
Re2Pair: Increasing the Scalability of RePair by
Decreasing Memory Usage
Justin Kim1 #

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Rahul Varki12 #

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Marco Oliva #

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Christina Boucher3 #

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Abstract
The RePair compression algorithm produces a context-free grammar by iteratively substituting
the most frequently occurring pair of consecutive symbols with a new symbol until all consecutive
pairs of symbols appear only once in the compressed text. It is widely used in the settings of
bioinformatics, machine learning, and information retrieval where random access to the original
input text is needed. For example, in pangenomics, RePair is used for random access to a population
of genomes. BigRePair improves the scalability of the original RePair algorithm by using Prefix-Free
Parsing (PFP) to preprocess the text prior to building the RePair grammar. Despite the efficiency of
PFP on repetitive text, there is a scalability issue with the size of the parse which causes a memory
bottleneck in BigRePair. In this paper, we design and implement recursive RePair (denoted as
Re2Pair), which builds the RePair grammar using recursive PFP. Our novel algorithm faces the
challenge of constructing the RePair grammar without direct access to the parse of text, relying
solely on the dictionary of the text and the parse and dictionary of the parse of the text. We
compare Re2Pair to BigRePair using SARS-CoV-2 haplotypes and haplotypes from the 1000 Genomes
Project. We show that our method Re2Pair achieves over a 40% peak memory reduction and a
speed up ranging between 12% to 79% compared to BigRePair when compressing the largest input
texts in all experiments. Re2Pair is made publicly available under the GNU public license here:
https://github.com/jkim210/Recursive-RePair

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases RePair, Compressed Data Structures, Prefix-free Parsing

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.78

Supplementary Material
Software (Source Code): https://github.com/jkim210/Recursive-RePair

Funding Justin Kim: Completed this project as part of the undergraduate program at the University
of Florida.
Rahul Varki: RV was funded by NSF P0183911 SCH: INT: Enabling real time surveillance of
antimicrobial resistance given to Dr. Boucher.

1 These authors are both considered first-authors.
2 Corresponding author: address any correspondence to rvarki@ufl.edu
3 Corresponding author: address any correspondence to christinaboucher@ufl.edu

© Justin Kim, Rahul Varki, Marco Oliva, and Christina Boucher;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 78; pp. 78:1–78:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jkim8@ufl.edu
https://orcid.org/0009-0002-2700-4266
mailto:rvarki@ufl.edu
https://orcid.org/0009-0003-5721-9484
mailto:marco.oliva@ufl.edu
https://orcid.org/0000-0003-0525-3114
mailto:christinaboucher@ufl.edu
https://orcid.org/0000-0001-9509-9725
https://github.com/jkim210/Recursive-RePair
https://doi.org/10.4230/LIPIcs.ESA.2024.78
https://github.com/jkim210/Recursive-RePair
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

Marco Oliva: MO was funded by NIH R01-AI141810 Developing Computational Methods for
Surveillance of Antimicrobial Resistant Agents given to Drs. Boucher and Prosperi.
Christina Boucher : CB was funded by NIH R01-AI141810 and NSF P0183911.

1 Introduction

Compressed random access to the text is required for a number of applications including
bioinformatics, machine learning, and database access. A context-free grammar in Chomsky
normal form generates a single string s which is referred to as a straight-line program (SLP)
for s. SLPs prove effective in compactly representing highly repetitive strings with long
repeats, as identical substrings can be replaced by a shared non-terminal symbol. Grammar-
based compressions use SLPs to represent a string, providing a lossless data compression
scheme. Although finding the smallest grammar is generally NP-hard [7, 20], practical
polynomial-time compressors like RePair have been proposed.

RePair, pioneered by Larsson and Moffat [12], operates by systematically identifying
the most frequently occurring pair of consecutive symbols in a text and replacing it with
a novel symbol absent in the original text. This iterative process continues until each pair
of consecutive symbols appears only once in the compressed text. While RePair boasts
linear time complexity, its notable drawback lies in its substantial space constant, hindering
its scalability for large input texts. Although algorithmically simple, RePair achieves high
order entropy compression [16], which is why it has been a popular compressor in practice.
Since its initial introduction, there have been several different variations and applications of
RePair [3, 8, 9, 11]. For example, TreeRePair [13] computes the smallest linear straight-line
context-free tree grammar.

BigRePair [10] is another variation that uses Rsync parsing to preprocess the input prior
to building the RePair grammar in order to reduce the memory usage of RePair. Notably,
the preprocessing that the authors refer to as Rsync parsing is conceptually identical to
Prefix-Free Parsing (PFP), a technique which parses the input text T in order to build a
dictionary (denoted as DT) and parse (denoted as PT) of the input. PFP is able to fully
represent T through DT and PT . PFP was initially devised to efficiently construct the suffix
array (SA) and Burrows-Wheeler Transform (BWT) for large repetitive text, but has since
found utility across diverse contexts [1, 10, 19]. Its rapid adoption can be attributed to its
simplicity and effective scalability for large, repetitive texts. Its efficiency on repetitive text
stems from the fact that DT exclusively stores non-redundant phrases. This prevents DT

from growing in size when there are repeated phrases in T .
A significant drawback of PFP manifests in practice: while the size of DT scales admirably

for large repetitive text, the scalability of PT is less efficient. For instance, Oliva et al.[17]
demonstrated that for 2,400 haplotypes of chromosome 19, the parse required over 11 GB of
space, whereas the dictionary occupied just over half a GB. Given that PT can significantly
exceed DT in size and often contains repetitions, this naturally suggests that PFP can be
effectively applied to PT such that PT is represented through its dictionary (denoted as
DP) and its parse (denoted as PP). This technique of applying PFP to PT is referred to as
recursive PFP. In this paper, we design and implement recursive RePair (Re2Pair), a novel
algorithm that builds the RePair grammar using recursive PFP.

The algorithmic challenge of this method is building the RePair grammar without direct
access to the parse. Instead, we are constricted to constructing the grammar using only
the dictionary of the text, and the parse and dictionary of the parse of the text. We note
that the main goal of Re2Pair is to significantly reduce the memory footprint of RePair

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:3

since this is the bottleneck in constructing RePair grammars on large inputs. We first prove
(Theorem 4) that Re2Pair uses memory linear in the size of PP, DP, and DT , which combined
is significantly smaller than the size of T when T is repetitive and not dependent on the size
of PT . Next, we compare our implementation of Re2Pair to BigRePair using SARS-CoV-2
haplotypes and haplotypes from the 1000 Genomes Project [6, 18]. We show that our
method Re2Pair achieves over a 40% peak memory reduction compared to BigRePair when
compressing the largest input texts in all experiments. As a side-effect, we observe that the
RePair component of Re2Pair is faster than that of BigRePair on larger inputs, exhibiting
a speed increase ranging from 12% to 79% in our experiments. This speed improvement
consistently scales with the input size. Lastly, in our whole genome compression experiment,
Re2Pair had the capacity to compress the full 1,200 genome set considered whereas BigRePair
could only compress 600 genomes, 50% of Re2Pair capacity, under the same memory limits.

2 Preliminaries

2.1 Basic definitions

A string T is a finite sequence of symbols T = T [1..n] = T [1] · · · T [n] over an alphabet
Σ = {c1, . . . , cσ} whose symbols can be unambiguously ordered. We refer to the cardinality
of the alphabet Σ as the number of symbols in Σ. We denote by ε the empty string, and the
length of T as |T |. We denote as ck the string formed by the character c repeated k times.

We denote by T [i..j] the substring T [i] · · · T [j] of T starting in position i and ending in
position j, with T [i..j] = ε if i > j. For a string T and 1 ≤ i ≤ n, T [1..i] is called the i-th
prefix of T , and T [i..n] is called the i-th suffix of T . We call a prefix T [1..i] of T a proper
prefix if 1 ≤ i < n. Similarly, we call a suffix T [i..n] of T a proper suffix if 1 < i ≤ n. Given a
set of strings S, S is prefix-free if no string in S is a prefix of another string in S. We denote
by ≺ the lexicographic order: for two strings T2[1..m] and T1[1..n], T2 ≺ T1 if T2 is a proper
prefix of T1, or there exists an index 1 ≤ i ≤ n, m such that T2[1..i − 1] = T1[1..i − 1] and
T2[i] < T1[i].

2.2 Context-free Grammars

A context-free grammar (CFG) is a formal grammar where the rules can be applied to a
nonterminal symbol regardless of its context. A CFG is formally defined by a set Σ of terminal
symbols, a set V of nonterminal symbols, a set R of production rules, and a start symbol S.
A terminal symbol c is a symbol that appears in the original text whereas a nonterminal
symbol β is a new symbol not apart of Σ introduced to the text. A production rule defines
how a nonterminal symbol decompresses to a sequence of terminal and nonterminal symbols.
Production rules are written in the form of β → α, where α defines a consecutive sequence of c

and β symbols that appear in the text. The start symbol is defined as the initial nonterminal
symbol from which the original text can be reconstructed by applying the production rules.
In practice, a CFG is defined by its start symbol and production rules, where the sets of
terminal and non-terminal symbols are implicitly defined by these rules.

Chomsky Normal Form is a CFG that requires all production rules adhere to one of
the following forms: (1) βi → βjβk or (2) βi → ci where βi, βj , βk ∈ V and ci ∈ Σ. In
other words, a nonterminal symbol should either decompress into (1) two other nonterminal
symbols or (2) a single terminal symbol. However, as in other papers [14], we will not
explicitly show the production rules for case 2 as those rules are implicitly implied to exist.

ESA 2024

78:4 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

A straight line program (SLP) is a CFG in Chomsky Normal Form. A SLP is a lossless
grammar-based compression scheme representing an input text T . With a SLP, random
access for any text substring can be achieved with an additive logarithmic time penalty [2, 4].
For brevity, we refer to the SLP that produces an input text T simply as a grammar of T .
We denote the compressed representation of T in the SLP as T.S. Similarly, we denote the
set of production rules in the SLP as T.R.

2.3 Overview of Prefix-Free Parsing
PFP takes as input a string T of length n, and two integers greater than 1, which we denote
as w and p. It produces a parse of T consisting of overlapping phrases, where each unique
phrase is stored in a dictionary. We denote the dictionary as D and the parse as P. We refer
to the prefix-free parse of T as PFP(T). As the name suggests, the parse produced by PFP
has the property that none of the suffixes of length greater than w of the phrases in D is a
prefix of any other. We formalize this property through the following lemma.

▶ Lemma 1 ([5]). Given a string T and its prefix-free parse PFP (T), consisting of the
dictionary D and the parse P, the set S of distinct proper phrase suffixes of length at least w

of the phrases in D is a prefix-free set.

The first step of PFP is to append w copies of $ to T , where $ is a special symbol
lexicographically smaller than any element in Σ with the condition that T must not originally
contain w consecutive copies of $. For the sake of the explanation, we consider the string
T ′ = $wT $w4. Next, we characterize the set of trigger strings E, which define the parse of T .
Given a parameter p, we construct the set of trigger strings by computing the Karp-Rabin
hash, Hp(t), of substrings of length w by sliding a window of length w over T ′, and letting E
be the set of substrings t = T ′[s..s + w − 1], where Hp(t) ≡ 0 or t = $w. This set E will be
used to parse T ′ to find the phrases within the text.

Next, we define the dictionary D and parse P of PFP. Given the string T ′ and a set of
trigger strings E, we let D = {d1, . . . , dm} be the set of unique phrases in T ′. Each di ∈ D

is a substring of T ′ such that exactly one proper prefix and exactly one proper suffix of di

is contained within E with no other substrings of di are allowed to be contained within E.
The parse P contains the ordered occurrences of the phrases that appear in T ′ by pointing
to the phrases in the dictionary D. We can build D and P by sliding a window of length w

across T ′. When a trigger string is encountered, the phrase is added to D if not present and
the corresponding dictionary phrase pointer is added to P . Hence, all phrases start at the
beginning of a trigger string and end at the end of the next one. Additionally, the start of
the next phrase begins at the start of the last trigger string encountered which means that
consecutive phrases in the parse overlap by w characters. After scanning T ′, the dictionary
is then sorted lexicographically and the pointers in the parse are updated accordingly. We
note that T can then be reconstructed from D and P alone.

2.4 Overview of RePair
RePair creates a context-free grammar from an input text T of terminal symbols using the
following steps: (1) Find the most frequently occurring pair of consecutive symbols (also
known as bigrams) within T . (2) Replace all occurrences of the most frequently occurring

4 We note that this definition is equivalent to original definition that considers the string T ′ = T $w to be
circular.

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:5

bigram in T with a new nonterminal symbol, βi. Repeat these steps until all bigrams in
T have a frequency of 1; at this point the algorithm halts. The end result of RePair is a
grammar (hereon, we denote as G) that contains a compressed representation of T (hereon,
we denote as S) with no reoccurring bigrams, and a set of rules (hereon, we denote as R)
relating every nonterminal symbol to its corresponding pair of symbols. This compressed
form is especially desirable because it retains random access to T with only a logarithmic
time penalty [2, 4]. In particular, T can be accessed from R and S using the following steps:
(1) Read a symbol from S. If this is a terminal symbol, read the next symbol. Otherwise,
replace the nonterminal symbol from S with its corresponding pair from R. (2) If there are
no more symbols then halt, otherwise repeat from step 1.

The original implementation of RePair has been shown to run in O(n) expected time and
5n + 4k2 + 4k′ + ⌈

√
n⌉ space, where n is the number of symbols in T , k is the cardinality of

Σ, and k′ is the cardinality of the alphabet of the grammar [12]. The most space efficient
RePair encoding algorithm to date uses at most d log(d) + 2d bits and runs in O(d1.5) time,
where d is the number of rules [21]. The most space efficient linear-time RePair encoding
algorithm uses (1.5 + ϵ)n words and runs in O(n/ϵ) expected time, where n is the length of
the text and 0 ≤ ϵ ≤ 1 [3].

2.5 Overview of BigRePair
BigRePair combines PFP with RePair in order to generate a context-free grammar from
the input text T . Similar to RePair, the BigRePair grammar consists of a set of rules R
that relate nonterminal symbols to their corresponding bigrams, and a start sequence S
that contains nonterminal and terminal symbols with no bigrams occurring more than once.
Rather than constructing the grammar directly on the input text T , BigRePair begins by
running PFP on T to generate a dictionary DT and parse PT . The phrases of the dictionary
are then concatenated together with a unique separator symbol added between them. We
abuse notation for reasons of clarity and denote the resulting string also as DT .

Next, RePair is ran on PT and DT to obtain the start sequence and rules for both, which
we denote as PT .S, PT .R and DT .S, DT .R, respectively. We then remove all separator
symbols from DT .S. Importantly, we note that because unique separator symbols were used
to create DT , there cannot be any rules in DT .R that contain them as all bigrams including
them in T must only appear once. Hence, there is nothing to be removed from DT .R.

Our goal is to create a grammar for T (that can be decompressed in accordance with
RePair) from the grammars of the dictionary and parse. To obtain T.S, we remind the reader
that PT defines how the phrases in DT need to be placed in relation to one another to create
T , and similarly, T.S defines the ordering of the rules to generate T . It follows then that
PT .S defines the start sequence T.S since PT .S arranges the rules in PT .R to generate PT ,
and PT arranges the phrases in DT to generate T . To obtain T.R, we can combine DT .S,
DT .R, and PT .R. To see this, we first consider naively applying the RePair decompression
starting from T.S (which is PT .S): we apply the rules of the parse (PT .R) to obtain the
parse PT , which is a list of the rank’s of the dictionary phrases. At this point, if we could,
we would decompress to obtain T by simply taking the phrases in DT and substituting them
into PT for their rank’s by applying the rules in DT .R. However, there are two issues: (1)
DT .R does not presently fully encode all the phrases in DT in accordance to the RePair
decompression scheme. (2) There are no common linkage symbols present between PT and
DT , which prevent us from connecting them. To resolve the first issue, for each phrase with
rank i in DT .S, we run a variant of RePair where we encode pairs of consecutive symbols
into new nonterminals, until the phrases are represented by a single nonterminal, which we

ESA 2024

78:6 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

denote as χi. The production rules for these new nonterminals are added to DT .R. χi can
then generate the corresponding phrase when it is decompressed in accordance with RePair.
Finally, to resolve the second issue, we replace each of the rank’s in PT .S and PT .R with the
corresponding χi’s.

The motivation behind BigRePair was to use PFP as a preprocessing step to increase the
scalability of RePair. However, as mentioned earlier, in practice the size of the parse scales
significantly faster than the size of the dictionary. In this next section, we introduce Re2Pair
to optimize the size of the parse and further increase scalability.

3 Recursive RePair Algorithm

As previously mentioned, BigRePair increases the scalability of RePair for large, repetitive
text by using PFP as a preprocessing technique. The scalability of PFP on repetitive text
can be broken down by considering the increase in the size of the dictionary and the parse,
for increasingly larger input strings. Given an input string T , the difference in the size of
the dictionary for T , TT , TTT , and TTTT is negligible in comparison to the size of the
parse. Recursive PFP runs PFP on the parse, and then removes the original parse in order
to reduce the total size of the output produced by PFP. The challenge reduces to building
the original data structure without direct access to the parse.

Here, Re2Pair takes as input T and produces a RePair grammar, but builds the grammar
using the output of recursive PFP. Our goal is then to build the RePair grammar of T (i.e.,
T.R and T.S) without having direct access to PT . We give the details of our solution in
this section but preface this discussion with some intuition. We note that if we can obtain
PT .R and PT .S from the recursive PFP components, they can be combined with DT .R
and DT .S to create T.R and T.S through the method outlined by BigRePair. Further, by
accomplishing this, we reduce our goal to creating PT .R and PT .S using DP.R, DP.S, PP.R,
and PP.S.

3.1 Run Recursive PFP
Re2Pair begins by running PFP on T . Algorithm 1 gives the pseudocode for PFP, which has
been previously defined in the Preliminaries section. The output is the dictionary DT and
the parse PT .

Algorithm 1 Prefix-Free Parsing (w, p, T).

1. Append w copies of a deliminator symbols to T ;
2. Let E be the set of trigger strings, and E = ∅;
3. Define the rolling hash function Hp(t);
4. For each w-length substring t in T , add t to the set of trigger strings E when
Hp(t) = 0;

5. For every substring in T that begins and ends with a trigger string in E, add to
the set DT ;

6. Sort DT lexicographically;
7. Define PT to be an array of phrases from DT that reconstructs T when expanded.
The array consists of the dictionary rank’s of each phrase in the order they appear in
T ;

▶ Observation 2. PFP of T produces PT and DT in O(|PT | + |DT |)-space.

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:7

Next, recursive PFP is ran, which runs PFP on the parse PT . The output is the dictionary
of the parse, denoted as DP, and the parse of the parse, denoted as PP. Pseudocode for
Recursive PFP is is given in Algorithm 2. The output of recursive PFP is DT , PP and DP.

Algorithm 2 Recursive PFP (w, p, PT).

1. Run PFP on PT with w and p;
2. Delete PT ;

3.2 Build Intermediate Grammars Using RePair
In this step, we append a unique separator symbol after each phrase in DT and concatenate
the phrases into a string. We abuse notation for clarity and refer to the concatenated string
also as DT . We run RePair on this string DT . Similarly, we do the same procedure for DP to
create the concatenated string which we abuse notation and refer to as DP, and run RePair
on this string DP. Lastly, we run RePair on PP. After running RePair on each of these
strings, we obtain the rules and start sequences for all of them, i.e., PP.R and PP.S, DP.R
and DP.S, and DT .R and DT .S. This corresponds to Step 1 of Algorithm 3.

3.3 Construct PT .S and PT .R
We modify DP.R, DP.S, PP.R, and PP.S in a similar manner as was done in BigRePair in
order to construct PT .S and PT .R. In particular, we begin by using the unique separator
symbols to find the distinct phrases of DP in DP.S. Then, we create rules from bigrams
within the phrases until only one symbol remains which represents the entire phrase, and
add these rules to DP.R. We use these symbols to replace the corresponding rank’s in PP.R
and PP.S, then concatenate DP.R and PP.R into PT .R and use PP.S as PT .S. Next, we
demonstrate that this can be accomplished in O(|PP| + |DP| + |DT |)-space.

The following Observation follows from the fact that the space needed to create the start
sequence and rules produced by running BigRePair (PFP + RePair) is bounded by the size
of the parse and dictionary of the input.

▶ Observation 3. Let PT and DT be the parse and dictionary obtained from running PFP on
T . PT .S, PT .R, DT .S, and DT .R can obtained from running RePair on PT and DT . Both
steps can be done using O(|PT | + |DT |)-space.

Next, we make a small observation about the addition of the separators which follows
from the fact that the number of separators that need to be added to each dictionary is
always less than the cardinality of the respective dictionary.

▶ Observation 4. Let DT be the dictionary obtained from running PFP on T , and let DP be
the dictionary obtained from running recursive PFP. The number of unique separators added
to DT and DP does not exceed |DT | or |DP|, respectively.

Using these observations, we can prove bounds on the space needed to construct PT .S
and PT .R. These are given in the following lemmas.

▶ Lemma 5. Let DP and PP be obtained by running recursive PFP, and let DP.R, DP.S
and PP.R be obtained from running RePair on DP and PP. Then PT .R can be constructed
from DP.R, DP.S and PP.R in O(|PP| + |DP|)-space.

ESA 2024

78:8 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

Proof. We let DP and PP be obtained by running recursive PFP. Next, we add unique
separators in DP to find the distinct phrases in DP. It follows that from Observation 4 that
the number of unique separators is always less than |DP|. We let DP.R, DP.S and PP.R be
obtained from running RePair on DP and PP. It follows from Observation 3 that the space
needed to generate DP.R, DP.S and PP.R is at most O(|PP| + |DP|).

Next, we use the new unique separators in DP.S to find the distinct phrase in DP and for
each phrase with rank i, we create new rules that generate the phrase from a new nonterminal
χi (i.e., 2(b) in Algorithm 3). These rules are added to DP.R. Hence, there is an addition of
at most |DP.S| (which is at most |DP|) rules to DP.R. We remove the separators between
phrases in DP.S (i.e., 2(c)), and replace each phrase with rank i with its corresponding
nonterminal χi in PP.R and PP.S. Finally, DP.R and PP.R are concatenated to create
PT .R. These last steps do not require additional space, and thus, O(|PP| + |DP|)-space. ◀

▶ Lemma 6. Let PP be obtained from recursive PFP, and PP.S be obtained from running
RePair on PP. It follows that PT .S can be constructed from PP.S in O(|PP|)-space.

Proof. We let PP be obtained by running recursive PFP, and PP.S be obtained from running
RePair on PP, which requires at most O(|PP|)-space. We obtain PT .S from PP.S by replacing
the phrase rank’s in PP.S with the corresponding nonterminals χi obtained as described in
the proof of Lemma 5. These are one to one substitutions. After this step, PP.S has been
converted to PT .S. Since the size of PP.S is at most O(|PP|), it follows that the construction
can be accomplished in at most O(|PP|)-space. ◀

3.4 Construct T.S and T.R

In the last step of our algorithm (steps 3 and 4 of Algorithm 3), we show that we can construct
the BigRePair grammar and rules. This is straightforward since (a) we have previously
shown that we can construct PT .S and PT .R, (b) we already have DT .S and DT .R, and (c)
we can now combine (a) and (b) using the BigRePair methodology.

▶ Theorem 7. We let T be the input text. We let DT , DP, and PP be obtained from running
recursive PFP. We can construct T.R and T.S from DT , DP, and PP in O(|PP|+|DP|+|DT |)-
space.

Proof. We let DT , DP, and PP be obtained from running recursive PFP. We begin by running
RePair on DT , DP, and PP in order to construct DT .R, DT .S, DP.R, DP.S, PP.R and
PP.S. It follows from Gagie et al. [10] that this can be done in O(|PP| + |DP| + |DT |)-space.
Next, it follows from Lemma 5 that PT .R can be constructed from DP.R, DP.S and PP.R
in O(|PP| + |DP|)-space. Further, it follows from Lemma 6 that PT .S can be constructed
from PP.S in O(|PP|)-space. To construct T.R from DT .R, DT .S and PT .R, we first take
the unique separators in DT .S to find the distinct phrase in DT , and for each phrase with
rank i, we create new rules that generates the phrase from a new nonterminal χi (i.e., 3(b) in
Algorithm 3). These rules are added to DT .R. Hence, there is an addition of at most |DT .S|
(which is at most |DT |) rules to DT .R. We remove the separators between phrases in DT .S
(i.e., 3(c)), and replace each phrase with rank i with its corresponding nonterminal χi in PT .R
and PT .S. Lastly, we can construct T.R by concatenating DT .R and PT .R, and T.S by
letting it be equal to PT .S. These last steps do not require any additional space. Therefore,
it follows that the complete construction requires at most O(|PP| + |DP| + |DT |)-space. ◀

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:9

Algorithm 3 Re2Pair (DT , DP, PP).

1. Use RePair to build grammars for DT , DP, and PP as follows;
(a) Append a unique separator symbol after each phrase in DT then concatenate

the phrases into a string;
(b) Append a unique separator symbol after each phrase in DP then concatenate

the phrases into a string;
(c) Run RePair on the strings from (a) and (b), and the parse of the parse to

obtain PP.R, PP.S, DP.R, DP.S, DT .R, and DT .S;
2. Construct PT .R from DP.S, DP.R, and PP.R as follows;

(a) Use the unique separators in DP.S to find the distinct phrases in DP;
(b) For each phrase in DP.S with rank i, create new rules from bigrams until it

can be generated from a new nonterminal χi; add these rules to DP.R;
(c) Remove the unique separators in DP.S;
(d) Replace each phrase rank i of PP in PP.R and PP.S with the corresponding

nonterminal χi;
(e) Concatenate DP.R, and PP.R to create PT .R;
(f) Let PT .S be equal to PP.S;

3. Modify DT .R, DT .S and PT .R as follows;
(a) Use the unique separators in DT .S to find the distinct phrases in DT ;
(b) For each phrase in DT .S, create new rules from bigrams such that a single new

nonterminal χi generates the phrase; add these rules to DT .R;
(c) Remove the unique separators in DT .S;
(d) For each phrase rank of DT in PT .R and PT .S, replace with the corresponding

nonterminal χi;
4. Construct T.S and T.R;

(a) Concatenate DT .R and PT .R to create T.R;
(b) Let T.S be equal to PT .S;

4 Experiments

We demonstrate the memory efficiency of Re2Pair by compressing the following datasets:
(1) SARS-CoV-2 haplotypes (2) chromosome 1 haplotypes (3) whole genome haplotypes.
Specifically, we show that Re2Pair has better memory scalability than BigRePair as the
number of sequences in each dataset increases.

We implemented Re2Pair in ISO/IEC C 9899:2011 and Python. We ran all experiments
on a 512 GB server with an AMD EPYC 7702 64-Core Processor running Red Hat Enterprise
Linux 8.8. We measured the wall-clock time and peak memory (maximum resident set size)
usage of Re2Pair and BigRePair using Snakemake v7.32.4 [15]. As both methods require
running PFP on the input data and improving the performance of the PFP step was not our
focus, we excluded its time and memory contribution from the reported values for both tools.
We note that running PFP on PT requires significantly less time and memory compared to
running PFP on T when T is sufficiently large. We ran PFP using 64 threads with its default
settings, which set the window size (w) to be 10 and the modulus (p) to be 100. We ran the
RePair portion of both Re2Pair and BigRePair on a single thread since neither tool supports
multi-threading for this step currently. We define the compression ratio to be the percentage
of the compressed file size (T.S + T.R) over the uncompressed file size. Experiments that
exceeded 512 GB of RAM were omitted from further consideration.

ESA 2024

78:10 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

4.1 SARS-CoV-2 Genomes
We compared the wall-clock time and peak memory usage of Re2Pair to BigRePair by
compressing subsets of SARS-CoV-2 (sars) haplotypes. Specifically, we compressed subsets
consisting of 25, 000, 50, 000, 100, 000, 200, 000, and 400, 000 SARS-CoV-2 genomes. Each
subset was a superset of the previous one. The smallest subset (sars.25k) had an uncom-
pressed size of 0.75GB and the largest subset (sars.400k) had an uncompressed size of
12GB. In Table 1, we present the compressed file sizes of these subsets. For the sars.400k
subset, Re2Pair achieved a compression ratio of approximately 0.29%, slightly higher than
the 0.22% ratio achieved by BigRePair.

We found that Re2Pair had a peak memory usage that was approximately 43.88% lower
than that of BigRePair when compressing the full sars.400k haplotype set. Re2Pair required
only 1, 551 MiB (1.62 GB) peak memory compared to 2, 764 MiB (2.89 GB) by BigRePair.
We see from Figure 1 that Re2Pair begins to use less peak memory than BigRePair at 200, 000
haplotypes. The rate of peak memory growth became slower than BigRePair between
compressing the sars.100k and sars.200k haplotype subsets. A closer examination of
the dictionary and parse file sizes revealed that at around 200, 000 haplotypes, the size of
the parse started to become larger than the size of the dictionary. This agrees with our
experimental results as we only expected Re2Pair to outperform BigRePair in peak memory
usage when the size of the parse became larger than the size of the dictionary. If this were
not the case, the peak memory usage of both tools would be dictated by running RePair
on the dictionary. We note that the wall-clock time was relatively similar between the two
methods for all subsets. We saw a modest speed up of 12.53% by Re2Pair compared to
BigRePair in compressing the sars.400k haplotype set.

Figure 1 Comparison of the resource usage between BigRePair and Re2Pair for compressing the
sets of SARS-CoV-2 haplotypes. The left figure shows the peak memory usage (MiB) and the right
figure shows the wall-clock time (s) required by each tool.

4.2 Chromosome 1 Haplotypes
We next evaluated Re2Pair in comparison to BigRePair by compressing increasingly larger
subsets of chromosome 1 (chr1) haplotypes from the 1000 Genomes Project. We compressed
subsets of chr1 containing 100, 200, 400, 800, 1, 600, and 2, 400 distinct haplotypes. Each
subset was a superset of the previous one. The smallest subset (chr1.100) had an uncom-
pressed size of 25GB and the largest subset (chr1.2400) had an uncompressed size of 600GB.
In Table 2, we present the compressed file sizes of these subsets. For the chr1.2400 subset,
Re2Pair achieved a compression ratio of approximately 0.15%, slightly higher than the 0.13%
ratio achieved by BigRePair.

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:11

Table 1 The size of the start sequence (S) and rules (R) files generated by BigRePair vs. Re2Pair
and the corresponding compression ratios for the SARS-CoV-2 subsets compressed. The start
sequence and rules file sizes are reported in GB. The uncompressed file size is also reported in GB.
Compression ratio is reported as the percentage of the compressed file size over the uncompressed
file size.

BigRePair Re2Pair
Haplotypes Size S R S + R Ratio S R S + R Ratio

25,000 0.75 0.0012 0.0024 0.0036 0.48% 0.0002 0.0045 0.0047 0.63%
50,000 1.61 0.0021 0.0036 0.0057 0.35% 0.0005 0.0070 0.0075 0.47%
100,000 3.00 0.0034 0.0052 0.0086 0.29% 0.0010 0.0115 0.0125 0.42%
200,000 6.01 0.0062 0.0087 0.0149 0.25% 0.0017 0.0199 0.0216 0.36%
400,000 11.88 0.0115 0.0147 0.0262 0.22% 0.0049 0.0293 0.0342 0.29%

We see from Figure 2 that Re2Pair compressed all larger subsets of chr1 haplotypes faster
and with less memory compared to BigRePair. We found that Re2Pair had a peak memory
usage that was approximately 65.22% lower than that of BigRePair when compressing the
chr1.2400 haplotype set. Re2Pair required only 50, 815 MiB (53.28 GB) peak memory com-
pared to 146, 143 MiB (153.24 GB) by BigRePair. The peak memory of Re2Pair overall grew
3.33 times slower than that of BigRePair as the number of haplotypes increased. Similarly,
we found that Re2Pair was approximately 48.87% faster than BigRePair in compressing the
chr1.2400 haplotype set. Re2Pair required 3, 455 seconds to compress the chr1.2400 set
compared to 6, 719 seconds required by BigRePair.

We see from Table 2 that the size of the start sequence files produced by Re2Pair is less
than that of BigRePair for all subsets of haplotypes. Conversely, Re2Pair produced larger rule
files than that of BigRePair for all subsets of haplotypes. This makes sense as Re2Pair should
produce more compressed start sequences at the cost of more rules compared to BigRePair
since the start sequence of Re2Pair is produced by running RePair on the parse of the parse,
which is a more compressed version of the parse. We find that the combined size of the start
sequence and rules of Re2Pair is slightly worse than that of BigRePair for all inputs. For the
largest input (chr1.2400), the combined size of the start sequence and rules of Re2Pair was
approximately 20% larger than that of BigRePair. We conclude this section by noting that
the combined size of the start sequence and rules of Re2Pair for all subsets was less than 1
GB, an insignificant amount of storage by today’s standards.

Table 2 The size of the start sequence (S) and rules (R) files generated by BigRePair vs. Re2Pair
and the corresponding compression ratios for the chromosome 1 subsets compressed. The start
sequence and rules file sizes are reported in GB. The uncompressed file size is also reported in GB.
Compression ratio is reported as the percentage of the compressed file size over the uncompressed
file size.

BigRePair Re2Pair
Haplotypes Size S R S + R Ratio S R S + R Ratio

100 25.09 0.01 0.25 0.26 1.04% 0.005 0.28 0.28 1.12%
200 50.17 0.02 0.27 0.30 0.60% 0.01 0.31 0.32 0.64%
400 101.32 0.04 0.30 0.34 0.34% 0.02 0.36 0.37 0.37%
800 199.89 0.07 0.36 0.43 0.22% 0.03 0.46 0.50 0.25%
1,600 401.31 0.13 0.46 0.59 0.15% 0.06 0.64 0.70 0.18%
2,400 600.62 0.20 0.56 0.76 0.13% 0.09 0.82 0.91 0.15%

ESA 2024

78:12 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

Figure 2 Comparison of the resource usage between BigRePair and Re2Pair for compressing the
sets of chromosome 1 haplotypes. The left figure shows the peak memory usage (MiB) and the right
figure shows the wall-clock time (s) required by each tool.

4.3 Whole Genomes from 1000 Genomes Project
Lastly, we compared Re2Pair to BigRePair by compressing increasingly larger subsets of
whole genome (wg) haplotypes from the 1000 Genomes Project. We define whole genome
as containing variants from chr1 to chr22. We attempted to compress the same sets of
haplotypes used in the chr1 experiments, namely on the subsets containing 100, 200, 400,
800, 1, 600, and 2, 400 distinct haplotypes. However, the initial PFP step, which is common
to both tools, required more than 512 GB to parse the wg.1600 and wg.2400 haplotype
sets, surpassing the memory limit set. As a result, we had to restrict our interest to subsets
containing up to 1, 200 haplotypes, the largest subset that could be evaluated under the
memory limit. The smallest subset (wg.100) had an uncompressed file size of 295 GB and the
largest subset (wg.1200) had an uncompressed file size of 3.54 TB. In Table 3, we present the
compressed file sizes of these subsets. For the wg.1200 set, Re2Pair achieved a compression
ratio of approximately 0.30%.

We see from Figure 3 that Re2Pair outperformed BigRePair in regards to both time and
memory for all larger whole genome haplotype subsets. Re2Pair was able to compress the full
wg.1200 haplotype set using 338, 499 MiB (355 GB) peak memory. In comparison, BigRePair
was only able to compress up to the wg.600 haplotype set using 421, 750 MiB (442 GB) peak
memory. BigRePair was unable to compress the wg.800 and wg.1200 haplotype subsets
under the 512 GB memory constraint. Similarly, we found that Re2Pair was 78.95% faster
than BigRePair in compressing the wg.600 haplotype set. Re2Pair required 15, 368 seconds
to compress the wg.600 haplotype set compared to 72, 997 seconds required by BigRePair.
We expect that if we allowed BigRePair to exceed the memory threshold and compress the
wg.800 and wg.1200 haplotype subsets that the time and memory advantage of Re2Pair
would have been even larger.

5 Conclusion

When using PFP to index large repetitive datasets, the size of the parse is what causes
the memory bottleneck. In this work, we reduce the memory usage of RePair by applying
recursive PFP, which runs PFP on the parse of the text. We show that it is possible to
build a RePair grammar for an input text using memory proportional to the size of the
dictionary of the text and the size of the parse and dictionary of the parse of the text. We

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:13

Figure 3 Comparison of the resource usage between BigRePair and Re2Pair for compressing the
sets of whole genome haplotypes. The left figure shows the peak memory usage (MiB) and the right
figure shows the wall-clock time (s) required by each tool.

Table 3 The size of the start sequence (S) and rules (R) files generated by BigRePair vs. Re2Pair
and the corresponding compression ratios for the whole genome subsets compressed. The start
sequence and rules file sizes are reported in GB. The uncompressed file size is also reported in GB.
Compression ratio is reported as the percentage of the compressed file size over the uncompressed
file size.

BigRePair Re2Pair
Haplotypes Size S R S + R Ratio S R S + R Ratio

100 295.16 0.18 2.79 2.97 1.00% 0.06 3.11 3.17 1.07%
200 590.71 0.30 3.00 3.30 0.56% 0.11 3.44 3.55 0.60%
400 1,180.67 0.49 3.33 3.82 0.32% 0.21 4.08 4.29 0.36%
600 1,772.22 0.70 3.76 4.46 0.25% 0.31 4.94 5.25 0.30%
800 2,362.98 - - - - 0.40 6.01 6.41 0.27%
1200 3,540.17 - - - - 0.60 9.88 10.48 0.30%

prove the correctness of our approach, then run several experiments on real-world datasets
that demonstrate the efficacy of our approach in building a RePair grammar on the input
text. We observe significant improvements across all experiments when creating a RePair
grammar through the recursive PFP components, as opposed to using the PFP components
directly. These improvements include over a 40% peak memory reduction and a speed-up
ranging between 12% to 79% on the largest input texts.

Finally, we note that recursive PFP has been shown to reduce the memory footprint
for two applications of PFP, building the BWT and now building a RePair grammar. We
acknowledge that while further PFP recursion on the parse could theoretically reduce the
memory usage even more, diminishing returns are likely with each iteration. Applying
recursive PFP once has already proven effective in scaling with terabyte size datasets. As
datasets grow larger, additional PFP recursion might become necessary. Currently, this
technique can be applied on other PFP applications to better optimize their memory usage.

References
1 Omar Y Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Langmead.

Spumoni 2: improved classification using a pangenome index of minimizer digests. Genome

ESA 2024

78:14 Re2Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

Biology, 24(1):122, 2023.
2 Djamal Belazzougui, Patrick Hagge Cording, Simon J Puglisi, and Yasuo Tabei. Access, rank,

and select in grammar-compressed strings. In Algorithms-ESA 2015: 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 142–154. Springer,
2015.

3 Philip Bille, Inge Li Gørtz, and Nicola Prezza. Practical and effective Re-Pair compression.
arXiv preprint arXiv:1704.08558, 2017.

4 Philip Bille, Gad M Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random access to grammar-compressed strings and trees. SIAM Journal on
Computing, 44(3):513–539, 2015.

5 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and
Taher Mun. Prefix-free parsing for building big BWTs. Algorithms in Molecular Biology,
14(1):13:1–13:15, 2019.

6 Marta Byrska-Bishop, Uday S Evani, Xuefang Zhao, Anna O Basile, Haley J Abel, Allison A
Regier, André Corvelo, Wayne E Clarke, Rajeeva Musunuri, Kshithija Nagulapalli, et al. High-
coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including
602 trios. Cell, 185(18):3426–3440, 2022.

7 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

8 Francisco Claude, Antonio Farina, Miguel A Martínez-Prieto, and Gonzalo Navarro. Com-
pressed q-gram indexing for highly repetitive biological sequences. In 2010 IEEE International
Conference on BioInformatics and BioEngineering, pages 86–91. IEEE, 2010.

9 Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations. ACM
Transactions on the Web (TWEB), 4(4):1–31, 2010.

10 Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, and
Yoshimasa Takabatake. Rpair: Rescaling RePair with Rsync. In International Symposium on
String Processing and Information Retrieval, pages 35–44. Springer, 2019.

11 Rodrigo González and Gonzalo Navarro. Compressed text indexes with fast locate. In Annual
Symposium on Combinatorial Pattern Matching, pages 216–227. Springer, 2007.

12 N Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proceedings of
the IEEE, 88(11):1722–1732, 2000.

13 Markus Lohrey, Sebastian Maneth, and Roy Mennicke. XML tree structure compression using
RePair. Information Systems, 38(8):1150–1167, 2013.

14 Takuya Mieno, Shunsuke Inenaga, and Takashi Horiyama. RePair grammars are the smallest
grammars for fibonacci words. In 33rd Annual Symposium on Combinatorial Pattern Matching,
CPM 2022, Leibniz International Proceedings in Informatics, LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl Publishing, June 2022. doi:10.4230/LIPIcs.CPM.2022.26.

15 Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-
Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, et al.
Sustainable data analysis with Snakemake. F1000Research, 10, 2021.

16 Gonzalo Navarro and Luís Manuel Silveira Russo. Re-Pair achieves high-order entropy. In
DCC, page 537, 2008.

17 Marco Oliva, Travis Gagie, and Christina Boucher. Recursive Prefix-Free Parsing for Building
Big BWTs. In 2023 Data Compression Conference (DCC), pages 62–70. IEEE, 2023.

18 Arang Rhie, Sergey Nurk, Monika Cechova, Savannah J Hoyt, Dylan J Taylor, Nicolas
Altemose, Paul W Hook, Sergey Koren, Mikko Rautiainen, Ivan A Alexandrov, et al. The
complete sequence of a human y chromosome. Nature, 621(7978):344–354, 2023.

19 Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. Moni:
A pangenomic index for finding maximal exact matches. Journal of Computational Biology,
2022.

https://doi.org/10.4230/LIPIcs.CPM.2022.26

J. Kim, R. Varki, M. Oliva, and C. Boucher 78:15

20 James A Storer and Thomas G Szymanski. Data compression via textual substitution. Journal
of the ACM (JACM), 29(4):928–951, 1982.

21 Yasuo Tabei, Yoshimasa Takabatake, and Hiroshi Sakamoto. A succinct grammar compression.
In Annual Symposium on Combinatorial Pattern Matching, pages 235–246. Springer, 2013.

ESA 2024

	1 Introduction
	2 Preliminaries
	2.1 Basic definitions
	2.2 Context-free Grammars
	2.3 Overview of Prefix-Free Parsing
	2.4 Overview of RePair
	2.5 Overview of BigRePair

	3 Recursive RePair Algorithm
	3.1 Run Recursive PFP
	3.2 Build Intermediate Grammars Using RePair
	3.3 Construct P_T.S and P_{T}.{R}
	3.4 Construct T.S and T.{R}

	4 Experiments
	4.1 SARS-CoV-2 Genomes
	4.2 Chromosome 1 Haplotypes
	4.3 Whole Genomes from 1000 Genomes Project

	5 Conclusion

