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Abstract
We present several near-linear algorithms for problems involving visibility over a 1.5-dimensional
terrain. Concretely, we have a 1.5-dimensional terrain T , i.e., a bounded x-monotone polygonal
path in the plane, with n vertices, and a set P of m points that lie on or above T . The visibility
graph V G(P, T ) is the graph with P as its vertex set and {(p, q) | p and q are visible to each other}
as its edge set. We present algorithms that perform BFS and DFS on V G(P, T ), which run in
O(n log n + m log3(m + n)) time.

We also consider three optimization problems, in which P is a set of points on T , and we erect
a vertical tower of height h at each p ∈ P . In the first problem, called the reverse shortest path
problem, we are given two points s, t ∈ P , and an integer k, and wish to find the smallest height h∗

for which V G(P (h∗), T ) contains a path from s to t of at most k edges, where P (h∗) is the set of
the tips of the towers of height h∗ erected at the points of P . In the second problem we wish to
find the smallest height h∗ for which V G(P (h∗), T ) contains a cycle, and in the third problem we
wish to find the smallest height h∗ for which V G(P (h∗), T ) is nonempty; we refer to that problem
as “Seeing the most without being seen”. We present algorithms for the first two problems that run
in O∗((m + n)6/5) time, where the O∗(·) notation hides subpolynomial factors. The third problem
can be solved by a faster algorithm, which runs in O((n + m) log3(m + n)) time.
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1 Introduction

Let T = (v1, . . . , vn) be a 1.5-dimensional terrain, that is, a bounded x-monotone polygonal
line with v1, . . . , vn as vertices in this left-to-right order. For any two points a, b on or above
T , we say that a and b see each other if every point on the line segment ab is either on or
above T . Let P be a set of m points that lie on or above T . The visibility graph V G(P, T ) is
defined as the graph whose set of vertices is P , and whose edges are all the pairs (u, v), for
u, v ∈ P , such that u and v are mutually visible; see Figure 1(a).

In this paper we consider several problems on visibility graphs. These problems are
Breadth-First Search (BFS), Depth-First Search (DFS), and graph emptiness. Since V G(P, T )
can have a quadratic number of edges, we need to replace the standard algorithms, whose
running time depends on the number of edges, by algorithms whose performance only depends
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Figure 1 (a) The visibility graph V G(P, T ). (b) The visibility graph V G(P (h), T ) for a set of
towers of height h.

on the number m of graph vertices, and on n. Somewhat surprisingly, we obtain algorithms
that run in near-linear time. Specifically, in Section 2 we present an algorithm for running
BFS on V G(P, T ), which runs in O(n log n+m log3(m+n)) time. A fairly routine adaptation
of this algorithm, given in Section 4, yields an algorithm for running DFS on V G(P, T ), with
the same running time bound.

We also consider several optimization problems on visibility graphs, each related to one
of the preceding problems. For this, we assume that P is a set of m points on T . For
a real parameter h > 0, we erect a tower of height h at each p ∈ P , which is a vertical
line segment of length h whose bottom endpoint is p. We denote the tip of the tower as
p(h) = p + (0, h), and denote by P (h) the set of all tower tips. We then consider the
graph V Gh(P, T ) = V G(P (h), T ) (see Figure 1(b)), and study various optimization problems
associated with this graph, in which we want to find the smallest height h∗ for which some
graph property holds for V Gh∗(P, T ). Specifically, we consider the following three problems.

Reverse shortest path: For two given points s, t ∈ P and an integer k, find the smallest
height h∗ for which V Gh∗(P, T ) contains a path from s to t of at most k edges.

Graph acyclicity: Find the smallest height h∗ for which V Gh∗(P, T ) contains a cycle.
Graph emptiness, or seeing the most without being seen: Find the smallest height h∗ for

which V Gh∗(P, T ) is nonempty (i.e., there exist two mutually visible tower tips).

The first and third problem were introduced by Agarwal et al. [3] and Katz and Sharir [18],
respectively. The solution of Agarwal et al. runs in O∗(n + m4/3) time, and uses an
implementation of BFS with the same running time as the driving decision procedure. Katz
and Sharir [18] claimed to have obtained an O∗(n6/5)-time solution, using the shrink-and-
bifurcate strategy (see below), but their solution overlooks an issue that may arise when
using an off-the-shelf decision algorithm in conjunction with this strategy.

The first two problems have associated decision procedures, in which we specify h, and
ask whether V Gh(P, T ) has the desired property. Concretely, for the reverse shortest path
problem, we test whether V Gh(P, T ) contains a path of length at most k between s and t,
and for the graph acyclicity problem, we test whether V Gh(P, T ) contains a cycle. For the
graph emptiness problem, we test whether V Gh(P, T ) is empty (has no edges). The first
decision procedure uses the BFS algorithm, the second uses the DFS algorithm, and the
third procedure, which we present in Section 5, uses a different approach, and also runs in
near-linear time.

The first two optimization algorithms use a variant of parametric search, originally
developed by Ben Avraham et al. [6] and recently used by the authors in [16], which employs
a strategy known as shrink-and-bifurcate. It is applicable in setups where we have an efficient
decision procedure which is not parallelizable, or at least we do not know how to make it
parallelizable in an efficient manner to fit into the standard parametric searching mold. We
review this technique, adapted to our context, in some detail in Sections 3.2 and 3.3. Using
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this technique, we obtain, in Sections 2 and 4, optimization procedures for the first two
problems that run in O∗((m + n)6/5) time, where the O∗(·) notation hides subpolynomial
factors. The third problem has a special structure, leading to a faster O((n + m) log3(m + n))
time algorithm; see Section 5.

Related work. Much effort has been devoted to identifying families of graphs in which
fundamental graph tasks, such as BFS, matching, etc., can be implemented more efficiently
than in general graphs. One such task is BFS, which takes O(|V |+|E|) time in general graphs,
where V and E are, respectively, the sets of vertices and edges of the graph. The challenge
in this case is to do it more efficiently, in time that depends (ideally, nearly linearly) only on
n = |V |, in families of geometric graphs in which the number of edges can be quadratic in n.

For unit-disk graphs, for example, Cabello and Jejčič [10] presented an O(n log n) im-
plementation of BFS, and subsequently Chan and Skrepetos [11] presented an alternative
O(n) implementation (after pre-sorting the points by their x- and y-coordinates). Moreover,
Cabello and Jejčič [10] also describe an O(n1+ε) implementation of Dijkstra’s algorithm for
weighted unit-disk graphs, which was followed by a more efficient O(n log2 n) implementation
by Wang and Xue [22]; see also [17].

For intersection graphs of arbitrary disks (or more generally, for proximity graphs of disks),
Agarwal et al. [16] presented an O(n log4 n) implementation of BFS. They also consider
two natural definitions of the weighted version of proximity graphs of disks, for which they
present nearly-linear implementations of Dijkstra’s algorithm, in the spirit of [10].

The RSP problem, in the context of unweighted unit-disk graphs (which are often used
to model wireless networks), was posed by Cabello and Jejčič [10], who observed that it
can be solved conceptually easily in O∗(n4/3) time, by running a binary search through the
O(n2) inter-point distances (using an efficient distance selection algorithm). Then, Wang and
Zhao [23] managed to improve this bound, obtaining an algorithm that solves the problem
in O∗(n5/4) time. The bound was further improved by Agarwal et al. [16], who presented
an O∗(n6/5) algorithm, using the shrink-and-bifurcate technique mentioned above. In the
context of weighted unit-disk graphs, the situation is similar. The RSP problem can be
solved easily in O∗(n4/3) time, but Wang and Zhao [24] and Agarwal et al. [16] were able to
obtain improved O∗(n5/4)-time and O∗(n6/5)-time solutions, respectively, for that version
too. Finally, in the context of arbitrary disk graphs, both unweighted and weighted, Agarwal
et al. [16] presented O(n5/4)-time solutions to several versions of the RSP problem.

1.5-dimensional terrains have received much attention, since they are used, e.g., to model
straight hilly roads. Many of the problems studied for such terrains revolve around visibility,
such as various guarding problems, see, e.g., [2, 8, 13, 14]. Visibility graphs and, in particular,
the problem of computing them efficiently in various polygonal domains, have also been
studied extensively, see, e.g., [7, 15, 20].

In general, a faster BFS algorithm on a graph G is easy to obtain from a clique cover
of G, namely, a representation of the edge set E of G as the (typically edge disjoint) union
of cliques (a representation as the union of bicliques is also suitable for this purpose). The
resulting BFS algorithm runs in time proportional to the size of the clique cover, namely to
the sum of the sizes of its vertex sets. In general, though, finding a small-size clique cover
may be impossible: Agarwal et al. [1] have shown that, for visibility graphs of n pairwise
disjoint segments in the plane, the smallest size of a clique cover may be Ω(n2/ log2 n). On
the other hand, they showed that the visibility graph of the vertex set of any simple polygon
can be represented by a clique cover of size O(n log3 n). In our case, though, the input points
are not vertices of T . Making them vertices artificially, by connecting each point of P to
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T by a straight vertical segment, say, may block visibilities of some pairs. In short, it is a
challenging open problem to find a clique cover of near-linear size for our setup. The best
that a suitable extension of our technique seems to yield is a cover of size O∗(n4/3).

2 BFS in visibility graphs over a terrain

Let T , P , n and m be as defined above. In this section we present a near-linear algorithm
for performing BFS in the graph V G(P, T ), from a given start point s ∈ P . Since this graph
can have a quadratic number of edges, the challenge is indeed to reduce the running time to
nearly linear in m + n.

We use a variant of a technique due to Varadarajan [21], who applied it to a certain
path simplification problem. His algorithm runs in near-n4/3 time, but we will only use
ideas related to the high-level structure of the algorithm, to obtain a much faster, near-linear
algorithm. The same infrastructure will also be used in our other algorithms.

The general scheme goes as follows. As usual, we construct the BFS layer by layer; the
i-th layer is denoted by Li, starting with L0 = {s}. Suppose we have already constructed Li

and now want to construct Li+1. We maintain dynamically the set of points of P that the
BFS has not reached yet; denote by Pi this set at the end of the i-th iteration.

We construct and maintain the following dynamic data structure on Pi. We query it
with the points of Li, where the goal of the queries is to find and report all the points of Pi

that are visible from at least one point of Li, and do it so that no point is reported more
than once. By definition, these points comprise Li+1, and we delete them from the structure,
thereby obtaining Pi+1.

Dropping the index i for convenience, the setup is thus as follows. We have a set P of
points, each lying on or above T , which we want to maintain under deletion of points, so as
to be able to answer efficiently queries, each of which specifies a query point q (also lying on
T or above T ), and seeks to report all the points of P that are visible from q.

The procedure uses divide and conquer. It splits T at its median vertex vµ into a left
portion TL and a right portion TR. The set P is thereby split into a left part PL and a right
part PR. We maintain dynamically two data structures, one for PR and one for PL. The
goal of the former (resp., latter) structure is to answer visibility reporting queries with points
q that lie on or above TL (resp., TR). We then continue to process recursively PL and PR,
with respect to the corresponding parts TL and TR of the terrain. When we delete a point,
we delete it from all the log n recursive nodes at which it participates. At the bottom of
recursion, we have pieces of T that contain no vertices. If the corresponding subset of P has
more than one point, they form a clique in V G(P, T ), which is then trivial to process.

Reporting left-right visibilities. This is the main step in the divide-and-conquer procedure.
For concreteness, we consider left-to-right visibility queries, where we seek visible neighbors
in PR of query points in PL; the other direction is handled in a fully symmetric manner. We
want to maintain PR dynamically, under deletions, in a data structure that supports the
following type of queries. Each query specifies a point q that lies on or above the left portion
TL of T , and asks for reporting all the points of PR that are visible from q. When we query
with the points of PL in the current BFS layer, we add the reported points to the next layer
of the BFS, and delete them from the structure. We then repeat this step to the symmetric
setup, of querying with points of PR in PL, and then recursively over the left subproblem
and the right subproblem.
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This left-to-right visibility step is performed as follows. Let H denote the upward-directed
vertical ray emanating from vµ, which we refer to as the divider. We first construct, for each
point p of PR, the lowest (most counterclockwise) ray ρ−(p) that emanates from p to the left
and sees (some point of) H. When querying with a point q, we also construct the lowest
(most clockwise) ray ρ+(q) that emanates from q to the right and sees (some point of) H.
We will shortly describe how this ray construction can be performed efficiently. As is easy to
verify, q sees p iff the segment qp lies counterclockwise to ρ+(q) (around q) and clockwise to
ρ−(p) (around p). See Figure 2. We thus need to report all points p ∈ PR that satisfy this
latter condition.

To this end, we prepare the following multi-level data structure (for each fixed instance
of the divide-and-conquer recursion). The first-level structure is a balanced binary tree Π(1),
which stores the intercepts of the rays ρ−(p), for p ∈ PR, at H in their y-order. At each
node η of Π(1), we create two second-level structures Π(2)

η , Π(2∗)
η , on the subset P η

R of points
stored at the leaves of the subtree rooted at η. Both of these structures are for dynamic
halfplane range reporting (see [4]), except that Π(2)

η is constructed on the points of P η
R in

the primal plane, whereas Π(2∗)
η is constructed in the dual plane, on the points dual to the

lines supporting the rays ρ−(p) of the points p ∈ P η
R. The structures Π(2)

η and Π(2∗)
η are

constructed and maintained using the dynamic algorithm of Overmars and van Leeuwen [19],
in which one constructs and maintains the upper convex hull of the corresponding set of
(primal or dual) points. A deletion costs O(log2 m) time, and a query takes O(log m) time.1

H

q

p

ρ+(q)
ρ−(p)

Figure 2 q and p are mutually visible because qp lies counterclockwise to ρ+(q) and clockwise to
ρ−(p).

A query with a point q (that lies on or above TL) is performed as follows. We first search
in Π(1) for the intercept qH of ρ+(q) at H, and obtain the subsets P −

R and P +
R of PR, whose

intercepts lie below qH and above qH , respectively, each as the union of O(log m) canonical
subsets, stored at O(log m) respective nodes η of Π(1).

Consider a canonical subset P η
R of P −

R , rooted at a node η of Π(1). We search, in the
primal plane, with the upper halfplane h(ρ+(q)), bounded by the line supporting ρ+(q),
in Π(2)

η , and report all the points of P η
R that lie in that halfplane. See Figure 3(a). The

collection of all the reported points, over all nodes η, constitutes one portion of the output
to the query.

The points of P +
R are handled differently. For each node η of Π(1) such that P η

R is a
canonical subset in the representation of P +

R , we now search, in the dual plane, with the
lower halfplane h(q∗) bounded by the line q∗ dual to q, in the structure Π(2∗)

η , and report all

1 One can use instead more asymptotically efficient structures, such as that of [9], at the cost of making
the algorithm considerably more involved, which we prefer to avoid.
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the points p of P η
R for which the point dual to the line supporting the ray ρ−(p) lies in h(q∗).

The collection of all the reported points, over all nodes η, constitutes the second portion of
the output to the query. As already said, as soon as a point is detected, we immediately
delete it from all the O(log n) substructures (within the top divide-and-conquer recursion)
in which it is stored. We repeat this procedure for each of the O(log n) instances of the
divide-and-conquer recursion in which q participates.

As there are O(log n) instances of the divide-and-conquer recursion in which q participates,
and at each of them we process O(log m) canonical subsets, the overall cost of a query is
O(log n log2 m). By the same reasoning, a deletion takes O(log n log3 m) time.

The correctness of the query procedure is established in the following lemma.

▶ Lemma 1. (i) For p ∈ P −
R , if p lies in the upper halfplane h(ρ+(q)), then q lies in the

upper halfplane h(ρ−(p)). (If p lies below ρ+(q) then p is not visible from q.)
(ii) For p ∈ P +

R , if q lies in the upper halfplane h(ρ−(p)), then p lies in the upper halfplane
h(ρ+(q)). (If q lies below ρ−(p) then p is not visible from q.)

Proof. We prove the first claim; the proof of the second claim is similar. Let Lp denote the
vertical line through p. By assumption, ρ+(q) intersects H at a point above ρ−(p) ∩ H, and
ρ+(q) intersects Lp at a point below ρ−(p) ∩ Lp = p. Hence ρ+(q) and ρ−(p) must intersect
at some point w between H and Lp, which then implies that ρ+(q) lies above ρ−(p) to the
left of w. In particular, q lies above ρ−(p), as asserted. See Figure 3(b). ◀

H

q

P ηR ⊆ P
−
R

ρ+(q)

LpH

q

p ∈ P−
R

ρ+(q)

(b)(a)

qHqH

ρ−(p)
w

TR

h(ρ+(q))

Figure 3 (a) For a canonical set P η
R of intercepts below qH , we need to report all the points of

P η
R that lie in the (shaded) upper halfplane h(ρ+(q)). (b) p lies in the upper halfplane of ρ+(q)

(shaded), i.e., ρ+(q) intersects Lp below p. Since it intersects H at a point above ρ−(p), ρ+(q) and
ρ−(p) intersect each other between the lines H and Lp.

Computing the critical rays. To complete the description, we present an efficient algorithm
for constructing the rays ρ+(q) and ρ−(p). We continue to use the same notations as above.
Consider, without loss of generality, the case of points p ∈ PL and their rightward-directed
rays ρ+(p); the other case is treated in a fully symmetric manner. Take the vertices v1, . . . , vµ

of TL, and store them, in this order, at the leaves of a balanced binary tree Q. Each node
ξ of Q is associated with the canonical set TL(ξ) of the vertices stored at the leaves of the
subtree rooted at ξ. We form the upper convex hull C(ξ) of TL(ξ), and store it at ξ. Since
the convex hull of a set of points sorted by their x-coordinates can be computed in linear
time, the overall cost of constructing the canonical hulls is O(n log n).2

2 This bound holds since the same canonical sets arise at all the recursive levels of the divide and conquer
construction.
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Given a query point q (for which we want to compute ρ+(q)), we search with q in Q, and
obtain the set of vertices of TL that lie to the right of q, as the disjoint union of O(log n)
canonical subsets TL(ξ). We then find the tangent from q to C(ξ), for each such ξ. The
highest (most counterclockwise) of these tangents is the desired ray ρ+(q). The cost of a
query is O(log2 n), as we have O(log n) tangent-finding steps, each taking O(log n) time. We
can reduce the cost to O(log n), using fractional cascading [12]. Hence this step takes a total
of O(m log2 n) time, over all recursive instances of the divide and conquer.

This completes the description of the BFS procedure. We thus have:

▶ Theorem 2. Let T be a 1.5-dimensional polygonal terrain with n vertices, and let P be a
set of m points that lie above or on T . We can perform BFS on the visibility graph V G(P, T )
in time O(n log n + m log3 n + m log n log2 m) = O(n log n + m log3(m + n)).

3 RSP in visibility graphs over a terrain

Assume now that the points of P lie on T . For a point p ∈ P , let p(h) be the point p + (0, h),
i.e., p(h) is the tip of a vertical tower of height h erected from p. For a subset P ′ of P , we
write P ′(h) to denote the set {p(h) | p ∈ P ′}. We consider the visibility graph V G(P (h), T )
of the tower tips, which we also denote as V Gh(P, T ). The problem addressed in this section
is the reverse shortest path (RSP) problem, in which we are given two points s, t of P and an
integer k, and want to find the smallest height h∗ for which V Gh∗(P, T ) has a path between
s and t of at most k edges.

This is an optimization problem, whose decision problem is the BFS algorithm (we start at
s, stop when t is reached, if at all, and check whether the layer containing t is of index at most
k). The problem is that BFS is difficult to parallelize, so we cannot use standard parametric
search to solve the RSP problem, and instead we resort to the shrink-and-bifurcate technique
of [6, 16], as mentioned in the introduction, and as will be reviewed later in this section.
Nevertheless, some preliminary portions of the BFS algorithm are easy to parallelize, and we
will simulate them using standard parametric search. This preliminary stage is essential for
the efficient simulation of the rest of the algorithm – see below.

3.1 The preliminary stage
In this stage we simulate at h∗ the first steps of the BFS algorithm. Specifically, at each
recursive instance of the top divide-and-conquer recursion, we have a left portion TL and a
right portion TR of T , separated by some vertex v of T . We have a set PL of tower bases
on TL and a set PR of bases over TR. We erect an upward vertical divider H from v, and
perform the following two steps:
Step 1: For each p ∈ PL, find the vertex of TL that determines the lowest (most clockwise)

rightward-directed ray ρ+(p(h∗)) from p(h∗) that sees H, and store it with p. Similarly,
for each p ∈ PR, find the vertex of TR that determines the lowest (most counterclockwise)
leftward-directed ray ρ−(p(h∗)) from p(h∗) that sees H, and store it with p.

Step 2: Sort the points p ∈ PL ∪ PR, in the vertical order in which the rays ρ+(p(h∗)) (for
p ∈ PL) and ρ−(p(h∗)) (for p ∈ PR) meet H. From the combined sorted list of these
intercepts we obtain the two separate sorted lists, for PL and for PR.

To perform this preliminary stage, we simulate these steps using standard parametric
search. The simulation goes in parallel over all the recursive instances of the divide-and-
conquer partitions. Consider one such instance, and for specificity consider the handling
of PL and TL (handling PR and TR is done in a fully symmetric manner). Each point
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p ∈ PL retrieves the set of vertices of TL that lie between it and the respective divider H, as
the union of O(log n) canonical sets, each associated with its (precomputed) upper convex
hull. We compute the upper tangents from p(h∗) to each hull, and take the highest (most
counterclockwise) of them as the desired ray ρ+(p(h∗)).

In the simulation of this step, everything can be efficiently parallelized. Handling all the
recursive instances of the divide and conquer is performed in parallel, as the handling of
each point p ∈ PL. Retrieving the canonical hulls for each p takes O(log n) time, and does
not depend on h∗ at all. Finding the upper tangents from points p (i.e., p(h∗)) to hulls C

is done in parallel over all points p and hulls C. For a fixed pair p, C, finding the upper
tangent from p(h∗) to C is done by binary search over the vertices of C, which takes O(log n)
time, and thus O(log n) parallel depth. The final step, of finding, for each p, the most
counterclockwise of the tangents from p, is a maximum-finding step on O(log n) elements,
which can also be easily performed in O(log n) parallel depth. In conclusion, with O(m log2 n)
processors and O(log n) parallel depth, we can simulate Step 1. At each parallel layer we
perform log(m log2 n) = O(log(m + n)) calls to the decision procedure, namely to the full
BFS algorithm, each of which takes O(n log n + m log3(m + n)) time. Altogether, the overall
cost of the simulation of Step 1 is O(m log3 n + (n log n + m log3(m + n)) log(m + n) log n);
to simplify this bound, we write it as O(n log3(m + n) + m log5(m + n)).

Step 2 is also easy to simulate in parallel. We have O(m) critical rays, and we need
to simulate the sorting of their intercepts with H in their vertical order. The sorting
can be simulated in O(log m) parallel depth with O(m) processors, using, e.g., the sorting
network of [5]. Repeating this over all instances of the divide and conquer, we conclude
that the total time for this step is O(m log m log n + (n log n + m log3(m + n)) log m log n) =
O(n log3(m + n) + m log5(m + n)).

Upon termination of the simulation of the preliminary stage, we have an interval I =
[h1, h2] that contains h∗, so that, for each h ∈ I, the discrete nature of each critical ray (i.e.,
the vertex of T through which it passes) is fixed, as is the order of their intercepts along H,
and this holds for each instance of the divide-and-conquer recursion.

3.2 The shrinkage stage
Next, we want to shrink I = [h1, h2] into a subinterval that still contains h∗ and at most
some prescribed number L of critical heights. Here a critical height h is of the following
form. There are two points pL ∈ PL, pR ∈ PR, and a vertex v of T (either of TL or of TR)
between pL and pR, such that the line segment pL(h)pR(h) passes through v, and all the
other vertices of T between pL and pR lie (on or) below the segment. We denote this height
as hpL,pR

. In other words, hpL,pR
is the smallest height h at which pL(h) and pR(h) see each

other. Our goal is to estimate the number of heights hpL,pR
that satisfy h1 ≤ hpL,pR

≤ h2
(over all the divide-and-conquer instances). If this estimate is smaller than L, we output
I and terminate the shrinkage stage. If it is larger, the analysis in [6, 16] shows that, by
picking a random sample of a suitable size from the critical heights in I, and by running a
binary search through the heights in the sample, we can shrink I to a smaller interval that
contains h∗ and, with high probability, contains at most L critical heights.

Observe that, by definition, if v ∈ TL (resp., v ∈ TR) then pL(hpL,pR
)pR(hpL,pR

)
overlaps the ray ρ+(pL(hpL,pR

)) (resp., ρ−(pR(hpL,pR
))), and passes above the other ray

ρ−(pR(hpL,pR
)) (resp., ρ+(pL(hpL,pR

))). Assume for specificity that v ∈ TL. Then, if
h > hpL,pR

(resp., h < hpL,pR
), the segment pL(h)pR(h) passes above (resp., below)

ρ+(pL(h)); in the former case it clearly also passes above ρ−(pR(h)). See Figure 4 (Left).
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pL

pR

v

ρ+(pL(hpL,pR
))

H

ρ−(pR(hpL,pR
))

pL(hpL,pR
)pR(hpL,pR

)

hpL,pR

pL

pR

v

ρ+(pL(h1))

H

ρ+(pL(h2))

h1

h2

hpL,pR

Figure 4 Left: pL(hpL,pR )pR(hpL,pR ) overlaps ρ+(pL(hpL,pR )) and passes above ρ−(pR(hpL,pR )).
Right: pL(h1)pR(h1) passes below ρ+(pL(h1)) and pL(h2)pR(h2) passes above ρ+(pL(h2)), but
hpL,pR ̸∈ I.

In other words, hpL,pR
is in I if pL(h1)pR(h1) passes below ρ+(pL(h1)), and pL(h2)pR(h2)

passes above ρ+(pL(h2)). (This is not an equivalent formulation, since it ignores the condition
on the other ray ρ−(pR), but it suffices for our purposes, in the sense that the heights that
satisfy this modified constraint form a superset of the true critical heights. Thus an interval
with a small number of heights in this superset contains also a small number of true critical
heights.) See Figure 4 (Right). The preceding discussion pertains to the case where the
intermediate vertex v belongs to TL. A fully symmetric analysis holds when v is in TR.

We can formulate the above condition as a batched range searching problem. To simplify
the formulation, it helps to keep the tower bases fixed, and to shift the terrain downwards by
h1 and by h2. The above condition (namely, our necessary condition for hpL,pR

to belong to
I) can be regarded as a range searching query, where each range is defined by pL (and v),
and consists of the set of all points of PR that lie above the ray ρ+(pL(h2)) shifted down by
h2, and below the ray ρ+(pL(h1)) shifted down by h1; see Figure 5.

pL

v

H

T

T (−h1)

T (−h2)

p′R

p′′R

Figure 5 The necessary condition for hpL,pR (for pR ∈ PR) to belong to I can be regarded as a
wedge range searching query.

This brings our setup more or less to the setup considered in [6], except that the ranges
considered there were annuli rather than the wedges that arise here. We can apply the same
machinery, suitably modified, to estimate the number of critical heights in I. In doing so,
two things should be emphasized. First, the ranges were defined by points of PL because
we have considered the case where the anchor vertex v belongs to TL. As already said, a
symmetric setup should also be applied to cover the case where v is a vertex of TR. Second,
what we have just described covers only one instance of the divide-and-conquer process,
and we should apply this procedure to all instances. This requires a careful choice of the
threshold numbers L of critical heights at each instance, an analysis that will appear in
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the full version of the paper.3 Taking care of these issues, we obtain a randomized interval
shrinking procedure that, with high probability, produces an interval I that contains h∗ and
at most L other critical heights, in randomized expected time O∗(m4/3/L1/3). See [6, 16] for
more details.

3.3 The bifurcation stage
We follow the paradigm in [6, 16]. It proceeds in phases, where in each phase we simulate
some portion of the BFS algorithm. Each phase starts with some interval I that contains
h∗ and progressively fewer other critical heights. We bifurcate the simulation whenever
we have to resolve a comparison whose critical height h is in I, exploring both outcomes
h < h∗ and h ≥ h∗. The phase terminates either when we have collected some threshold
number of unresolved comparisons (i.e., bifurcations), or when every path in the resulting
bifurcation tree is of some threshold depth. We then determine the outcome of all the
collected unresolved comparisons, running a binary search over their critical heights, and
using the (unsimulated) BFS procedure to guide the search. This produces a smaller interval
I ′ that still contains h∗, and we start a new bifurcation phase from the leaf of the bifurcation
tree to which h∗ belongs. The procedure terminates when the entire BFS procedure has
been simulated, and then h∗ is readily obtained.

This is the general approach, following the paradigm used in [6, 16], but it requires some
nontrivial fine-tuning to fit into our setup. First, there is no need to simulate the preliminary
stages of the BFS, as this has already been done. Second, and more important, at each
step of the latter portion of the BFS, we process a visited tower p(h∗) and wish to find an
unvisited neighbor. For this, the BFS uses a two-level dynamic data structure. Accessing
the first level requires no simulation. Indeed, assume that p is in PL (at some node of the
divide-and-conquer process). We access the first level to obtain the set of unvisited towers
in PR(h∗), for which the intercepts of their critical rays ρ−(q(h∗)) lie above (or below) the
intercept of ρ+(p(h∗)). Since we already have a fixed sorted order of the intercepts, this can
be computed explicitly, without any simulation.

A direct simulation of the second-level structure at h∗ is problematic for the following
reason. A standard approach to the two-dimensional dynamic halfplane range reporting
maintains the convex hull of the input set, which is typically done using the technique of
Overmars and van Leeuwen [19]. So the machinery needs to perform the construction and
dynamic reconstruction of various convex hulls of primal or dual points. The basic operation
involved in these constructions is the orientation test of a triple of points. Unfortunately,
the critical heights produced in these tests are not of the types considered (that is, allowed)
in the shrinkage stage, nor can a variant of that stage handle them, as each of them depends
on a triple of points, whereas the range-searching machinery used in the shrinkage stage can
only handle critical heights defined by pairs of points.

To address this issue, we proceed as follows. Consider, for specificity, the handling of
the set PR (for queries with points of PL). For each canonical set Pµ ⊆ PR of the first-level
structure, we construct two dynamic halfplane range reporting data structures, as does the
BFS, but we construct them at the fixed, known height h2, rather than at h∗. As we recall,
the primal structure, Π(2)

µ , is for Pµ(h2), and the dual structure, Π(2∗)
µ , is for the set P ∗

µ(h2)
of points dual to the lines containing the rays ρ−(p(h2)), for p ∈ Pµ.

3 Informally and briefly, at depth j of the divide and conquer we have subproblems of average size m/2j ,
and we want to shrink I so that it contains at most L/(2j log m) critical heights of these subproblems.
An easy analysis shows that, with high probability, I contains upon termination of this process at most
L critical heights, and the expected cost of the procedure is O∗(m4/3/L1/3).
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Consider now a query with some point q ∈ PL(h∗), whose goal is to report the points of
PR(h∗) that it sees and have not yet been visited by the BFS. We first partition PR into
two subsets, P −

R and P +
R , where P −

R (resp., P +
R ) consists of the points p ∈ PR for which the

intercepts of their corresponding rays ρ−(p(h∗)) lie on H below (resp., above) the intercept
of ρ+(q). We obtain each of these subsets as a collection of O(log |P |) canonical subsets. As
already noted, this step requires no simulation.

For each canonical subset Pµ in the representation of P −
R , we query the data structure

Π(2)
µ with the upper halfplane defined by the line containing ρ+(q(h2)), the critical ray from

q(h2). Let P ′
µ be the subset of points reported. For each p ∈ P ′

µ, we compute the minimum
height hq,p at which q and p see each other, that is, the critical height associated with q and
p. If hq,p ≤ h1, we conclude that q(h∗) and p(h∗) see each other, add p to the next layer
of the BFS tree, and delete p from Π(2)

µ and from all substructures in which it appears. If
however hq,p > h1 (by construction, we also have hq,p ≤ h2, since hq,p is in I), then hq,p is
one of the at most L critical values in the interval I. In a similar manner, for each canonical
subset Pµ in the representation of P +

R , we query the dual data structure Π(2∗)
µ with the lower

halfplane defined by the line dual to q(h2). Again, we take each reported point p (the point
inducing a reported dual point to its critical ray), and test whether hq,p ≤ h1 or hq,p > h1.
In the former case we conclude that p should be added to the next BFS layer (at h∗), and in
the latter case we obtain a critical height among the at most L critical heights in I.

In both primal and dual setups, we bifurcate the simulation at each of the critical heights
in I that has been discovered by the above procedure, and follow the simulation accordingly,
as described earlier. (That is, these critical values are counted towards the bifurcation
threshold that determines when the current bifurcation phase should terminate.)

This completes the review and the modifications of the bifurcation step. As in [6, 16], a
careful choice of the various threshold parameters yields an algorithm that runs in O∗((m +
n)6/5) time. That is, we obtain:

▶ Theorem 3. Let T be a 1.5-dimensional polygonal terrain with n vertices, and let P be a
set of m points that lie on T . Given two points s, t ∈ P and an integer k, we can find the
smallest height h∗ for which the visibility graph V G(P (h∗), T ), of the tips of the towers of
height h∗ erected at the points of P , contains a path from s(h∗) to t(h∗) of at most k edges.
The algorithm runs in O∗((m + n)6/5) randomized expected time.

By setting k = n − 1 and running a similar simulation of the full BFS algorithm from an
arbitrary point s ∈ P (without specifying a target point t), we obtain the following corollary.

▶ Corollary 4. Given T and P as above, we can determine the minimum height h∗ for which
the graph V G(P (h∗), T ) is connected, in randomized expected O∗((m + n)6/5) time.

4 DFS in visibility graphs over a terrain

The machinery in Section 2 can be adapted to yield a near-linear algorithm for performing
Depth-First Search (DFS) in the graph V G(P, T ). At each step of the DFS, we are at some
point p ∈ P , and wish to find some neighbor of P that has not yet been visited. Let U be
the (dynamically changing) set of unvisited points of P . We initially set U = P \ {p0}, where
p0 is the start point of the DFS. We maintain U under deletions, removing each point when
it is visited by the algorithm.

Except for the fact that we run DFS instead of BFS, and thus use a different flow of
execution, the technical details are basically the same: We maintain the same divide-and-
conquer structure, compute, at each instance of the structure, the critical visibility rays, sort
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their intercepts along the corresponding divider H, and, for each resulting canonical set of
intercepts (that is, of left points or right points), we compute the upper convex hull of the
set.

A query with a point q ∈ P is performed as follows. We collect all the O(log n) instances
of the divide-and-conquer structure at which q is stored. Consider one such instance, and
assume, for concreteness, that q belongs to the left corresponding set PL. We take the critical
ray ρ+(q) and its intercept wq = ρ+(q) ∩ H with the divider H. We collect all the unvisited
points of PR whose intercepts lie above wq as the union of O(log m) canonical sets. We do
the same for the intercepts below wq. Denote the former (resp., latter) subset as P +

R (p)
(resp., P −

R (p)).
For each canonical set Pη of P +

R (p), we query in the dual halfplane range reporting
structure with the lower halfplane bounded by the line dual to q, and for each canonical
set Pη of P −

R (p), we query in the primal structure with the upper halfplane bounded by the
line supporting ρ+(q). If one of the queries yields a point in the respective halfplane, we
report it as a neighbor of q and stop the search; the justification for this step is exactly as in
Section 2. We repeat this step to each canonical set Pη of P +

R (p) and P −
R (p) in the present

instance, and to each instance of the divide and conquer that stores q. We stop as soon as a
neighbor is found. When we do find a neighbor, we delete it from the structure: it belongs
to O(log n log m) sets Pη, for O(log n) instances of the divide and conquer and for O(log m)
canonical sets at each instance, and we delete it from each of them. If no neighbor is found
in all the searches, we conclude that all the neighbors of q have already been visited, and
back up the DFS tree from q to its parent, and resume the search from there, or if q is the
root of its tree, we pick some unvisited point and start a new DFS tree from it.

Correctness follows from the same considerations as in Section 2. The running time, as in
Section 2, is O(n log n + m log3 n + m log n log2 m). Simplifying this bound as in Section 2,
we thus conclude:

▶ Theorem 5. Given a terrain T with n vertices, and a set P of m points on or above T ,
we can perform DFS on V G(P, T ) in O(n log n + m log3(m + n)) time.

Detecting cycles in V G(P, T ). A basic application of DFS on undirected graphs is detecting
cycles in the graph (this is a task that standard BFS cannot perform). In a standard
application of DFS, detecting a cycle amounts to testing whether the graph has a back edge,
namely an edge that connects a node v to a proper ancestor of v (in the DFS forest) other
than its parent. This is a trivial task to perform when we can process the edges of the
graph, but is more involved when we can access explicitly only its vertices (the points of P

in V G(P, T )), and requires the following roundabout approach.
In addition to maintaining the set U of unvisited points, we also build the complementary

set R of visited points, inserting into R each newly visited point. Let p be the point just
visited, and let p̃ denote the parent of p in the DFS forest (we do not perform this step when
p is the root of some DFS tree). We first delete (temporarily) p and p̃ from R, and then test
whether p has a neighbor in (the modified) R, using the same machinery as above. If there
is such a neighbor, we have found a back edge, and can therefore report that the graph has a
cycle. If not, we add p and p̃ back to R, and continue with the execution of the DFS. We
thus obtain:

▶ Theorem 6. Given a terrain T with n vertices, and a set P of m points on or above T ,
we can test whether V G(P, T ) is acyclic in O(n log n + m log3(m + n)) time.
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Remark. A possible extension of the setup, which is often used in sensor networks, is to
assume that each point of P has a broadcasting range. In this case, visibility is not sufficient
(albeit it is necessary) to ensure communication between the points. Moreover, if the points
have different ranges, the graph V G(P, T ) becomes directed. In this case, running DFS on
the graph has many additional applications, such as topological sorting, computing strongly
connected components, and so on. We do not consider this extension in the present work,
and leave it as an interesting problem for further research.

Finding the smallest towers with a cyclic visibility graph. We can turn the cycle detection
algorithm into an optimization procedure involving towers of a common height erected at the
points of P , now assumed to lie on T , where the problem is to find the smallest height h∗ for
which V Gh∗(P, T ) (as defined in Section 3) contains a cycle. The procedure is implemented
in a manner very similar to the RSP algorithm. That is, we run the same preliminary stage,
to find the combinatorial representation of all the critical rays (using now the cycle detection
algorithm as the decision procedure, instead of the BFS algorithm used earlier), and then
simulate the main procedure, in much the same way as before. Omitting the straightforward
details, we obtain:

▶ Theorem 7. Given a terrain T with n vertices, and a set P of m points on T , we can
compute the smallest height h∗ for which V Gh∗(P, T ) contains a cycle, in O∗((m + n)6/5)
randomized expected time.

5 Seeing the most without being seen

In this section we study the following maximum-height independent towers problem. Let
T and P be as in the preceding sections, with |T | = n and |P | = m. The problem is to
compute the smallest height h∗, such that if we place a tower of height h∗ at each of the
points t ∈ P , then some pair of tips of these towers see each other (so for any h < h∗, no
pair of tips see each other). See Figure 6.

T h∗

h∗

ti

tj

vk

e

Figure 6 The maximum-height independent towers problem.

Consider the scene in which a tower of height h∗ is positioned at each of the points t ∈ P .
Then there must exist a pair of points ti, tj ∈ P , such that the segment e between the tips
of the corresponding towers passes through a vertex vk of T , and none of the vertices of T

between ti and tj lies above e; see Figure 6. In other words, the vertical distance between vk

and the segment titj is h∗ (with vk lying above titj), and it is the maximum vertical distance
between any intermediate vertex and titj . As before, and more generally, we call a height h

critical if there exist a pair of points ti, tj ∈ P that satisfies the above property, with some
in-between vertex v, with height h.

The decision problem that underlies our optimization problem, which is of independent
interest, is, for a given h, test whether V Gh(P, T ) is empty, or, for that matter, test whether
V G(Q, T ) is empty, for any set Q of points on or above T . This problem has been studied by
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Ben-Moshe et al. [7, Section 5], who present an O((n+m) log m)-time algorithm to determine
whether there exist two points in the set Q that see each other. A suitable adaptation (in
fact, simplification) of the algorithm presented in this section also solves this graph emptiness
problem, by an algorithm that also runs in near-linear time (albeit slightly less efficiently
than the algorithm in [7, Section 5]). However, due to the special nature of the optimization
problem, there is no need for a separate decision procedure that needs to be simulated, in the
parametric searching style. Putting it differently, each time we perform a comparison with a
critical height h, we can conclude that h∗ ≤ h, for otherwise the pair of points involved in
the comparison would be mutually visible above T . This one-way search for h∗ makes the
whole algorithm considerably simpler, and efficient. See below for full details.

Our algorithm runs in several stages. It maintains a candidate value of h∗, which, for
simplicity of notation, we also denote as h∗. At any time during execution, h∗ is a critical
height for some pair of tower tips (and an in-between terrain vertex), which would see one
another for h ≥ h∗ but not for h < h∗. Thus the optimum height h∗ is at most the current
value of this parameter.

The algorithm uses the same divide-and-conquer approach as before. It partitions T at
its median vertex vµ into a left portion TL and a right portion TR. The set P of tower bases
is split accordingly into a left subset PL and a right subset PR. The algorithm computes
recursively the optimal heights h∗

L and h∗
R for the respective subproblems involving TL, PL

and TR, PR, and sets h∗ := min{h∗
L, h∗

R}.
In the merge step, we only need to consider interactions between a left tower and a right

tower, whose corresponding critical height is at most the current value of h∗. As before, let
H denote the divider at which the left-right split of T and P takes place. We compute, for
each left tower t (resp., right tower t′), that is for its top t(h∗) = t + (0, h∗) (resp. t′(h∗)),
the corresponding critical ray ρ+(t(h∗)) (resp., ρ−(t′(h∗))). Each of the rays ρ+(t(h∗)) must
pass through some vertex of TL, and each ray ρ−(t′(h∗)) passes through some vertex of TR

(either of these vertices could be vµ). These rays are constructed similarly to the construction
in Section 2 (note that here the current height h∗ is known).

We now pass to the dual plane. For technical reasons, as in the previous sections, it
is more convenient to keep the towers by representing them by their bases and shifting
T (but not the bases) downwards by h∗. For each left tower t, the set of all rightward
directed rays that emanate from t and pass above (counterclockwise to) ρ+(t) is mapped to a
rightward-directed ray that lies on the dual line t∗ and emanates from the point ρ+(t)∗ dual
to ρ+(t) (so only the apex of this dual ray depends on h∗). Symmetrically, for each right
tower t′, the set of all leftward directed rays that emanate from t′ and pass above (clockwise
to) ρ−(t′) is mapped to a leftward-directed ray that lies on the dual line (t′)∗ and emanates
from the point ρ−(t′)∗ dual to ρ−(t′). See Figure 7 for an illustration.

t

t′
T

h∗
T (−h∗)

H

ρ+(t(h∗))ρ−(t′(h∗))

t∗

(t′)∗

(ρ+(t(h∗)))∗
(ρ−(t′(h∗)))∗

(tt′)∗

DualPrimal

Figure 7 An intersection in the dual plane indicates a visible pair in the primal plane.



M. J. Katz, R. Saban, and M. Sharir 77:15

A left tower t and a right tower t′ see each other if and only if the segment tt′ lies
counterclockwise to ρ+(t) and clockwise to ρ−(t′). (We remind the reader that all this
discussion is with respect to the scenario in which we consider visibility between the tower
bases relative to the terrain being shifted down by h∗.) In the dual, tt′ is mapped to the
intersection point (tt′)∗ of the lines t∗ and (t′)∗, and the above visibility condition is mapped
to the condition that the rays ρ+(t)∗ and ρ−(t′)∗ intersect one another (at the point (tt′)∗).

The merge step is therefore mapped to the following setup. We have, in the dual plane,
|PL| rightward-directed rays and |PR| leftward-directed rays, and the task is to compactly
represent all the intersections between a rightward-directed ray and a leftward-directed ray.
Fortunately, we have the following property (which is special to the problem considered in
this section).

▶ Lemma 8. The rightward-directed rays are pairwise openly disjoint, and so are the leftward-
directed rays.

Proof. Assume to the contrary that a pair of, say, rightward-directed rays ρ+(t1)∗ and
ρ+(t2)∗ properly cross one another. The intersection point is dual to the line ℓ that connects
t1 and t2, or rather (ignoring the downward shift of T and going back to the original scenario)
t1(h∗) and t2(h∗). Assume without loss of generality that t1 lies to the left of t2 (they both
lie to the left of H). But then the intersection point ℓ∗ (dual to ℓ) lies in both dual rays, and
in particular it belongs to ρ+(t1)∗. This means that t1(h∗)t2(h∗) is a free segment above TL

(because t1(h∗) can see H in this direction). But this is impossible, since we only consider
values h∗ ≤ h∗

L, and, by definition, two left towers at such a height h∗ cannot see one another
(with a visibility segment that lies above T ). ◀

That is, we seek the largest value of h∗ for which no pair of dual rays cross one another,
over all recursive instances of the divide and conquer.

In view of the lemma, we compactly represent all the intersections between a rightward-
directed ray and a leftward-directed ray, where the rightward-directed rays are pairwise
openly disjoint, and so are the leftward-directed rays. To this end, we construct a segment
tree Π over the (x-projections of the) rays, in O(m log m) time. Let v be a node of Π, and let
R(v) denote the set of rays that are stored at v. Every such ray straddles the vertical slab
Σv associated with v from side to side. We also associate with v the set Qv of ray endpoints
that lie in Σv. Each endpoint is stored at O(log m) nodes of Π. Call the rays that are stored
at v long rays, and those with an endpoint inside Σv short rays.

Σv

a
b

Figure 8 The long rightward-directed rays partition Σv into a sequence of trapezoids.

For each node v we need to represent all the intersections between a pair of long rays at
v, and all the intersections between a long ray and a short ray at v. Each of these tasks can
be implemented in time nearly linear in |R(v)| + |Qv|, as follows. Recall first that we only
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need to consider intersections between a rightward-directed ray and a leftward-directed ray.
We take the set of long rightward-directed rays, sort them in increasing y-order, and store
them at the leaves of a secondary binary search tree T r

v . The long rightward-directed rays
partition Σv into a sequence of trapezoids, where the bottommost and the topmost ones are
unbounded. See Figure 8. We then iterate over the long and the short leftward-directed rays
at v. Each such ray ρ, confined to Σv, is a segment with two endpoints a and b, where a lies
either on the right boundary of Σv (when ρ is long) or in the interior of Σv (when ρ is short),
and b lies on the left boundary of Σv, and ρ intersects all the long rightward-directed rays
between the trapezoid that contains a and the trapezoid that contains b. These rays can be
represented as the union of O(log m) canonical subsets associated with nodes of T r

v , and we
store ρ at these O(log m) nodes. To complete this step, we apply a symmetric procedure
in which the roles of the rightward-directed and leftward-directed rays are interchanged,
using another secondary tree T l

v. (For long-long intersection detection, one of the procedures
suffices.) At this point, we have obtained a representation of all the intersections at v as a
collection of O(|R(v)|) complete bipartite graphs (bi-cliques), one per each node of T r

v and
T l

v, of total size O((|R(v)| + |Qv|) log m). After applying this step to each node v of Π, we
get a compact representation of all the intersections between rightward-directed rays and
leftward-directed rays as a collection of edge-disjoint bi-cliques of total size O(m log2 m).

Each crossing point between a rightward-directed ray ρ+(t)∗ and a leftward-directed ray
ρ−(t′)∗ corresponds to a critical height ht,t′ < h∗, that can be computed in O(log2 n) time.
Indeed, in the primal, such an intersection is dual to the line tt′, and we need to compute
the downward shift of the terrain at which tt′ touches a vertex, and all the other in-between
vertices are below it. As before, this amounts to computing the upper tangent to each of the
O(log n) in-between canonical hulls, that is parallel to tt′, and reporting the one closest to
tt′; altogether this takes O(log2 n) time.

Thus, our goal is to find the minimum height corresponding to such an intersection
point. Notice though that we cannot afford to compute all these heights, since the number
of intersection points might be Θ(m2). Instead, we proceed as follows. The representation of
all intersections as a collection of bi-cliques allows us to pick a random sample of intersection
points of size O(m log m), in O(m log m) time. For each intersection point in the sample, we
compute its corresponding critical height, and let hs be the minimum of these O(m log m)
heights. Then, with high probability, the number of intersection points with corresponding
height at most hs is only O(m). We now set h∗ := hs, and repeat the entire merge algorithm
for the new value of h∗, except that now, since the expected number of intersection points is
only O(m), we can afford to compute all their corresponding heights explicitly and return
the minimum of all these heights. We thus obtain:

▶ Theorem 9. Let T be a 1.5-dimensional polygonal terrain with n vertices, and let P be a
set of m points that lie on T . We can find the smallest height h∗ for which the edge set of
the visibility graph V G(P (h∗), T ), of the tips of the towers of height h∗ erected at the points
of P , is nonempty, in O((n + m) log3(m + n)) randomized expected time.
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