poly(n) can be obtained (cf. [8]).

For many other combinatorial problems on graphs, including graph modification problems
such as Vertex Cover and Odd Cycle Transversal, a lot of effort has been invested
into developing FPT algorithms using structurally smaller parameterizations than standard
measures of solution size or treewidth [1, 2, 11, 14, 17]. But to the best of our knowledge,
no previous papers present FPT algorithms for Steiner Tree using parameterizations
structurally smaller than the number of terminals. As our main contributions, we identify
two relevant terminal-aware refined parameterizations for Steiner Tree and develop
corresponding FPT algorithms.

Multiway cut. The first parameter we consider is the size of a (node) multiway cut for the
terminals, i.e., a set of vertices S ⊆ V (G) such that every connected component of G − S

contains at most one terminal. Since S is allowed to contain terminals, any instance has
a multiway cut of size |K| − 1. In general, the size of a minimum multiway cut can be
arbitrarily much smaller than |K|. We show that we can solve Steiner Tree in FPT time
and polynomial space when we parameterize it by the size of a multiway cut for the terminals.

▶ Theorem 1.1. There is a polynomial-space algorithm that, given as input a graph G with
weight function cost : E(G) → N, a set of terminals K ⊆ V (G), and a multiway cut S for K,
outputs a minimum-weight Steiner tree in time 2O(|S| log |S|)poly(n).

Our algorithm handles graphs whose weights are encoded in binary, as opposed to some
other algorithms in the literature ([23, 24]) whose running time scales linearly with the value
of the largest weight. The assumption that a multiway cut S for K is given as input is
not restrictive, as a minimum multiway S cut for K can be found in 4|S|poly(n) time and
polynomial space1, due to an algorithm by Chen, Liu, and Lu [6]. Theorem 1.1 improves upon
an elementary exponential-space algorithm with the same running time that was presented
in a master’s thesis supervised by the first author [29].

K-free treewidth. The second parameterization we utilize refines the size of a multiway
cut. To motivate the parameter, consider the following one-player game on a graph G with
terminal vertices K. In each round, one vertex is removed from each connected component.
The game ends when each connected component contains at most one terminal. If there is a
multiway cut S = {s1, . . . , sk} of size k, then the game can be won in at most k rounds by
choosing vertex si in round i (or earlier, if not all remaining vertices of S belong to the same

1 The algorithm from Chen, Liu, and Lu [6] is a bounded-depth branching algorithm, branching on
important separators, making it a polynomial-space algorithm.
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connected component). The minimum number of rounds needed is therefore never larger
than the size of a minimum multiway cut. It can be arbitrarily much smaller: if deletions
early in the game split the graph into multiple components, these are handled “in parallel”
in subsequent rounds of the game.

For technical reasons, it will be convenient to consider the variation of the game that only
ends when all terminals have been removed from the graph, rather than ending when all
terminals are separated. The number of rounds needed to win the latter variation is at most
one more than the original: all terminals belong to different components when the original
game ends, so at that point one additional round can delete one vertex from each connected
component to eliminate all the terminals. Let edK(G, K) (the elimination distance to a
K-free graph) denote the minimum number of rounds needed to eliminate all terminals from
the graph. The previous discussion shows that if S is a multiway cut for K in G, then we
have edK(G, K) ≤ |S| + 1 ≤ |K|; hence it is a refined parameterization for Steiner Tree.
The exponential dependence of our second algorithm can be bounded in terms of edK(G, K).
But there is an even smaller parameterization, called K-free treewidth, that can be used
to upper-bound the running time of the second algorithm we present. To introduce it, we
briefly summarize an analogous range of parameterizations for vertex-deletion problems.

Our refined parameterizations for Steiner Tree are inspired by recent work on parame-
terized algorithms for H-Deletion, which asks to find a minimum vertex set X in an input
graph G that ensures G − X belongs to graph class H. The Odd Cycle Transversal
problem is a prime example, which arises by letting H be the class bip of bipartite graphs.
Recent work on H-Deletion [1, 2, 11, 17, 18] has focused on improving parameterizations by
the size of the deletion set X to parameterizations in terms of the elimination distance edH(G)
to H, which is the minimum number of rounds needed to obtain a graph in H when removing
one vertex from each connected component in each round. One of the results from this
direction of work shows that Odd Cycle Transversal can be solved in time 2O(k)poly(n),
where k = edbip(G) [18]. Through work of Bulian and Dawar [5], it is known that the concept
of elimination distance is related to the treedepth [25] of a graph G: the treedepth is the
minimum number of rounds needed to eliminate all vertices.

The famous graph parameter treewidth is never larger than treedepth, but can be much
smaller. Eiben et al. [11] proposed the notion of H-treewidth, where H is a class of graphs.
Roughly speaking, the H-treewidth twH(G) of a graph G can be defined in terms of the
minimum cost of a tree decomposition of a certain kind, in which (potentially large) leaf bags
that induce a subgraph belonging to H do not contribute to the cost. Hence H-treewidth
captures how efficiently a graph can be decomposed into subgraphs belonging to H along
small separators in a treelike manner. It is known [17, Lemma 2.4] that twH(G) ≤ edH(G)
for all graphs G, so that the resulting parameterization refines the H-elimination distance. At
the same time, twH(G) is not larger than the standard treewidth of G, so that the resulting
parameterization is a hybrid [2] of standard treewidth and the solution size for H-deletion.
In their work on H-treewidth, Jansen, de Kroon and Włordarczyk [17] suggested that it
may be interesting to explore variations of this parameter in the context of a set of terminal
vertices. This is the route we pursue for Steiner Tree.

We complete the analogy between hybrid parameterizations for H-Deletion and our
parameterizations for Steiner Tree by introducing a notion called K-free treewidth, de-
noted twK(G, K) for a graph G with terminal set K. While we defer formal definitions to Sec-
tion 3, it intuitively captures how efficiently the input graph can be decomposed into terminal-
free subgraphs along small separators in a tree-like manner. Using the correspondence between
treewidth and treedepth, it follows that twK(G, K) ≤ edK(G, K) ≤ |S| + 1 ≤ |K| where S is
a minimum multiway cut. Our second main result shows that the resulting parameterization
admits an algorithm whose running time and space usage are single-exponential.
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S
s1 s2 s3 s4 s5 s6 s7

k1 k2 k3 k4 k5 k6

Figure 1 The multiway cut S = {s1, s2, s3, s4, s5, s6, s7} ensures that no two terminals (squares)
belong to the same connected component of G − S. The gray areas indicate the set S and the
components of G − S. The lines are a visual representation of a Steiner tree F for the terminals,
split at S, such that F is partitioned into three trees of category 1 (solid trees, note the solid tree
between s5 and s6), one tree of category 2 (dotted trees) and five paths of category 3 (dashed paths).

▶ Theorem 1.2. (⋆) There is an algorithm that takes as input a graph G with weight
function cost : E(G) → N, and a set K ⊆ V (G) of terminals, that computes a minimum-
weight Steiner tree in 2O(twK (G,K))poly(n) time and space.

Theorem 1.2 shows that optimal solutions to Steiner Tree can still be found efficiently in
inputs that can be decomposed into terminal-free (but potentially dense and large) subgraphs
along small separators. The single-exponential dependence on twK(G, K) in the running time
of our algorithm is optimal under the Exponential Time Hypothesis [16], and matches the
single-exponential running times of the current-best algorithms parameterized by the number
of terminals |K| [12, 24] or treewidth [4]. Hence Theorem 1.2 shows that the generality of
the refined parameter twK does not incur a significant computational overhead.

Techniques. Both of our algorithms utilize a subroutine to solve Steiner Tree for a small
set of terminal vertices. The manner in which these subroutine results are employed differs
greatly between the two, however.

We first sketch the main idea behind Theorem 1.1, which aims to find a minimum Steiner
tree by utilizing a known multiway cut S. We can partition the edges of any minimum
Steiner tree F by splitting F at the vertices of the multiway cut S (see Figure 1), such that
any tree F ′ in the resulting partition intersects with at most one component of G − S and
falls into one of the following categories:
1. F ′ is a minimum-weight Steiner tree for a subset of S,
2. F ′ is a minimum-weight Steiner tree for a subset of S and exactly one k ∈ K, or
3. F ′ is a minimum-weight path from a terminal k ∈ K to some vertex of S.

There can never be two or more vertices from K \ S in a single tree F ′, as these terminals
live in different components of G − S. Note that the paths of category 3 can be found quickly
by computing a shortest path. Moreover, we prove that the Steiner trees of categories 1
and 2 are Steiner trees for a vertex set of size at most |S| + 1, hence we can compute the
minimum weights of such Steiner trees in polynomial space with the algorithm by Fomin,
Kaski, Lokshtanov, Panolan, and Saurabh [12].

We introduce the notion of S-connecting system to characterize how a Steiner tree F

interacts with the set S. Intuitively, an S-connecting system records which types of trees F ′ (in
terms of the classification above) arise when splitting F at S, and which vertices from S∪K are
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connected by these trees. The algorithm will iterate over all 2O(|S| log |S|) distinct S-connecting
systems. For each such system, we can compute an edge-weighted bipartite graph B such
that an optimal Steiner tree consistent with the S-connecting system corresponds to a
minimum-weight maximum matching in B. The edge-weights in B are weights of optimal
Steiner trees of category 1 or 2. By exploiting the fact that each tree F ′ obtained by splitting
an optimal tree F at S involves only few terminals, each bipartite graph B can be computed
in single-exponential time.

For Theorem 1.2, the algorithm builds upon the 2O(tw(G))poly(n) time algorithm from
Bodlaender, Cygan, Kratsch, and Nederlof [4]. Recall that any node x of a rooted tree
decomposition can be associated with a subgraph Gx, which contains all subgraphs of its
children. Note that its bag χ(x) ⊆ V (G) is the boundary of Gx, i.e., the only vertices
of Gx that can have neighbors outside Gx belong to χ(x). The algorithm goes over the tree
decomposition, keeping track of possible partial solutions, which are Steiner trees restricted to
the subgraph Gx. Instead of storing actual partial solutions, the algorithm stores how these
partial solution are connected to the boundary in the form of partitions. In principle, this
could lead to tw(G)O(tw(G)) different partitions that would need to be stored as any bag χ(x)
is of size at most tw(G) + 1 by definition. However, using the rank-based approach [4], one
only needs to keep a representative set of partitions of size at most 2tw(G); we sketch the
main ideas in the following paragraph.

To obtain an algorithm parameterized by twK(G, K), for the parts of the decomposition
corresponding to small separators we can use the same techniques as employed for standard
treewidth. For the parts of the decomposition that are large, the decomposition ensures us
that terminals can only lie on the boundary. Hence, there are only twK(G, K) + 1 terminals
in Gx for such nodes x and we can use the Dreyfus-Wagner algorithm [10] to obtain a
fixed-parameter tractable algorithm to compute partial solutions of Gx. Since there might
be twK(G, K)O(twK (G,K)) partial solutions, this does not directly yield a single-exponential
running time. To obtain Theorem 1.2, we apply the rank-based approach for these nodes, by
iteratively increasing the set of vertices of the boundary that are used by considered partial
solutions. As far as we know, our algorithm is the first to incorporate advanced dynamic-
programming ideas such as the rank-based approach with hybrid graph decompositions. To
obtain a decomposition to which we can apply this scheme, we show that a recent FPT
5-approximation to compute H-treewidth [18] can be leveraged for K-free treewidth.

Organization. We give the polynomial-space algorithm of Theorem 1.1 in Section 2. In
Section 3 we formally define K-free treewidth and give an FPT 5-approximation. In Section 4
we prove Theorem 1.2, i.e., we give a single-exponential algorithm for Steiner Tree when
parameterized by K-free treewidth. We conclude in Section 5.

We use standard terminology for graphs and parameterized algorithms. Terms not defined
here can be found in a textbook [7]. We write [m] for {1, ..., m} and define min{∅} = ∞. The
proofs of statements marked by (⋆) are deferred to the full version due to space constraints.

2 Polynomial-space algorithm parameterized by multiway cut

In this section, we will consider Steiner Tree parameterized by the size of a given multiway
cut S for the terminal set K. In other words, each connected component of G − S contains
at most one terminal. Note that S can contain terminals.

ESA 2024
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2.1 S-connecting systems
The following concept is the main focus of this section.

▶ Definition 2.1 (S-connecting system). Consider a graph G and S ⊆ V (G). An S-connecting
system in G is a tuple (S, T ), where S = {S1, S2, . . . , Sm} is a collection of subsets of S and
T is a tree, such that:
1. V (T ) = S ∪ {u1, . . . , um}, for m = |S|;
2. for all i ∈ [m] we have Si = NT (ui) ⊆ S and dT (ui) > 1; and
3. for all distinct s, s′ ∈ S it holds that if {s, s′} ∈ E(T ), then {s, s′} ∈ E(G).

We will use the following notion of self-reachable to describe that vertices are part of a
common connected component.

▶ Definition 2.2 (Self-reachable). Consider a graph G and S ⊆ V (G). The set S is self-
reachable in G if S is contained in a single connected component of G, i.e., when there is a
path in G between any pair of vertices s, s′ ∈ S.

Intuitively, if S is a multiway cut for terminal set K in graph G, and F is a Steiner tree
for K containing all vertices of S, then there is an S-connecting system S that represents
the interaction between the Steiner tree F and the multiway cut S. The tree T of this
S-connecting system can be obtained from F by contracting each tree of F − S into a single
vertex, while removing the degree-1 vertices of the resulting tree that do not belong to S.
Definition 2.1 ensures the corresponding set S is uniquely determined by T . We say that the
tree F realizes the resulting S-connecting system (S, T ).

The following lemma follows from the definitions by a simple induction. It shows
that when H is a subgraph of G in which each set Si of an S-connecting system (S =
{S1, . . . , Sm}, T ) is self-reachable, then the connectivity structure of the tree T ensures that
the entire set S is self-reachable.

▶ Lemma 2.3. Let (S, T ) be an S-connecting system and let H ⊆ G be a subgraph of G

such that for all i ∈ [m], the set Si is self-reachable in H. Then S is self-reachable in
H ′ = H ∪ T [S].

Proof. We prove that any pair {s, s′} of vertices from S is self-reachable in H, by induction
on the distance from s to s′ in T . Note that the base case is evidently true, as for distance 0
we have s = s′. Consider an arbitrary pair {s, s′} and let ℓ be the distance between them
in T ; the induction hypothesis is that any pair from S whose distance in T is less than ℓ, is
self-reachable in H ′.

Let s = x0, x1, . . . , xℓ = s′ be a path in T from s to s′. If xℓ−1 ∈ S, we find by induction
that {s, xℓ−1} is self-reachable in H ′. Moreover, {xℓ−1, s′} ∈ E(T [S]) so {s′′, s′} ∈ E(H ′)
and we find that {xℓ−1, s′} is self-reachable in H ′. Hence, {s, s′} is self-reachable in H ′.

If xℓ−1 ̸∈ S, then by definition of S-connecting system, we see that xℓ−2 ∈ S as
xℓ−1 can then only contain vertices from S as its neighbors. Moreover, since we have
xℓ−2, s′ ∈ NT (xℓ−1) we find that xℓ−2, s′ ∈ Si for some i ∈ [m]. By assumption, Si is
self-reachable in H ′, so in particular {xℓ−2, s′} is self-reachable in H ′. Again by induction
we find that {s, xℓ−2} is self-reachable in H ′. Hence, {s, s′} is self-reachable in H ′. ◀

Next, we will prove that there are at most 2O(|S| log |S|) different S-connecting systems.
For this, we first prove the following claim, bounding the size of S.

▶ Lemma 2.4. Let G be a graph and S ⊆ V (G). Any S-connecting system (S, T ) in G

satisfies |S| ≤ |S| − 1.



B. M. Jansen and C. M. Swennenhuis 76:7

Proof. Let (S, T ) be an S-connecting system. Let S = {S1, . . . , Sm}; we prove that m ≤
|S| − 1. Let V (T ) = S ∪ {u1, . . . , um} such that NT (ui) = Si for all i ∈ [m]. Root T at
an arbitrary vertex s∗ ∈ S. Note that for any i ∈ [m], ui is not a leaf of T and has only
neighbors in S by definition of the S-connecting system. Hence, every ui is a parent of at
least one s ∈ S \ {s∗}. Since every s ∈ S has at most one parent we find m ≤ |S| − 1. ◀

▶ Lemma 2.5. For any graph G and vertex set S ⊆ V (G), there are at most 2O(|S| log |S|)

different S-connecting systems.

Proof. Consider an arbitrary S-connecting system (S, T ) in G. Item 1 of Definition 2.1
ensures that |V (T )| ≤ |S| + |S|, while Lemma 2.4 ensures |S| ≤ |S| − 1. Hence |V (T )| ≤
2|S| − 1. By Cayley’s formula, there are nn−2 different labeled trees on n vertices. Therefore,
the number of different choices for T is bounded by

∑2|S|−1
i=1 ii−2 ≤ (2|S|−1) (2|S| − 1)2|S|−3,

i.e., by 2O(|S| log |S|). By Definition 2.1, the collection S is uniquely determined by T . ◀

2.2 The algorithm
Before we present Theorem 1.1, we describe at a high level how S-connecting systems
facilitate a reduction to bipartite matching. The starting observation is that, by trying all
possible subsets of the multiway cut S, we may assume that the Steiner tree we are looking
for contains all vertices of S. The connectivity pattern of each Steiner tree with respect
to S can then be summarized by an S-connecting system. To assemble a Steiner tree that
realizes a given S-connecting system, a naïve approach is the following: pick a shortest path
from each terminal to S, and for each subset Si of the S-connecting system, pick a subtree
containing Si to make Si self-reachable. This approach leads to some redundancy: we might
be able to re-use some edges if the path used to connect a terminal tp to S, shares some
edges with a subtree that makes a subset Si self-reachable.

Due to S being a multiway cut, a tree of G − S that makes a subset Si self-reachable can
live in only one component of G − S, and can therefore only involve at most one terminal.
For each choice of terminal tp and subset Si, we can use the polynomial-space FPT algorithm
for Steiner Tree parameterized by |K| [12] to compute the cost of a tree making {tp} ∪ Si

self-reachable, and compare it to the shortest-path distance between tp and the closest vertex
of S to see how much we would benefit from combining the task of making tp reachable
from S with the task of making Si self-reachable. As each terminal can only be involved in
making one set Si self-reachable, we now see a weighted bipartite matching problem appear:
we are looking for a pairing of sets Si with terminals tp so that the overall savings, compared
to making each terminal individually reachable from S by a shortest path and separately
adding a subtree making each Si self-reachable into the Steiner tree, are as large as possible.

These ideas are formalized in the proof of the following theorem.

▶ Theorem 1.1. There is a polynomial-space algorithm that, given as input a graph G with
weight function cost : E(G) → N, a set of terminals K ⊆ V (G), and a multiway cut S for K,
outputs a minimum-weight Steiner tree in time 2O(|S| log |S|)poly(n).

Proof. Consider the multiway cut S. Let C1, . . . , Cq denote the vertex sets of the connected
components of G − S, so that each Cp contains at most one terminal. For a vertex set X,
we denote by δ(X) the set of edges of G that have exactly one endpoint inside X. Hence
for p ∈ [q], each edge of δ(Cp) has one endpoint in Cp and one endpoint in S. We define
kp := Cp ∩ K for all p ∈ [q].

ESA 2024
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In our algorithm, we will guess which vertices S′ ⊆ S will be used by the Steiner
tree. For each such guess for S′, we will consider all possible S′-connecting systems (S, T ).
For each such system, we create a weighted complete bipartite graph B with partition
V (B) = {S} ∪ {P} where P = {(p, j) : p ∈ {1, . . . , q}, j ∈ {0, . . . , |S|}}. For each p ∈ [q] we
define Gp as G[Cp] ∪ δ(Cp), i.e., the graph induced on Cp together with the edges between
Cp and S. The goal is to find a minimum-weight maximum matching in B, which represents
how each set Si ∈ S is self-reachable. If Si is matched with (p, 0), it indicates that the
subtree making Si self-reachable is contained in Gp, and that kp is contained in this subtree.
If Si is matched with (p, j) for j > 0, it indicates that the subtree making Si self-reachable is
contained in Gp (not necessarily using terminal kp if it exists). Note that the specific value
of j does not carry any meaning, but we need to be able to use Gp multiple (and at most
|S|) times to make different sets in S self-reachable.

To determine the weights of B, we have to solve several Steiner Tree problems in
succession. Let MST[H, X] denote an arbitrary minimum-cost Steiner tree for terminal set
X in graph H and let MST[H, X] = ∅ if no such Steiner tree exists. Moreover, for X ⊆ V (G)
and k ∈ V (G) we refer to SP[X, k] as an arbitrary shortest path from k to some vertex of
X and we set SP[X, k] = ∅ if no such path exists. We extend this notation for the sets kp

defined above, which are either singletons or empty. If kp = {tp} is a singleton set containing
a terminal, we let SP[X, kp] = SP[X, tp]. If kp = ∅, then SP[X, kp] = ∅.

Some of the edges of B can have infinite weight, indicating that a certain Steiner tree
does not exist. We define a cost function ω for the edges of B as follows. For all Si ∈ S and
p ∈ [q] we set

ω(Si, (p, 0)) =


∞ if SP[S′, kp] = ∅,

cost(MST[Gp, Si ∪ {kp}]) − cost(SP[S′, kp]) else if Cp ∩ K ̸= ∅,

∞ otherwise,

and for all Si ∈ S, p ∈ [q], and j ∈ [|S|] we set

ω(Si, (p, j)) = cost(MST[Gp, Si]).

Note that each of these values can be computed in polynomial space and 2O(|S′|)poly(n)
time using the algorithm by Fomin, Kaski, Lokshtanov, Panolan, and Saurabh [12]. Since
the bipartite graph B is of polynomial size, we can construct B in polynomial space and
2O(|S′|)poly(n) time. We claim that we can reconstruct a Steiner tree, based on a minimum-
weight maximum matching of B, if its weight is finite.

▷ Claim 2.6. (⋆) Consider S′ ⊆ S such that K ∩ S ⊆ S′, with an S′-connecting system
(S, T ). Let M be a minimum-weight maximum matching of B of finite weight. Then a
Steiner tree TM for terminals K can be constructed in poly(n) time with

cost(TM ) ≤ ω(M) + cost(T [S′]) +
∑
k∈K

cost(SP[S′, k]).

We are now ready to present our algorithm. For all S′ ⊆ S such that S ∩ K ⊆ S′, for all
S′-connecting systems (S, T ), construct the weighted complete bipartite graph B as above.
Then compute a minimum-weight maximum matching M of B. Using Claim 2.6 we construct
a Steiner tree if the weight of M is finite in polynomial time. Finally, the algorithm outputs
the minimum-weight Steiner tree found during this process.
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The algorithm runs in 2O(|S| log |S|)poly(n) time and polynomial space: we consider 2|S|

different sets S′, for each there are at most 2O(|S′| log |S′|) different S′-connecting systems by
Lemma 2.5. Computing the weights of B then takes 2O(|S′|)poly(n) time and polynomial
space using the algorithm by Fomin, Kaski, Lokshtanov, Panolan, and Saurabh [12]. Finding
a minimum-cost maximum matching of B takes poly(n) time and space. Constructing a
Steiner tree based on M takes only polynomial time and space. It remains to prove that the
output of the algorithm is a minimum Steiner tree.

▷ Claim 2.7. (⋆) The algorithm outputs a minimum-weight Steiner tree.

This concludes the proof of Theorem 1.1. ◀

3 Tree K-free-decompositions

In this section we formally define K-free treewidth as the minimum width of a tree K-free-
decomposition. We also show how to compute a 5-approximation in FPT time.

The definition of K-free treewidth closely resembles the notion of tree H-decomposition
that inspired it [11, 18]. The difference lies in the parts of the decomposition that do not
contribute to the cost. Throughout this section, K can be any set of vertices. However, we
will use K as the set of Steiner Tree terminals in the rest of this paper.

▶ Definition 3.1 (Tree K-free-decomposition). For a graph G and a set K ⊆ V (G), a tree
K-free-decomposition of graph G is a triple (T, χ, L) where L ⊆ V (G), T is a rooted tree,
and χ : V (T) → 2V (G), such that:
(K.A) for each v ∈ V (G), the nodes in {x : v ∈ χ(x)} form a non-empty connected subtree

of T,
(K.B) for each edge uv ∈ E(G), there is a node x ∈ V (T) with {u, v} ⊆ χ(x),
(K.C) for each v ∈ L, there is a unique x ∈ V (T) with v ∈ χ(x), and x is a leaf of T,
(K.D) for each node x ∈ V (T), we have χ(x) ∩ L ∩ K = ∅.
The width of a tree K-free-decomposition (T, χ, L) is defined as max{0, maxx∈V (T) |χ(x) \
L| − 1}. The K-free-treewidth of a graph G, denoted twK(G, K), is the minimum width of a
tree K-free-decomposition of G.

The first two items in this definition ensure that the pair (T, χ) forms a valid (standard)
tree decomposition. The vertex set L, which must be disjoint from the terminal set K,
corresponds to the vertices in terminal-free subgraphs that are not decomposed further.
Each vertex from L occurs in exactly one bag, which is a leaf of T. The vertices from L

do not contribute to the cost of the decomposition, which corresponds to the fact that the
sets χ(t) ∩ L of leaf nodes t can represent arbitrarily large terminal-free subgraphs. To
obtain the definition of H-treewidth for a fixed graph class H, it suffices to omit K from the
definition and replace condition (K.D) by the requirement that for each node x ∈ V (T), the
graph G[χ(x) ∩ L] belongs to H.

▶ Theorem 3.2. (⋆) There is an algorithm that takes an input graph G, vertex set
K ⊆ V (G), integer k, and either computes a tree K-free-decomposition of width at most
5k + 5 consisting of O(n) nodes, or correctly concludes that twK(G, K) > k. The algorithm
runs in time 2O(k) · poly(n) and polynomial space.

Proof sketch. Jansen, de Kroon, and Włodraczyk [18] recently showed that a 5-approxi-
mation to H-treewidth can be computed in single-exponential time, provided that H is a
hereditary and union-closed graph class for which H-Deletion has a single-exponential
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FPT algorithm parameterized by solution size. We transform the input graph G with its
terminal set K into a graph Ĝ by subdividing each edge of G and attaching a triangle onto
each terminal vertex ki ∈ K via two new degree-two vertices k′

i, k′′
i . The subdivisions ensure

that the connectivity structure of the graph remains unchanged but turns triangles into
6-cycles. Hence the only triangles of Ĝ correspond to the terminal vertices K. We show that
for the class H of triangle-free graphs, the H-treewidth of Ĝ is closely related to the K-free
treewidth of G. Since Triangle-Free Deletion parameterized by solution size is FPT
via bounded-depth branching, the above-mentioned approach gives a 5-approximation for
triangle-free treewidth on Ĝ. Using the correspondence between triangle-free treewidth of Ĝ

and K-free treewidth of G, this yields the desired algorithm. ◀

3.1 Nice tree K-free-decompositions
Many algorithms using standard tree decompositions use nice tree decompositions (e.g., [7]).
We will use a very similar notion of a nice tree K-free-decomposition, where every non-leaf
node of a rooted tree decomposition (T, χ) is one of five types:

join node: a node x with exactly two child nodes c1, c2, with χ(x) = χ(c1) = χ(c2).
vertex introduce node: a node x that introduces a vertex v ∈ V (G) has exactly one
child node c, such that χ(x) = χ(c) ∪ {v} with v ̸∈ χ(c).
vertex forget node: a node x that forgets a vertex v ∈ V (G) has exactly one child
node c, such that χ(x) = χ(c) \ {v} with v ∈ χ(c).
edge introduce node: a node x that introduces an edge {u, v} has exactly one child
node c, such that χ(x) = χ(c) and {u, v} ⊆ χ(x).
leaf introduce node: a node x that has exactly one child node c that is a leaf, such
that χ(x) = χ(c) \ L.

We say that in a leaf node c, all edges of G[χ(c) \ L] are introduced. In a leaf introduce
node x with child node c, all remaining edges (i.e., all edges of G[χ(x)] except those in
G[χ(c) \ L]) are introduced. We require that every edge is introduced exactly once in the
whole decomposition. We use the notation Gx to denote the subgraph of G with V (Gx) the
union of all bags of descendants of x in T and E(Gx) the edges that are introduced by node
x or a descendant of x.

Note that we can transform any tree K-free-decomposition into a nice tree K-free-
decomposition, in almost exactly the same way as transforming a standard tree decompo-
sition into a nice tree decomposition (cf. [7, Lemma 7.4], [20]). First we apply the usual
transformations on the interior of T, i.e.we ensure that T is binary and introduce / forget at
most one vertex per bag. Note that we only introduce edges that are not part of G[χ(x)] for a
leaf x ∈ V (T). Then, we will do the following transformation for each leaf c ∈ V (T): Remove
the edge between c and its parent p and add a node x as a child of p and a parent of c. Set
χ(x) = χ(c) \ L. Now x is a leaf introduce node, introducing the leaf c. This ensures all the
properties of a nice tree decomposition without increasing the width of the decomposition.

4 Single-exponential time algorithm parameterized by K-free
treewidth

In order to obtain a single-exponential algorithm even though the number of partitions of a
size-k set is super-exponential in k, we use the rank-based approach by Bodlaender, Cygan,
Kratsch, and Nederlof [4]. The main idea behind this approach is to derive single-exponential
rank bounds for matrices that encode which pairs of “solutions” combine into a full solution.
These bounds imply that any set of partial solutions can be trimmed down to a representative
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subset of single-exponential size while providing the following guarantee: if the original
set contained a partial solution that can be extended to an optimal full solution, then the
representative set still contains such a partial solution.

We start making these ideas concrete for Steiner Tree. Given a node x of a tree
K-free decomposition (T, χ, L) of the input graph G obtained via Theorem 3.2, we will work
bottom-up in the decomposition tree. For each node x ∈ V (T) we compute a set of partial
solutions in the associated graph Gx defined in Section 3.1, using the previously computed
data for the children of x. During this process, we decide which partial solutions in Gx to
keep based on their behaviour on the boundary, i.e., on χ(x). Roughly speaking, a partial
solution corresponds to a subgraph F of Gx containing all vertices of K ∩ V (Gx). The
subgraph F does not have to be connected, but if it is disconnected then each connected
component contains a vertex of χ(x). The behavior of F can be summarized by a partition
of the vertices of χ(x) ∩ V (F ) based on their spread over connected components of F : two
vertices u, v ∈ χ(x) ∩ V (F ) are in the same set of the partition if and only if they are in a
common connected component of F . To work with representative sets of partial solutions,
we therefore need some terminology to work with partitions. We view a partition of a set U

as a set of disjoint subsets of U whose union is U .

▶ Definition 4.1. For a finite set U we use Π(U) to denote the set of all partitions of U .
For P, Q ∈ Π(U) we denote by P ⊔ Q the join of partitions P and Q in the partition lattice,
which can be obtained as follows. Let GP (resp. GQ) be a graph on vertex set U whose
connected components partition U according to P (resp. Q). Then P ⊔ Q corresponds to the
partition of U formed by the connected components of the union GP ∪ GQ. This implies that
for every A ∈ P ∪ Q there exists A′ ∈ P ⊔ Q such that A ⊆ A′.

Using this notation, we can introduce the concept of a set R of partial solutions repre-
senting another A. To facilitate the discussion of our algorithm, we will work with partial
solutions of two types. The most intuitive form consists of subgraphs F of Gx as described
above. A more succinct representation of the essential information can be obtained by
encoding each such subgraph F as a pair (P, w), where P is the partition it induces on
the boundary vertices and w is the integer giving the total cost of the edges in F . From
this perspective, the objects stored in a set of partial solutions consist of pairs (P, w). The
following definition captures the idea of two partial solutions together forming a full solution:
they merge together to provide a subgraph consisting of a single connected component
whenever the partition representing the combined connectivity information consists of a
single set containing the entire boundary.

▶ Definition 4.2 (Definition 3.4 from [4]). For a universe U and two sets A, R ⊆ {(P, w) :
P ∈ Π(U) ∧ w ∈ N}, we say that R represents A if for all Q ∈ Π(U) we have

min{w : (P, w) ∈ A ∧ P ⊔ Q = {U}} = min{w : (P, w) ∈ R ∧ P ⊔ Q = {U}}.

Bodlaender et al. [4] showed that a representative set R can be computed by finding a
basis of a suitable matrix of rank 2|U |−1. We can therefore bound the size of R by 2|U |−1.

▶ Proposition 4.3 (Theorem 3.7 from [4]). There is an algorithm that given a universe U

and a set A ⊆ {(P, w) : P ∈ Π(U) ∧ w ∈ N} in time 2O(|U |)poly(|A|) finds a set R ⊆ A of
size at most 2|U |−1, that represents A.

We slightly adjust this proposition to also work for storing subgraphs (i.e., partial
solutions) as representative sets, instead of partitions. This facilitates the presentation of the
remainder of the algorithm. For this purpose, we define how to map subgraphs to partitions.
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X
x1 x2 x3 x4 x5 x6 x7 x8

Figure 2 In this example we have X = {x1, . . . , x8}. The lines are a visual representation
of a subgraph F of G, the graph G itself is not drawn. For this subgraph F we have πF (X) =
{{x1}, {x2, x3, x4, x5}, {x6, x7}, {x8}}.

▶ Definition 4.4. For a graph G, a set X ⊆ V (G), and F ⊆ G a subgraph of G, let πF (X)
be the partition of X such that:

any u ∈ X \ V (F ), we have {u} ∈ πF (X),
for any u, v ∈ X ∩ V (F ), vertices u and v are in the same set of πF (X) if and only if u

and v belong to a common connected component of F .

See Figure 2 for an example of a subgraph F and the partition πF (X). Observe that if C

is a connected component of F and H = F \ C, then πF (X) = πH(X) ⊔ πC(X); we will use
this fact later. Next, we adjust the definition of representing to work for subgraphs. We
use {F ⊆ G} to denote the set of all subgraphs of a graph G.

▶ Definition 4.5. Given an edge-weighted graph G, a vertex set Z ⊆ V (G), and two sets of
subgraphs B, R ⊆ {F ⊆ G}, we say that R represents B on Z if for all Q ∈ Π(Z) we have

min{cost(F ) : F ∈ B ∧πF (Z)⊔Q = {Z}} = min{cost(F ) : F ∈ R∧πF (Z)⊔Q = {Z}}. (1)

The given definitions support the following straight-forward extension of Proposition 4.3,
which facilitates computing representative subsets of partial solutions stored as subgraphs.
The computation works with respect to any choice of vertex set Z as boundary. The fact
that Z is not necessarily a separator in G is crucial for its later use.

▶ Corollary 4.6. Consider an edge-weighted graph G and a subset of the vertices Z ⊆ V (G).
For a given set of subgraphs B ⊆ {F ⊆ G}, we can find in 2O(|Z|)poly(|B|) time a set R ⊆ B
of size at most 2|Z|−1 that represents B on Z.

We now present the main ingredient for applying the rank-based approach for K-free
treewidth. It will be used to compute the table entries of the leaf-introduce vertices of the
tree K-free decomposition.

▶ Lemma 4.7. Given as input an edge-weighted n-vertex graph G and two disjoint subsets
of vertices Y ⊆ V (G) and Z ⊆ V (G) with Z ̸= ∅, we can compute in 2O(|Z|) · poly(n) time a
set R(Z) ⊆ F(Z) = {F ⊆ G[Z ∪ Y ]} such that:

|R(Z)| ≤ 2|Z|−1, and
R(Z) represents F(Z) on Z.

Proof. We want to find a representative set for all possible subgraphs in G[Y ∪ Z]. For this
purpose, we build F(Z) by increasing the size of Z, while maintaining the bounded size of
F(Z). Order the elements of Z arbitrarily, i.e., let Z = {z1, . . . , zk}. Let Zi = {z1, . . . , zi} be
the first i elements of Z and define F(Zi) = {F ⊆ G[Zi ∪ Y ]}. We will iteratively compute
sets R(Zi) ⊆ F(Zi) with the following properties:
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|R(Zi)| ≤ 2|Z|−1, and
R(Zi) represents F(Zi) on Z.

We set R(∅) = {∅}. To compute R(Zi) from R(Zi−1) we execute the following steps.
1. Initialize B(Zi) = R(Zi−1).
2. For all F ∈ R(Zi−1), for all T ⊆ Zi such that zi ∈ T , compute a minimum-cost Steiner

tree FT for terminals T in G[Zi ∪ Y ] in 2O(|Z|)poly(n) time using the Dreyfus-Wagner
algorithm [10]. Add F ∪ FT to B(Zi).

3. Compute a representative set R(Zi) ⊆ B(Zi) with |R(Zi)| ≤ 2|Z|−1 using Corollary 4.6.

The resulting set R(Zk) = R(Z) is given as the output. The main work happens in
Step 2. For each of the |R(Zi−1)| ≤ 2|Z|−1 choices for F , there are at most 2|Z| choices
for T . Hence we invoke the Dreyfus-Wagner algorithm 2O(|Z|) times for a terminal set of
size |T | ≤ |Z|. The resulting set B(Zi) has size 2O(|Z|), so that Corollary 4.6 also runs in
time 2O(|Z|)poly(n) for each of the k + 1 ∈ O(n) choices of i. The run-time bound follows.

We prove correctness by induction over i. For the base case i = 0, we argue that R(∅)
satisfies the two conditions. The set F(Z0) = F(∅) only contains subgraphs F of G[Y ]
and for any of these we have πF (Z) = {{z1}, {z2}, . . . , {zk}} since Y ∩ Z = ∅. Hence, the
only Q ∈ Π(Z) satisfying πF (Z) ⊔ Q = {Z} is Q = {{Z}}. Since for F = ∅ we have
πF (Z) ⊔ Q = {Z}, we find that R(∅) = {∅} is a representative set for F(∅) on Z.

For the case i > 0, first note that any time we add a subgraph F ∪ FT to B(Zi) in
Step 2, we have F ∈ R(Zi−1) ⊆ F(Zi−1) ⊆ F(Zi), and FT ⊆ G[Zi ∪ Y ]. Hence their
union is a subgraph of G[Zi ∪ Y ]. Therefore, Ri(Z) ⊆ Bi(Z) ⊆ F(Zi). Moreover, we have
|R(Zi)| ≤ 2|Z|−1 because we constructed it using Corollary 4.6. All that remains to show is
that R(Zi) represents F(Zi) on Z, i.e., for all Q ∈ Π(Z) we have the following.

min{cost(F ) : F ∈ F(Zi) ∧ πF (Z) ⊔ Q = {Z}} = min{cost(F ) : F ∈ R(Zi) ∧ πF (Z) ⊔ Q = {Z}}

As R(Zi) ⊆ F(Zi) we directly see that the left-hand side is at most the right-hand side.
For the other direction, fix Q ∈ Π(Z) and choose F ∈ F(Zi) that minimizes the left-hand
side. Let C be the connected component of F containing zi (possibly C = ∅). Let H = F \ C.
Note that H ∈ F(Zi−1) as now H ⊆ G[Zi−1 ∪ Y ]. Take Q′ = πC(Z) ⊔ Q. We find that

πH(Z) ⊔ Q′ = πH(Z) ⊔ πC(Z) ⊔ Q = πF (Z) ⊔ Q = {Z}.

Using induction, we find that there exists H ′ ∈ R(Zi−1) such that πH′(Z) ⊔ Q′ = {Z}
and cost(H ′) = cost(H) = cost(F ) − cost(C). The algorithm at one point considered H ′ and
T = V (C) ∩ Z in Step 2, and added H ′ ∪ FT to B(Zi). Note that

πH′∪FT
(Z) ⊔ Q = πH′∪FT

(Z) ⊔ Q ⊔ πC(Z) as FT connects V (C) ∩ Z

= πH′∪FT
(Z) ⊔ Q′ by definition of Q′

= {Z}. as πH′(Z) ⊔ Q′ = {Z}

Using Proposition 4.3, we find that there exists a subgraph F ′ ∈ R(Zi) such that
F ′ ⊔ Q = {Z}. To bound its cost, note that cost(FT ) ≤ cost(C) as FT is a minimum-cost
Steiner tree in G[Zi ∪ Y ] for terminal set T and C is a candidate solution. Then we derive

cost(F ′) = cost(H ′ ∪ FT ) ≤ cost(H ′) + cost(FT ) = cost(F ) − cost(C) + cost(FT )
≤ cost(F ) − cost(C) + cost(C) = cost(F ).

Hence, F ′ shows that the left-hand side of the equation is greater than or equal to the
right-hand side. This concludes the proof of Lemma 4.7. ◀
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We can use Lemma 4.7 to solve Steiner Tree in 2O(twK (G,K))poly(n) time. In the
full version, we give a self-contained presentation of the existing [4] rank-based dynamic-
programming algorithm for Steiner Tree parameterized by treewidth – thereby correcting
some small issues from the literature – and show how Lemma 4.7 allows it to be extended
for K-free treewidth. It leads to a proof of Theorem 1.2.

5 Conclusion

In this paper, we show that it is possible to design FPT algorithms for Steiner Tree when
the considered parameter is structurally smaller than the number of terminals. For this
purpose, we have extended the definitions of H-treewidth and H-elimination distance to
terminal-free variants of these parameters.

Our polynomial-space algorithm for Steiner Tree parameterized by multiway cut is
slightly superexponential, due to the number of different S-connecting systems. Is it possible
to design an algorithm for Steiner Tree parameterized by |S| that uses both polynomial
space and single-exponential FPT time?

Another direction for future research is to apply such terminal-aware parameterizations
to other problems that rely on terminals. An obvious example is Multiway Cut itself.
Another problem to consider is Shortest K-Cycle, where one is given an undirected graph
and a set of terminals K and asked to find a simple cycle that goes through all terminals.
Björklund, Husfeldt, and Taslaman [3] give a 2|K|poly(n) time algorithm for this problem.
Is it fixed-parameter tractable parameterized by K-free treewidth? The same question can
be asked for the Subset Traveling Salesperson Problem (Subset TSP), which asks
for a minimum-weight tour visiting a given subset K of terminal vertices. Many techniques
developed for Steiner Tree parameterized by treewidth also apply to Hamiltonian
Cycle and other variants of TSP [4, 8]; we expect that our techniques for terminal-aware
parameterizations can be extended for Subset TSP.
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