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Abstract
We consider the fundamental problems of reachability shortcuts and compression schemes of the
transitive closure (TC) of n-vertex directed acyclic graphs (DAGs) G when we are allowed to neglect
the distance (or reachability) constraints for an ϵ fraction of the pairs in the transitive closure of G,
denoted by T C(G).

Shortcuts with Slack. For a directed graph G = (V, E), a d-reachability shortcut is a set of edges
H ⊆ T C(G), whose addition decreases the directed diameter of G to be at most d. We introduce the
notion of shortcuts with slack which provide the desired distance bound d for all but a small fraction
ϵ of the vertex pairs in T C(G). For ϵ ∈ (0, 1), a (d, ϵ)-shortcut H ⊆ T C(G) is a subset of edges with
the property that distG∪H(u, v) ≤ d for at least (1 − ϵ) fraction of the (u, v) pairs in T C(G). Our
constructions hold for any DAG G and their size bounds are parameterized by the width of the
graph G defined by the smallest number of directed paths in G that cover all vertices in G.

For every ϵ ∈ (0, 1] and integer d ≥ 5, every n-vertex DAG G of width ω admits a (d, ϵ)-shortcut of
size Õ(ω2/(ϵd)+n). A more delicate construction yields a (3, ϵ)-shortcut of size Õ(ω2/(ϵd)+n/ϵ),
hence of linear size for ω ≤

√
n. We show that without a slack (i.e., for ϵ = 0), graphs with

ω ≤
√

n cannot be shortcut to diameter below n1/6 using a linear number of shortcut edges.
There exists an n-vertex DAG G for which any (3, ϵ = 1/2

√
log ω)-shortcut set has Ω(ω2/2

√
log ω +

n) edges. Hence, for d = Õ(1), our constructions are almost optimal.

Approximate TC Representations. A key application of our shortcut’s constructions is a (1 − ϵ)-
approximate all-successors data structure which given a vertex v, reports a list containing (1 − ϵ)
fraction of the successors of v in the graph. We present a Õ(ω2/ϵ + n)-space data structure with a
near linear (in the output size) query time. Using connections to Error Correcting Codes, we also
present a near-matching space lower bound of Ω(ω2 + n) bits (regardless of the query time) for
constant ϵ. This improves upon the state-of-the-art space bounds of O(ω · n) for ϵ = 0 by the prior
work of Jagadish [ACM Trans. Database Syst., 1990].
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1 Introduction

Finding succinct directed graph representations is fundamental graph problem that admits a
large collection of applications to databases systems, evolutionary computation, program
testing, communication networks and parallel computation [3, 14, 27, 25, 15]. These problems
can be subdivided into two (orthogonal) types: augmentation and reduction. In augmentation
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problems, the goal is to add a small number of edges to the graph to improve some of the
graph’s properties. Classical examples are reachability shortcuts and hopsets whose addition
to the graph reduces the number of hops along directed shortest paths. Reduction problems
aim at reducing the space of the graph representation, e.g., by computing a sparse subgraph
or a low-space data-structure, that preserve some key desired properties of the original graph.
Notable examples are transitive closure (TC) reduction and reachability preservers.

In this work, we extend the normal definitions of digraph representation problems with
a slack parameter ϵ, which allows us to ignore up to an ϵ-fraction of the TC pairs, and
provide the desired reachability (or distance) guarantee for the remaining pairs. We address
this slack notion for the settings of reachability shortcuts (an augmentation problem) and
TC-reduction and compression schemes (which are reduction problems). Our algorithms
hold for the family of n-vertex directed acyclic graphs (DAGs) and are in-particular efficient
for graphs of bounded width. The width of a DAG G is the minimum number of chains1 that
cover all the vertices of G. This graph parameter has been shown to play an important role
in the space bound of reachability shortcuts [18] and TC-compression [14], in the standard
setting, where no slack is allowed. A natural question to ask is whether adding a slack
parameter can significantly reduce the space bounds of these structures. In this paper we
address this question from upper and lower bounds perspectives.

There has been a series of papers studying the concept of slack, mainly in the context of
metric embedding [16] and distance compression in undirected graphs [1, 2]. Chan, Dinitz and
Gupta [6] studied the notion of spanners with slack, i.e., where the small stretch guarantee2

holds for (1− ϵ) fraction of the vertex pairs. Distance oracles and routing schemes with slack
have been studied by [2] and [10], respectively. To the best of our knowledge, no prior work
addressed the setting of slack in the context of succinct directed graph representations.

Reachability Shortcuts. A d-reachability shortcut of a digraph G = (V, E) with transitive
closure TC(G) is a set of edges H ⊆ TC(G) such that the (u, v)-shortest path distance in
G ∪H is at most d, for every (u, v) ∈ TC(G). Reachability shortcuts have attracted a lot
of attention in the recent years. The key question addressed is what’s the best possible
distance bound d achievable with a linear number (i.e., O(|V |)) of shortcut edges. Recent
work demonstrated an upper bound of d = Õ(n1/3) by Kogan and Parter [17] and a lower
bound of Ω̃(n1/4) by Bodwin and Hoppenworth [4]. Narrowing this gap is one of the most
intriguing open problems in this setting. As we explain in Sec. 2, a key barrier for improving
upon the Kogan-Parter [17] result is the fact that the reachability relations between pairs
of paths P1, P2 cannot be captured by adding a small number of shortcut edges between
V (P1) and V (P2). We therefore start by asking if this barrier can be bypassed when we are
allowed to neglect some fraction of the pairs in V (P1)× V (P2), and answer this question in
the affirmative.

We introduce the notion of shortcuts with slack in which the distance guarantee fails
to hold for a small fraction of the pairs in TC(G). Formally, a (d, ϵ) shortcut H satisfies
that distG∪H(u, v) ≤ d for (1− ϵ) fraction of the (u, v) pairs in TC(G). We also consider a
stronger slack notion where the desired distance guarantee distG∪H(u, v) ≤ d holds for (1− ϵ)
fraction of all vertices that are reachable from u, for every3 u. This notion finds applications
in the context of single-source reachability in the parallel and distributed settings [20]. By

1 A chain is a dipath in the transitive closure T C(G).
2 The stretch of a (standard) spanner H ⊆ G is t if distH(u, v) ≤ t · distG(u, v) for every u, v ∈ V .
3 Symmetrically, one can provide this property for (1 − ϵ) fraction of all the incoming T C(G)-neighbors

of v, for every v. This can be done by working on a graph in which all the directions of G-edges are
reversed.
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adding a (d, ϵ) shortcut H to the graph G, one can detect (1− ϵ) fraction of all reachable
vertices from the given source in parallel depth of d and work that depends linearly in |G∪H|.

Shortcuts with slack can also be used to compute shortcuts with a small average distance.
For a given directed graph G′, denote its average distance by:

AVdist(G′) =
∑

(u,v)∈T C(G′) distG′(u, v)
|TC(G′)| .

A set H ⊆ TC(G) is a d-average distance shortcut for G if AVdist(G ∪H) ≤ d. This notion
has been studied in the context of spanners (for undirected graphs) by Chan, Dinitz and
Gupta [6] and low-stretch spanning trees [22].

Shortcut Lower Bounds. Standard shortcuts (with no slack) have been studied from a
lower bound perspective, as well [25, 12, 13, 21, 4, 19, 28]. For example, Huang and Pettie
[13] exhibited a construction of an n-vertex graph for which any O(n)-size shortcut set
cannot reduce the diameter to below Θ(n1/6). This lower bound has been recently improved
by Bodwin and Hoppenworth [4] to Ω(n1/4), and further generalized and simplified by
Vassilevska Williams, Xu and Xu [28]. It is noteworthy that the width of these lower bound
graphs might be Ω(n3/4). Since bounded width graphs enjoy an improved diameter bounds
(as shown in [18]), it is intriguing to characterize the diameter and size tradeoff as a function
of the width of the graph. We note that the current lower bound constructions do not hold
in the slack setting, hence lower bounds for shortcuts with slack call for new ideas.

Compression Schemes of the Transitive Closure. The succinct storage of the transitive
closure and reachability information is a fundamental graph problem that has many applic-
ations, in particular, in database systems [29, 8, 30, 14]. A common primitive repeatedly
employed in these systems is that of determining whether there exists a directed path
between a pair of vertices in the given directed graph G, or determining all vertices that
are reachable from a particular vertex. This finds applications in expert systems, relational
algebra, object oriented and semantic data models, e.g., for finding all inherited properties in
objected-oriented [26] and semantic data models [3].

In an influential work on algorithmic databases, Jagadish [14] introduced the all-successor
data-structure, which upon a query vertex u reports the list of all vertices that are reachable
from u in G. For an n-vertex ω-width DAG, the presented data-structure of Jagadish [14]
has space of Õ(ω · n) and near-optimal query time. As this space bound can also be shown
to be tight, we again ask whether one can improve the space requirements at the expense
of introducing an ϵ slack, where it is allowed to report (1− ϵ) fraction of the successors of
u. Cohen [7] addressed the notion of transitive-closure with slack from a computational
time, rather then space, perspective. Specifically, [7] presented a linear time randomized
algorithm for computing a (1− ϵ) approximation of the number of vertices reachable from
every vertex. The question that we address in this paper is concerned with compression:
what’s the minimal space required in order to be able to retrieve a (1− ϵ) approximation of
the transitive closure (or even deducing (1− ϵ) fraction of the successor lists).

▶ Remark. There are two main differences between TC compression and shortcuts. TC
compression does not account for the number of hops along shortest paths, and in this sense
its space bounds might be smaller than that required by shortcuts. Shortcuts, on the other
hand, only account for the number of added shortcut edges, and the size of the graph comes
for free. In this sense, shortcuts might be sparser. Interestingly, we show an almost matching
space bounds for these two problems when d = 3.
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79:4 Giving Some Slack: Shortcuts and Transitive Closure Compressions

1.1 New Results
All our results hold for n-vertex DAG G = (V, E) of width ω and m edges.

1.1.1 Shortcuts with Slack
We provide new constructions for (d, ϵ)-shortcuts, for any d. For the values of d = 2 and
d = 3, we also provide (almost) matching lower bounds. Our starting observation indeed
shows that a 2-shortcut with slack requires Ω(ω · n) edges, and this is tight.

▶ Lemma 1.1 ((2, ϵ)-Shortcuts are Dense). Every n-vertex DAG admits a (2, ϵ)-shortcut of
size Õ(ωn + n/ϵ) edges. .

We show that bound of Lemma 1.1 is nearly tight:

▶ Theorem 1.2 ((2, ϵ)-shortcuts). For every sufficiently large n and positive integer k ∈ N≤n,
there exists an n-vertex DAG of diameter 3 and width ω = Θ(k), such that any (2, ϵ = 1/2)-
shortcut requires Ω(n · ω) edges.

For 3-shortcuts, we provide improved bounds for every ω = o(n):

▶ Theorem 1.3. For every n-vertex ω-width DAG G = (V, E) and ϵ ∈ (0, 1), one can
compute in Õ(ω ·m/ϵ + m1+o(1)) time, a (3, ϵ)-shortcut with Õ((ω2 + n)/ϵ) edges.

We complement this by two lower bound results. A size lower bound of Ω(n) can be
easily obtained for a n-vertex dipath. We thus focus on matching the ω2 term. Our first
lower bound holds for ϵ = 2−

√
log ω and any width value ω. The value of ϵ is limited by the

current upper bounds on the Ruzsa-Szemerédi (RS) number [24]. For an integer n, RS(n) is
the largest value such that any graph that can be partitioned into n induced matching has
at most n2/RS(n) edges. We use the fact that RS(n) = 2O(

√
log n) to show:

▶ Theorem 1.4. For every sufficiently large n and an integer k ≤ n/5, there exists an
n-vertex DAG G of diameter 4 and width ω = Θ(k), such that every (3, ϵ)-shortcut H for G

with ϵ =
( 1

2
)Θ

(√
log ω

)
requires Ω(ω2/2O

(√
log ω

)
) edges.

For ϵ =
( 1

2
)Θ

(√
log ω

)
this almost matches the upper bound of Theorem 1.3.

We also propose an alternative construction that provides a near-optimal size bound for
any constant value of ϵ, provided that the width of the graph is bounded by ω = O(n2/3).
The construction is probabilistic, and it is based on embedding a random G(n, p) graph,
rather than the Ruzsa-Szemerédi graph (as used in Thm. 1.4).

▶ Theorem 1.5. For every sufficiently large n and an integer k = O(n2/3), there exists an
n-vertex DAG G of diameter 4 and width ω = Θ(k), such that every (3, ϵ = 1/2)-shortcut H

for G requires Ω(ω2) edges.

Providing a tight lower bound as a function of ϵ, it is an interesting open problem.

Construction of (d, ϵ)-Shortcuts. We characterize the size and diameter tradeoff as a
function the width, for any given ϵ. The algorithm for (d, ϵ)-shortcuts also serves the basis
for our subsequent results.

▶ Theorem 1.6. For every n-vertex ω-width, integer d ≥ 5 and a slack parameter ϵ ∈ (0, 1),
one can compute in O(ω ·m/ϵ + m1+o(1)) time, a (d, ϵ)-shortcut with Õ(ω2/(ϵ · d) + n) edges.
These shortcuts provide a distance bound d between each u ∈ V to (1 − ϵ) fraction of its
reachable vertices. The construction is randomized and the correctness holds w.h.p.
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Prior work of Kogan and Parter [18] provided constructions of d-shortcuts (without slack)
whose size bounds are parameterized by the width. For example, they show a construction
of d-shortcuts with Õ(nω/d2 + n

√
ω/d) edges. Our slack results of Thm. 1.6 improve over

[18] mainly in the setting where d = O(1). I.e., for ω = O(
√

n), there is a near-linear
(5, ϵ) shortcut, while the constructions of [18] require super-linear number of edges for any
constant diameter. The construction of Theorem 1.6 allows one to be able to solve the (1− ϵ)
single-source reachability problem (where we compute only (1− ϵ) fraction of the reachable
vertices from a given source) in the parallel setting [20]. Given the computation of (O(1), ϵ)
shortcut H, this problem can be solved in near-linear work (for graphs with width O(

√
n)

and constant depth.
A closely related notion is good-on-average shortcuts which provide a small average

directed distance in G. By combining our shortcuts with slack constructions with the
constructions of standard d-shortcuts of [18], we have:

▶ Theorem 1.7 (Good-on-Average Shortcuts). For every n-vertex DAG G with width ω ≤ n2/5,
one can compute a shortcut set of Õ(n) edges whose addition reduces the average path length
to at most 6.

Without a slack, the diameter upper bound for n2/5-width graphs obtained with linear
size shortcut is n1/5 [18].

Separation between Slack vs. No Slack Shortcuts. We generalize the recent lower bound
result of [28] to provide a lower bound graph with bounded width. For the regime of linear-size
shortcuts, we show:

▶ Theorem 1.8 (Separation). There exists an n-vertex DAG G with width ω =
Θ(
√

n/poly log n) that requires cn edges to reduce its diameter to n1/6/poly log n for some
constant c > 0. In contrast, cn/2 shortcut edges can reduce the distance to at most O(1) for
(1− ϵ) fraction of the TC(G)-pairs for some constant ϵ ∈ [0, 1].

We observe that the lower bound graph of Huang and Pettie [13] also provides diameter
bound of Ω(n1/6) for linear size shortcuts. The width bound of their construction is linear as
written, and can be modified to provide a width bounded by Θ(n5/6)4. By working with the
lower bound of [28], we can reduce the width of their construction from Θ(n3/4) to O(

√
n).

1.1.2 Transitive Reduction and All-Successors Data Structures, with
Slack

For a given DAG G = (V, E) a transitive reduction is a graph G′ = (V, E′) such that
TC(G) = TC(G′) and |E′| ≤ |E|. We introduce the notion of Transitive Reduction with
Slack in which the output graph G′ satisfies that (i) TC(G′) ⊆ TC(G) and (ii) |TC(G′)| ≥
(1− ϵ)|TC(G)|.

▶ Theorem 1.9. For every n-vertex m-edge DAG G = (V, E) with width ω and ϵ ∈ (0, 1), one
can compute in time Õ(ωm/ϵ + m1+o(1)) an ϵ-slack transitive reduction graph G′ = (V, E′)
with |E′| = Õ(ω2/ϵ + n) edges.

4 This seems to be the best that one can hope for in their construction, as their lower bound graph
connects a collection of Θ(n) critical pairs by paths of length Ω(n1/6).

ESA 2024
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We complement this construction by a near matching lower bound that holds for any
compression scheme of the transitive closure, with a constant slack parameter. By using
connections to Error-Correcting-Codes, we show:

▶ Theorem 1.10. There is an n-vertex DAG G = (V, E) with width ω such that any
data-structure that stores 0.999-fraction of the edges in TC(G) requires space of Ω(ω2 + n).

Near Optimal All-Successors Data-Structure, with Slack. We provide constructions of
ϵ-slack all-successors data-structures. In this setting, it is required to compute a low-space
data-structure that given a query node u, returns a list containing (1− ϵ) fraction all the
successors of u in G. In a highly influential paper, [14] presented a near-optimal construction
for the case of ϵ = 0 (i.e., with no-slack). We provide an alternative construction for any
slack parameter ϵ with near-optimal space and query time.

▶ Theorem 1.11. For every n-vertex m-edge DAG G with width ω, one can compute in time
Õ(ωm/ϵ + m1+o(1)) a data-structure of size O(ω2/ϵ + n) that given a vertex v can report a
list L of at least (1− ϵ) fraction of all the successors (or predecessors) of v in time Õ(|L|).

This improves upon the space bound of (ω · n) by [14] for any ω = o(n). The space
optimality follows by Theorem 1.10.

Handling General Graphs. Our constructions are parameterized by the width of the graph
which is defined for DAGs (as in [18]). A plausible approach for handling general graphs
G is by considering their corresponding DAG G′ obtained by contracting each strongly-
connected-component (SCC) in G into a node in G′. In the context of slack, this provides a
node-weighted variant where the weight of each G′-node is given by the number of vertices in
the SCC that it represents. On a high-level, our upper bound constructions might be adapted
to this weighted setting at the cost of increasing the size bound by a factor of O((log n/ϵ)2).

2 Technical Overview

Throughout, it is convenient to consider a topological ordering {v1, . . . , vn} of the vertices
V . We write vi ≺ vj if i ≤ j. A chain is a dipath in the transitive closure TC(G). For
a chain C = [v1, . . . , vℓ], let C[., vi] = C[v1, . . . , vi] and C[vi, .] = [vi, . . . , vℓ]. Furthermore
we always assume that G = (V, E) denote a DAG with vertex set V and edge set E, with
|V | = n and |E| = m. We focus here on the upper and lower bounds for shortcuts with slack,
which capture most of the key intuition. Kogan and Parter [17] introduced a path-centric
approach for computing reachability shortcuts. Their constructions of d-shortcuts with
Õ(n2/d3) edges is based on connecting a collection of Õ(n/d) randomly selected vertices V ′

to a set of Õ(n/d2) paths P ′, which are randomly sampled from a carefully chosen set P of
vertex-disjoint TC(G)-dipaths. Their algorithm then adds one edge e(v, P ) between each
vertex v ∈ V ′ to each path P ∈ P ′. The edge e(v, P ) is chosen to be the edge that connects
v to its first reachable vertex on P (note that such edge might not exist in which case we
add nothing). The key observation in this context is that the edge e(v, P ) = (v, u) captures
all reachability relations between v to the vertices on P , in particular, z ∈ P is reachable
from v iff z ∈ P [u, .].

The key limitation for improving the tradeoff of [17] is that unlike vertex-path pairs, one
cannot capture the reachability between pairs of paths by adding a single edge between some
v ∈ V (P1) and u ∈ V (P2). (If this property would have held, then one can obtain linear
d-shortcuts with d = Õ(n1/4), which it tight by [4].) Our key starting observation shows
that by adding a single shortcut edge between pairs of paths Pi, Pj , one can capture the
reachability relations for 1/ log n fraction of the vertex pairs in V (Pi)× V (Pj).
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▶ Observation 2.1. Let P1, P2 ⊆ TC(G) be two dipaths with |P1|, |P2| ≤ n. Then, there exists
a single edge e = (u, v) ∈ (V (P1)×V (P2))∩TC(G) such that G′ = P1∪{(u, v)}∪P2 satisfies
the following (i) TC(G′) ⊆ TC(G) and (ii) |(V (P1) × V (P2)) ∩ TC(G′)| = Ω(|(V (P1) ×
V (P2)) ∩ TC(G)|/ log n) .

Proof. Let P1 = [u1, . . . , uℓ1 ] and P2 = [v1, . . . , vℓ2 ]. For each ui ∈ P1, let ai be the number
of vertices that are reachable from ui on P2. Note that the vertex zi = vℓ2−ai+1 is then
the first reachable vertex from ui on P2, as all the ai vertices that are reachable from ui

are on the segment P2[zi, .]. We then have that |(V (P1) × V (P2)) ∩ TC(G)| =
∑n

i=1 ai.
By adding an edge ei = (ui, zi) to H ′, we provide a directed path for i · ai pairs, namely
from every z ∈ P1[u1, ui] to z′ ∈ P2[zi, .]. Our goal is to show that M = maxi(ai · i) =
Ω (|TC(G) ∩ V (P1)× V (P2)|/ log n). That is, that there exists an edge ei which reduces the
distance for 1/ log n fraction of the pairs in (V (P1)× V (P2)) ∩ TC(G). This holds as,

|(V (P1)× V (P2)) ∩ TC(G)| =
n∑

i=1
ai ≤M/1 + M/2 + . . . + M/n ≤ O(M · log n) ,

hence, M = Ω(|(V (P1)× V (P2)) ∩ TC(G)|/ log n), as desired. ◀

We use this observation to provide (5, ϵ = 1/ log n)-shortcuts. All our shortcut construc-
tions start by computing the minimum chain cover (MCC) of G given by C = {C1, . . . , Cω}.
The MCC is minimum set of vertex-disjoint chains that cover all the vertices. Very recently,
Cáceres provides an elegant almost-linear time algorithm for computing the MCC [5].

𝑎1

𝑎2

𝑎3

𝑎4

𝑏1

𝑏2

𝑏3

𝑏4

𝑣

𝑧

𝑓

𝐶𝑗 𝐶𝑖

Figure 1 (5, ϵ) Shortcuts. Black dashed edges are in the shortcut, while the red edge is not.

Take I: 5-Shortcuts with a Logarithmic Slack. For every chain Ci ∈ C, let Hi be a 2-
shortcut for Ci of size O(|Ci| log n). See Lemma 3.2. Next, for each pair of chains Cj , Ci, let
ej,i be the edge that satisfies the requirements of Obs. 2.1 (i.e., that maximizes the number of
reachable pairs when adding ej,i). The final shortcut is given by H =

⋃
i(Hi∪Ci)∪

⋃
j,i{ej,i}.

It is easy to see that |H| = O(ω2 +n log n). Consider the distance guarantee. By Obs. 2.1, for
every pair Cj , Ci, by adding an edge ej,i = (x, y), there is a directed path in G ∪ {ej,i} for a
subset of pairs Sj,i ⊆ V (Cj)×V (Ci) such that |Sj,i| = Ω(|(V (Cj)×V (Ci))∩TC(G)|/ log n).
For every (a, b) ∈ Sj,i, the dipath is given by Cj [a, x]◦ej,i ◦Ci[y, b]. By adding the 2-shortcuts
of Hi and Hj , we get that distG∪Hj

(a, x) ≤ 2 and distG∪Hi
(y, b) ≤ 2, hence distG∪H(a, b) ≤ 5.

Take II: 5-Shortcuts for any Slack. To provide (5, ϵ)-shortcuts for any slack parameter ϵ,
we will be adding a collection of O(log n/ϵ) edges between each pair of chains Cj , Ci. This
will provide a distance bound of 5 from each v to a (1− ϵ)-fraction of its incoming TC(G)-
neighbors. Fix chains Cj , Ci ∈ C. We mark ℓ = O(log n/ϵ) vertices on Cj = [v1, . . . , vk]. The

ESA 2024
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qth marked vertex is vsq where sq = ⌈(1 + ϵ)q⌉. Let Aj = {a1, . . . , aℓ} be the collection of
marked vertices according to their appearance on Cj . For every aq ∈ Aj , let bq be the first
reachable vertex from aq on Ci.

The algorithm then adds the edges Hj,i = {(aq, bq) | aq ∈ Aj}. The final shortcut is
given by H =

⋃
i(Hi ∪ Ci) ∪

⋃
j,i Hj,i, where Hi is a 2-shortcut for Ci, as in the previous

construction. The size bound is again immediate and we focus on the distance guarantee.
Fix a vertex v ∈ Ci and a chain Cj . Let Nj(v) = {z ∈ Cj | (z, v) ∈ TC(G)} be the set of all
the incoming TC(G)-neighbors of v in Ci. We claim that there exists a subset I(v) ⊆ Nj(v)
such that |I(v)| ≥ (1 − 2ϵ)|Nj(v)| and that distG∪H(u, v) ≤ 5 for every u ∈ I(v). As this
would hold for every Cj and every v, the slack guarantees follows. Let z be the lowest (i.e.,
last) vertex on Cj that belongs to the set Nj(v).

Let a, a′ be the closest marked vertices to z on Cj (in the figure, a = a3, a′ = a4), where
a ≺ z ≺ a′, and let b be the first reachable vertex from a on Ci. Since (a, v) ∈ TC(G), we
have that b ≺ v. We set I(v) = Cj [., a]. For every f ∈ I(v), we have the following directed
f -v path: Cj [f, a] ◦ (a, b) ◦ Ci[b, v]. Since Hi, Hj ⊆ H, we have that distG∪H(f, v) ≤ 5 for
every f ∈ I(v). Finally, we bound the size of I(v). By definition, Nj(v) = V (Cj [., z]).
By the definition of the marked vertices a, a′ we have that |Cj [a, a′]| ≤ ϵ|I(v)|. Hence,
|I(v)| ≥ |Nj(v)|/(1 + ϵ) ≥ (1− 2ϵ)|Nj(v)|.

Lower Bounds for (3, ϵ) Shortcuts. Many of the current lower-bound constructions of
linear size shortcuts5 (with no slack) are based on defining a set of Θ(n) critical pairs C,
with some desirable disjointness properties of their respective shortest paths, and claiming
that every shortcut edge can reduce the distance between a constant number of pairs, leading
to a lower bound of Ω(|C|). In the slack model, these constructions would not provide
any meaningful result, as one can simply neglect all critical pairs, which constitutes only
|C|/n2 = 1/n fraction of the total edges in the transitive closure. The slack model, say with
ϵ = 1/2, calls then for new lower bound constructions in which the number of critical pairs is
sufficiently large, i.e., at least some constant fraction of the total size of the transitive closure.

We present two lower bound constructions for (3, ϵ) shortcuts. The first holds for any
width value ω but restricted to non-constant value of ϵ where ϵ = 2−

√
log ω. The second

construction holds for any constant value of ϵ but restricted to graphs with width of O(n2/3).
Both constructions are based on a 4-diameter layered graph with 5 layers, L0, . . . , L4. The
key difference is in the bipartite graph that we embed between the internal layers. Our first
construction (Theorem 1.4) connects layers L2, L3 by embedding the Ruzsa-Szemerédi graph
which, informally, contains an almost quadratic number of edges that can be partitioned into
a linear number of induced matchings. The second construction (Theorem 1.5) embeds an
Erdős-Rényi graph between layers L1, L2 and L3. In what follows, we sketch the high-level
structure of the first construction which is based on the existence of a Ruzsa-Szemerédi (RS)
graph from [24]. Formally, a graph is (r, t)-RS-digraph if its edges can partitioned into t

pairwise disjoint induced matchings, each of size r. Ruzsa and Szemerédi in [24] provide a
construction of n-vertex (r, t) RS graphs with t = Θ(n) and r = n/2

√
log n. We draw the a

connection between the achievable r, t bounds and the size of (3, ϵ) shortcuts.

▶ Lemma 2.2. [From RS to LB for Shortcuts with Slack] Given an (r, t) RS k-vertex graph,
then for every n ≥ c · k for some constant c ≥ 1, there is an n-vertex graph with width
ω = Θ(k) for which any (3, ϵ = Θ(r/ω)) shortcut requires Ω(t · r) edges.

5 An exception is the very recent lower bound of Bodwin and Hoppenworth [4].
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The graph has 5 layers L0, L1, L2, L3, L4 where the first and last layers, L0, L4 consists of
a collection of k = Θ(ω) vertex-disjoint directed paths each of length N = ⌈n/k⌉ and the RS
graph is used to connect layer L2 with L3. The size of the layers is given by |L0|, |L4| = Θ(n),
|L1| = t and |L2|+ |L3| = k. We connect all vertices of the ith path in layer 1 as incoming
vertices of the ith vertex in layer 2. Similarly, the ith vertex on layer L3 has outgoing edges
to all the vertices on the ith path of layer L4. Importantly, the jth vertex on layer L1 is
connected to the L2-endpoints of the jth induced matching in the RS graph connecting
L2 and L3. Our argument shows that there is a collection of a = n2 · r/k critical pairs C

with some useful disjointness properties. Since ϵ = a/n2 = Θ(r/k), a (3, ϵ) shortcut must
provide a distance 3 for at least a constant fraction of the pairs in C. Using the disjointness
properties on C, we then claim that each shortcut edge can reduce the distance for at most
b = O(n2/(tk)) pairs. Hence, one needs to add a Ω(a/b) = Ω(t · r) shortcut edges.

2.1 Preliminaries
Graph Notations. For an n-vertex digraph G = (V, E), let TC(G) denote its transitive
closure. Throughout, let n = |V | and m = |E|. For an a-b dipath P and an b-c dipath P ′

the concatenation of the paths is denoted by P ◦ P ′. Let |P | denote the number of vertices
on P (unless mentioned otherwise). For a collection of paths P, let V (P) =

⋃
P ∈P V (P ).

For an element set X and p ∈ [0, 1], let X[p] be the set obtained by taking each element of
X into X[p] independently with probability p.

For a chain C = [v1, . . . , vℓ], let C(i) = vi, namely, the ith vertex on the chain. Let
C[vi, .] denote the sub-chain [vi, . . . , vℓ] and similarly, C[., vi] = [v1, . . . , vi]. For an integer
k ∈ {1, . . . , ℓ}, the k-length prefix (resp., suffix) of C are given by Pre(Ci, k) = [v1, . . . , vk]
and Suff(Ci, k) = [vℓ−k+1, . . . , vℓ]. For vi, vj with i ≤ j, let C[vi, vj ] = [vi, . . . , vj ], C[vi, vj) =
[vi, . . . , vj−1] and C(vi, vj ] = [vi+1, . . . , vj ].

For a vertex u and a chain C = [v1, . . . , vℓ], let Reach(u, C) be the set of vertices on C

that are reachable from u in G. Similarly, let IN(u, C) be the set of vertices v ∈ C that have
a directed path into u. Formally,

Reach(u, C) = {v ∈ C | (u, v) ∈ TC(G)} and IN(u, C) = {v ∈ C | (v, u) ∈ TC(G)} . (2.1)

Let IN(u) = {v ∈ V (G) | (v, u) ∈ TC(G)}} be the set of all incoming neighbors of u in
TC(G). Denote FirstReach(u, C) as the the first (i.e., upmost on C) reachable vertex from u

on C = [v1, . . . , vℓ], letting i ∈ {1, . . . , ℓ} be the smallest index such that vi ∈ Reach(u, C),
then FirstReach(u, C) = vi. For a given subset Z ⊆ V (C), let FirstReach(u, C, Z) be the
upmost vertex in Z on C that is reachable from u. For a subset of edges H, let HR =
{(u, v) | (v, u) ∈ H} be the edge set in which all H-edges are reversed.

Definitions of Shortcuts and TC Compression, with Slack. For a given n-vertex DAG
G = (V, E), an integer d and ϵ ∈ (0, 1), a (d, ϵ)-shortcut H ⊆ TC(G) satisfies that there
exists E′ ⊆ TC(G) such that |E′| ≥ (1 − ϵ)|TC(G)| and distG∪H(u, v) ≤ d for every
(u, v) ∈ E′. A TC-compression is a data-structure DS that upon a query (u, v) returns
DS((u, v)) = 1 iff (u, v) ∈ TC(G). A TC-compression with slack ϵ, DSϵ, satisfies the
following: Let E′ = {(u, v) ∈ V × V | DSϵ((u, v)) = 1}. Then, E′ ⊆ TC(G) and
|E′| ≥ (1− ϵ) · |TC(G)|. Our constructions of (d, ϵ) shortcuts and TC-compression schemes
satisfy a stronger slack guarantee: For any vertex u, there is a subset O(u) ⊆ Reach(u) such
that |O(u)| ≥ (1 − ϵ)|Reach(u)| and the structure satisfy the distance (resp., reachability)
guarantee for all pairs in {u} × Reach(u). Same holds for the predecessor lists.

Due to space limitations, we only provide the constructions of shortcuts and TC com-
pressions.
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3 Shortcuts with Slack

3.1 Upper Bounds
The starting point to all of our constructions is the computation of the minimum chain
cover C = {C1, . . . , Cω} of G. As observed by Dilworth and Fulkerson [9, 11], a MCC can be
computed in polynomial time for DAGs, while being NP-hard for general graphs. Recently,
an almost-linear time MCC algorithm was shown by [5].

We need the following definitions. For every vertex v, let c(v) be the index i of the chain
Ci such that v ∈ V (Ci), and let p(v) be the index of the position of v on Ci, i.e., v is the
p(v)th vertex on Ci. Our (d, ϵ)-shortcuts are based on connecting a collection of O(log n/ϵ)
vertices that lie on exponentially growing positions (1 + ϵ)i on the chains Ci ∈ C. For a
given slack parameter ϵ ∈ (0, 1), let ExpU(C, ϵ) = {u1, . . . , uk} ⊆ C where6 p(u1) = 1 and for
every i ∈ {1, . . . , k − 1}, we have p(ui+1) = p(ui) + ⌈ϵp(ui)⌉. Similarly, the set ExpD(C, ϵ)
corresponds to an exponentially spaced vertices starting from the bottom of the chain C, i.e.,
ExpD(C, ϵ) = ExpU(CR, ϵ), where CR is the chain C with reversed directions.

▶ Observation 3.1. Let C = [v1, . . . , vℓ] and C ′ be vertex disjoint chains. Then,

|Reach(v1, C ′)| ≥ |Reach(v2, C ′)| ≥ . . . ≥ |Reach(vℓ, C ′)| .

▶ Lemma 3.2 ([23] Lemma 1.1). For any dipath P , there is an algorithm ShortcutPath that
computes in near linear time a (2, ϵ = 0)-shortcut H with |H| = O(|P | log |P |) edges.

In the full paper, we describe a construction of (2, ϵ = 1/2)-shortcuts with O(ωn) edges,
which is also tight. The construction of (3, ϵ = 1/2)-shortcuts with Õ((ω2 +n)/ϵ) edges is also
in the full paper. On a high level, in this construction, for every pair of chains Cj and Ci, we
add |ExpU(C, ϵ)| shortcut edges between each u ∈ ExpU(Cj , ϵ) to a unique v ∈ ExpD(Ci, ϵ).
We also connect each vertex in Cℓ to all its TC(G)-neighbors in ExpU(Cℓ, ϵ), ExpD(Cℓ, ϵ).
These edges provide 1-hop distance to the marked vertices on the designated chains, which is
critical to the diameter bound. Since we do not connect u ∈ ExpU(Cj , ϵ) to its first reachable
vertex on Ci, but rather to a marked vertex in ExpD(Ci, ϵ), leads to a more delicate analysis.

We next prove Theorem 1.6 by providing a construction of a (d, ϵ)-shortcut H for any
given diameter d and slack parameter ϵ. Our (d, ϵ)-shortcut in-fact satisfies a stronger
slackness property.

▶ Definition 3.3 (In-and-Out Covering). For a given n-vertex DAG G, ϵ ∈ (0, 1) and integer
d, a vertex v is (d, ϵ) IN-covered by a shortcut set H if there exists a subset I(v) ⊆ IN(v) of
cardinality at least (1− 2ϵ)|IN(v)| such that distG∪H(u, v) ≤ d, for every u ∈ I(v). Similarly,
a vertex v is (d, ϵ) OUT-covered by H if there exists a subset O(v) ⊆ Reach(v) of cardinality
at least (1− 2ϵ)|Reach(v)| such that distG∪H(v, u) ≤ d, for every u ∈ O(v).

In the full version, we show:

▶ Observation 3.4. Suppose that there is an algorithm that given an n-vertex ω-width graph
G, ϵ, d computes a shortcut set H such that every vertex v ∈ V is (d, ϵ) IN-covered by H and
such that |H| = g(n, ω, ϵ, d) for some function g. Then, there is an algorithm that computes a
shortcut set H ′ such that every vertex v is (d, ϵ) OUT-covered by H ′ and |H ′| = g(n, ω, ϵ, d).

6 We define the vertex ui+1 in ExpU(C, ϵ) inductively, rather than by (1 + ϵ)i+1 for minor technical
simplification of our analysis. Specifically, this choice guarantees that all k vertices are disjoint.
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From the point on, we focus on computing a shortcut set H such that each v ∈ V is (d, ϵ)
IN-covered by H. Let C be a minimum chain cover for G and let R ⊆ C be a sample of
O(ω log n/d) chains obtained by sampling each chain Ci ∈ C into R independently with
probability of p = Θ(log n/d). The algorithm adds to H a 2-shortcut set ShortcutPath(Ci, 2)
for each Ci ∈ C. Next, for each pair of chains Cj , Ri ∈ C ×R, the algorithm connects each
u ∈ ExpU(Cj , ϵ) to its first reachable vertex on Ri, FirstReach(u, Ri). This completes the
description of the algorithm.

Algorithm dSlackShortcutIN(G, d, ϵ):

Input: An n-vertex DAG G = (V, E), slack parameter ϵ ∈ (0, 1], desired diameter d.
Output: H ⊆ TC(G) such that each v ∈ V is (d, ϵ) IN-covered by H.

1. Let C = {C1, . . . , Cω} be the minimum chain cover of G.
2. R = C[p] for p = Θ(log n/d).
3. ∀Ci ∈ C, Hi ← Ci ∪ ShortcutPath(Ci, 2).
4. For each Cj ×Ri ∈ C ×R do the following:

a. Hj,i = {(u, FirstReach(u, Ri)}u∈ExpU(Cj ,ϵ).
5. H ←

⋃ω
i=1 Hi ∪

⋃
j,i Hj,i.

Algorithm dSlackShortcut(G, ϵ):

Input: An n-vertex DAG G = (V, E), slack parameter ϵ ∈ (0, 1], desired diameter d.
Output: (d, 2ϵ)-shortcut H ⊆ TC(G).

1. HIN = dSlackShortcutIN(G, d, ϵ).
2. HOUT = dSlackShortcutIN(GR = (V, ER), d, ϵ).
3. H = HIN ∪HR

OUT.

Correctness. We turn to analyze the construction and prove Theorem 1.6. The size bound
is immediate as |Hi| = O(|Ci| log n), |Hj,i| = O(log n/ϵ). The bound follows by summing
over all vertex-disjoint chains in C, and over the ω · |R| = O(ω log n/d) pairs of chains, where
the last equality follows w.h.p. by Chernoff. The computation time is dominated by the
(almost-linear) computation of the MCC and single-source reachability w.r.t Õ(ω/ϵ) sources.
Hence, the time bound is Õ(ω ·m/ϵ + m1+o(1)). We use this definition:

▶ Definition 3.5. Given a vertex v, a chain C ∈ C and a shortcut set H, we say that
v is (d, ϵ, C)-covered by H if there exists a subset Z ⊆ IN(v, C) such that: (i) |Z| ≥
(1− 2ϵ)|IN(v, C)| and (ii) distG∪H(u, v) ≤ d for every u ∈ Z. A vertex v is (d, ϵ)-covered by
H if v is (d, ϵ, Cj)-covered by H, for every chain Cj in the minimum chain cover C.

▶ Lemma 3.6. For every Cj ∈ C and every vertex v ∈ V (R), v is (5, ϵ, Cj) IN-covered by H.

Proof. Let Ri ∈ R be such that v ∈ Ri, and let u be the last (downmost) vertex on
Cj that appears in IN(v, Cj). Also, let a, b be the closest vertices in ExpU(Cj , ϵ) that
appear above (respectively below) u on Cj . By the definition of ExpU(Cj , ϵ), it holds that
|Cj [a, b]| ≤ ϵ|Cj [., a]|. Since b /∈ IN(v, Cj), we have that |Cj [., a]| ≥ (1 − 2ϵ)|IN(v, Cj)|. We
next show that distG∪H(z, v) ≤ d for every z ∈ Cj [., a]. Let z′ = FirstReach(a, Ri), then
(z′, a) ∈ Hj,i and since z′ is not below v on Cj , we have: distG∪H(z, v) ≤ distG∪H(z, a) + 1 +
distG∪H(z′, v) ≤ 5 , where distG∪H(z, a), distG∪H(z′, v) ≤ 2 by the addition of the 2-shortcut
sets of Cj and Ri. ◀
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We next claim that every vertex v ∈ V is (d, ϵ) IN-covered in H. This provides an incoming
distance d bound into v from (1− ϵ) fraction of its incoming TC(G)-neighbors.

▶ Lemma 3.7. W.h.p., any vertex v ∈ V in (d, ϵ) IN-covered by H.

Proof. Fix Cj ∈ C and let u be the last vertex in Cj that appears in IN(v, Cj). Let Pu,v be
u-v shortest path in G′ = G ∪

⋃
Ci∈C Hi. If |Pu,v| ≤ d − 2, then we are done as for every

z ≤ u, we have distG∪H(z, v) = distG∪H(z, u) + distG∪H(u, v) ≤ d.
Assume that |Pu,v| ≥ d− 1. We next claim that for every Ci ∈ C, it holds that

|Pu,v ∩ V (Ci)| ≤ 3 . (3.1)

This holds since by including the 2-shortcut set Hi of Ci and as G is a DAG, it holds that
distG′(x, y) ≤ 2 for every x, y ∈ Ci. Since Pu,v is a shortest path in G′, we have that it can
contain at most 3 vertices from each Ci.

Consider the d/2-length suffix of Pu,v, denote this segment by P ′. We then claim that
w.h.p. V (P ′)∩ V (R) ̸= ∅. This holds since by Eq. (3.1), P ′ has at most 3 vertices from each
Ci ∈ C, and consequently it intersects with Ω(d) distinct chains in C. Since each chain Ci is
sampled into R with probability of p = Θ(log n/d), we have that w.h.p. there exists Ri ∈ R
such that there exists z ∈ V (Ri) ∩ V (P ′) ̸= ∅.

Since z ∈ Pu,v, then IN(z, Cj) ⊆ IN(v, Cj). However, by the selection of u (i.e., downmost
vertex on Cj that appears in IN(v, Cj)), it holds that IN(z, Cj) = IN(v, Cj). Since z ∈ V (R),
by Lemma 3.6 we have that z is (5, ϵ, Cj)-covered by H. As distG∪H(z, v) ≤ d/2, we
have that v is (5 + d/2, ϵ, Cj)-covered by H. To see this, let Z ′ ⊆ IN(z, Cj) be such that
|Z ′| ≥ (1−ϵ)|IN(z, Cj)| and distG∪H(x, z) ≤ 5 for every x ∈ Z ′. Then, distG∪H(x, v) ≤ 5+d/2
for every x ∈ Z ′ and the claim holds as IN(v, Cj) = IN(z, Cj). ◀

4 Transitive Closure Compression and All-Successors Data-Structures

4.1 Upper Bounds
In this section, we employ our construction scheme for (d, ϵ)-shortcuts with d = O(1) to
provide several compression schemes of the transitive closure, up to an ϵ slack.

Transitive Reduction with Slack. For a given DAG G = (V, E) a transitive reduction
is a graph G′ = (V, E′) such that TC(G) = TC(G′) and |E′| ≤ |E|. We introduce the
notion of ϵ-slack transitive reduction graph in which the output graph G′ satisfies that (i)
TC(G′) ⊆ TC(G) and (ii) |TC(G′)| ≥ (1− ϵ)|TC(G)|. We next turn to prove Thm. 1.9.

The compression algorithm. For simplicity, we present an algorithm that preserves (1− ϵ)-
fraction of the incoming TC(G)-neighbors of v for each v ∈ V . To handle the outgoing
TC(G)-edges of each v ∈ V , employ the algorithm on the graph GR and then reverse the
edges of the output graph. For a graph G′, let INT C(G′)(u) = {v | (v, u) ∈ TC(G′)}. Given
a graph G and ϵ ∈ (0, 1), we compute a graph GIN = (V, EIN), as follows. For every pair of
chains Cj , Ci ∈ C and every marked vertex u ∈ ExpU(Cj , ϵ), the algorithm adds to EIN, the
edge (u, FirstReach(u, Ci)). The analysis of the construction is deferred to the full version.

All-Successors Data-Structure with Slack. Following Jagadish [14], we call the list of all
vertices reachable from a vertex u, the successor list of u. Similarly, we the list of all vertices
that have an incoming path into u, the predecessor list of u.



S. Kogan and M. Parter 79:13

In what follows, we the approximate predecessor list of the vertices. The approximate
successor list can obtained by working on the reversed graph GR.

Data-Structure Construction. Let C = {C1, . . . , Cω} be a minimum chain cover of G. For
each v ∈ V , we store the values (c(v), p(v)) where c(v) is the index of the chain to which v

belongs, and p(v) is the index of v on that chain. That is, v is the p(v)th vertex on the chain
Cc(v). For each chain Ci ∈ C, we store the following O(ω log n/ϵ) bits of information:

For every Cj ∈ C, let aj,i be the index of the upmost vertex on Ci that has an incoming
path from some vertex v′ ∈ Cj . Let Si = [(aj1,i, j1), . . . , (ajω,i, jω)] be a list sorted by the
value of aj,i, where aj1,i ≤ aj2,i ≤ . . . ≤ ajω,i.
For every Cj ∈ C let ExpU(Cj , ϵ) = {uj,1, . . . , uj,k} where u1 ≺ . . . ≺ uk. For every uj,ℓ,
let vj,ℓ = FirstReach(u, Ci). Let Qi,j = [(uj,1, vj,1), . . . , (uj,k, vj,k)]. (Note that by Obs.
3.1, we also have that vj,1 ≺ . . . ≺ vj,k.)

The data-structure DSIN(G, ϵ) consists of the following items:
{(c(v), p(v)}v∈V

Si, i ∈ {1, . . . , ω}.
Qi,j , i, j ∈ {1, . . . , ω}.

The final data-structure is given by the union of DSIN(G, ϵ) and DSIN(GR, ϵ).

Query Algorithm. Given a vertex v, we first extract c(v), p(v) in O(1) time. Let c(v) = i.
Set parameter ℓ, as follows. If ajω,i ≤ p(v), ℓ = ω + 1. Otherwise, let ℓ be such that
ajℓ,i > p(v) which can be found by Binary search on Si. The algorithm iterates over
each Cj ∈ {Cj1 , . . . , Cjℓ−1}. For each such Cj , it holds that v has some TC(G)-incoming
neighbors from V (Cj) and the algorithm will output a (possibly partial) non-empty list of all
these neighbors, by using the list Qi,j , as follows. Apply a Binary search on Qi,j to detect
the deepest vertex u ∈ ExpU(Cj , ϵ) such that FirstReach(u, Ci) is not below v on Ci. The
algorithm then outputs I(v) = V (Cj [., u]). Theorem 1.11 follows by the following Lemmas.

▶ Lemma 4.1. The total space of the data-structure is O(ω2 log n/ϵ + n log n) and the
construction time is Õ((ω ·m)/ϵ + m1+o(1)).

▶ Lemma 4.2. For every v, the algorithm returns a list I(v) that consists of at least (1− ϵ)-
fraction of the predecessor list, INT C(G)(v), of v. Moreover, the query time is Õ(|I(v)|).

Proof. Let i = c(v) and fix Cj ∈ Ci. We claim that the algorithm outputs (1− ϵ) fraction
of the predecessors of v on Cj . Let z be the lowest vertex on Cj that appears in the
predecessor list of v. Let u, u′ be the closest marked vertices to z in ExpU(Cj , ϵ) that
appear below and above z on Cj , respectively. The algorithm then outputs all vertices on
Cj [., u]. Since no vertex on Cj [z, .] is a predecessor of v, and as |Cj [u, u′]| ≤ ϵ|Cj [., u]|, we
have that |Cj [., u]| ≥ (1 − ϵ)|Cj [., z]|. The claim follows. We next analyze the query time.
The indices c(v), p(v) can be computed in O(1) as we explicitly store it, for each vertex
v. By applying a Binary search on Si, the algorithm inspects only chains Cj such that
V (Cj) ∩ INT C(G)(v) ̸= ∅. Next for each such chain, detecting the lowest marked vertex on
Cj that belongs to ExpU(Cj , ϵ) that has an incoming path to v can be done in O(log log n)
time (for fixed ϵ). This holds since the list Qi,j is sorted by the depth of the first reachable
vertex FirstReach(u, Ci) for every u ∈ ExpU(Cj , ϵ). ◀
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