
The Algorithmic Power of the Greene-Kleitman
Theorem
Shimon Kogan #

Weizmann Institute of Science, Rehovot, Israel

Merav Parter #

Weizmann Institute of Science, Rehovot, Israel

Abstract
For a given n-vertex DAG G = (V, E) with transitive-closure T C(G), a chain is a directed path in
T C(G) and an antichain is an independent set in T C(G). The maximum k-antichain problem asks
for computing the maximum k-colorable subgraph of the transitive closure. The related maximum
h-chains problem asks for computing h disjoint chains (i.e., cliques in T C(G)) of largest total
lengths. The celebrated Greene-Kleitman (GK) theorem [J. of Comb. Theory, 1976] demonstrates
the (combinatorial) connections between these two problems.

In this work we translate the combinatorial properties implied by the GK theorem into time-
efficient covering algorithms. In contrast to prior results, our algorithms are applied directly on G,
and do not require the precomputation of its transitive closure. Let αk(G) be the maximum number
of vertices that can be covered by k antichains. We show:

For every n-vertex m-edge DAG G = (V, E), one can compute at most (2k−1) disjoint antichains
that cover αk(G) vertices in time m1+o(1) (hence, independent in k). This extends the recent
m1+o(1)-time Maximum-Antichain algorithm (where k = 1) by [Cáceres et al., SODA 2022] to
any value of k.
For every n-vertex m-edge Partially-Ordered-Set (poset) P = (V, E), one can compute (1 + ϵ)k
disjoint antichains that cover αk(P) vertices in time O(

√
m · αk(P) · no(1)/ϵ), hence at most

n2+o(1)/ϵ. This improves over the exact solution of O(n3) time of [Gavril, Networks 1987] at the
cost of producing (1 + ϵ)k antichains instead of exactly k.

The heart of our approach is a linear-time greedy-like algorithm that translates suitable chain
collections C into an parallel set of antichains A, in which |Cj ∩ Ai| = 1 for every Cj ∈ C and Ai ∈ A.
The correctness of this approach is underlined by the GK theorem.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Chains, Antichains, DAG

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.80

Funding This project is funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 949083).

1 Introduction

For a given n-vertex DAG G = (V, E) with transitive-closure TC(G), a chain is a directed
path in TC(G) and an antichain is an independent set in TC(G). This paper is concerned
with time-efficient algorithms for computing a small collection of disjoint antichains that
maximizes the number of covered vertices. For an integer k, the maximum number of vertices
that can be covered by k-chains (resp., antichains) is denoted hereafter by βk(G) (resp.,
αk(G)). The relations between chains and antichains have been studied thoroughly over the
years, mostly from a combinatorial (or existential) perspective, and more recently from an
algorithmic perspective. Most attention has been given for the following covering notions.
For a vertex-disjoint subsets of vertices S = {S1, . . . , Sℓ}, let V (S) = ∪ℓ

i=1Si.

© Shimon Kogan and Merav Parter;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 80; pp. 80:1–80:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shimon.kogan@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2024.80
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 The Algorithmic Power of the Greene-Kleitman Theorem

Maximum Antichain (MA): An antichain A of largest size, i.e., such that |A| = α1(G).
Minimum Chain Cover (MCC): A set C with minimal number of chains such that
V (C) = V (G).
Max h-Chains (h-MC): Set of h chains C with |V (C)| = βh(G).
Max k-Antichains (k-MA): Set of k antichains A with |V (A)| = αk(G).

In a seminal paper, Dilworth [6] draw the first connection between these covering problems
for the case of k = 1. The celebrated Dilworth theorem states that the size of the maximum
antichain equals to the smallest number of chains, ω, into which the vertex-set may be
partitioned. This value, ω, is also known as the width of the graph which recently has
been shown to play an important role in the computation of reachability shortcuts1 [12, 11].
Algorithmically, almost-linear time algorithms for the MA and Minimum Chain Cover
problems have been provided very recently by Cáceres [2]. The solutions to these two
problems are based on a reduction to the Min-Cost Max-Flow problem. It is, however,
intriguing to ask:

▶ Question 1.1. Can we use Dilworth theorem to show a direct time-efficient algorithmic
reduction from maximum antichain to minimum chain covers (or vice verse)?

We are in particular interested in linear time deterministic reductions. The celebrated
Greene-Kleitman (GK) theorem [9] can be viewed as a generalization of Dilworth’s theorem
for any value of k, by drawing a connection between chain and antichain covers. The theorem
is based on the notion of the k-norm of a chain collection C, denoted by ||C||k, defined as:

||C||k =
∑

Ci∈C
min{|Ci|, k} . (1.1)

For k = 1, ||C||1 = |C|. Intuitively, each chain of length at least k in C contributes +k to the
k-norm, and shorter chains Ci contribute +|Ci|. The Greene-Kleitman (GK) Theorem can
be stated as follows:

▶ Theorem 1.2 (Greene-Kleitman Theorem, [9]). Let P = {C′ | V (C′) = V } be the collection
of all possible chain covers for G, then minC′∈P ||C′||k = αk(G).

That is, the number of vertices covered by maximum k-antichains equals to the minimum
k-norm over all chain covers. The GK theorem has been studied thoroughly over the years,
and the literature by now exhibits multiple analogous formulations of the theorem. West [20],
for example, describes the GK theorem as an equality between pairs of dual integer packing
and covering in partially ordered sets2 (henceforth, posets). The chain cover that admits
the minimum k-norm is referred to, in many of the prior works, by k-saturated partition.
Also note that the h-MC problem is equivalent3 to computing a set of h cliques (in the
transitive closure) that covers the maximum number of vertices. Similarly, k-MA corresponds
to maximum k-colorable subgraph in the transitive closure. These covering and coloring
perspectives are very common in prior work, see e.g., [8].

While the original proof by Greene and Kleitman is based on lattice theory, alternative
proofs and genelizations have been provided over the years [10, 13, 1, 4, 18]. Saks [17]
presented an elegant combinatorial proof by applying the Dilworth’s theorem to the product
of a poset with a chain of length k. Algorithmically, this provides a reduction from the k-MA
problem to solving the (simpler) MA problem in a graph with kn vertices and km edges.

1 A d-reachability shortcut for a digraph G is a set of edges from T C(G) whose addition to G reduces the
directed diameter of G to at most d.

2 A poset is a special type of a DAG G for which T C(G) = G.
3 As a chain C in T C(G) induces a clique on V (C) in T C(G).

S. Kogan and M. Parter 80:3

Frank [7] and Gavril [8] further investigated the algorithmic and combinatorial connections
between chain and antichain covers by noting that the minimum k-norm cover is tightly
connected to the h-MC problem. A recent important development by Cáceres [2] and Kogan
and Parter [11] yields an almost linear time algorithm for computing the h-MC. The algorithm
h-MC is obtained by a reduction to the Min-Cost Max-Flow problem. While maximum chain
covering problems (namely, MCC and h-MC) are currently (almost) settled algorithmically,
no subqubic time algorithm is currently known for the k-MA problem. As all current k-MA
algorithms are based on the precomputation of the transitive closure, they require O(nω)
time, which is the time to compute an n × n matrix multiplication. The computation of
the transitive closure may sound, at first glance, inevitable, as the k-MA problem asks for
detecting a maximum k-colored subgraph of the transitive closure. Inspired by the recent
advances for the dual chain covering problem, we ask whether one can solve the k-MA
problem in almost linear time, independent in the number of antichains k. To approach this
goal using the GK theorem, we more concretely ask:

▶ Question 1.3. Can we use the Greene-Kleitman theorem to show a direct time-efficient
algorithmic reduction from maximum k-antichains to maximum h-chains? I.e., can we
translate an algorithm for computing a maximum covering by h cliques into an algorithm
that computes a maximum k-colorable subgraph in the transitive closure, without computing
the transitive closure itself?

We answer Questions 1.1 and 1.3 in the affirmative, up to a small slack (where we output
2k antichains rather k), by showing linear time algorithms that translate a given chain
collection with certain covering guarantees into a suitable covering collection of antichains.

Our Contributions. Throughout, for a given DAG G = (V, E), let n = |V | and m = |E|.
The running time of some of our key algorithms is dominated by the time complexity of the
min-cost max-flow (MCMF) problem, denoted by TMCMF(m). Formally, TMCMF(m) is time to
solve a MCMF instance on m-edge directed graph with polynomial costs and capacities. By
a recent breakthrough result of [5, 19], TMCMF(m) = m1+o(1).

By taking an algorithmic Dilworth approach, we translate a given minimum chain cover
into a maximum antichain, in linear time.

▶ Theorem 1.4 (Algorithmic Dilworth Theorem). There is an algorithm MaximumAntichain
that given a DAG G = (V, E) and a minimum chain cover C = {C1, . . . , Ct} computes a
maximum antichain (MA) in O(|E|) time. This in particular implies an MA algorithm in
time Õ(TMCMF(m)) (hence, almost linear).

While there is already an almost-linear time algorithm for computing the MA (by [3]), the
benefit of Theorem 1.4 is in providing a linear reduction between the two problems. This
serves also a warm-up for computing the approximate k-MA solution, by exploiting the
Greene-Kleitman theorem. Our key result outputs 2k antichains that cover αk(G) vertices
in almost-linear time. Or, alternatively, our algorithm computes in almost-linear time k

antichains covering at least αk(G)/2 of the vertices. These notions of approximations of the
maximum k-colorable subgraphs have been studied in the past, for general graphs [16, 14].

▶ Theorem 1.5 (Algorithmic Greene-Kleitman Theorem). There is an algorithm ApproxMA
that given a DAG G = (V, E) and an integer parameter k computes a set of (2k − 1)
vertex-disjoint antichains A = {A1, . . . , A2k} with |V (A)| = αk(G) in time Õ(TMCMF(m)).
The output of algorithm ApproxMA can also provide k disjoint antichains A′ such that
|V (A′)| ≥ αk(G)/2.

ESA 2024

80:4 The Algorithmic Power of the Greene-Kleitman Theorem

Max h-Chains
(Lemma 4.6)

Min k-Norm Chains
(Lemma 4.4)

2-Approximate k-MA
(Thm. 1.5)Obs. 4.7 Thm. 4.8

Figure 1 The road-map from maximum h-chains to approximate maximum k-antichains.

The time complexity should be compared with the state-of-the-art O(n3)-time algorithm of
Gavril [8]. Fig. 1 summarizes the key algorithmic steps, which are tightly dictated to the
structure provided by the GK theorem.

In Section 4, we combine the algorithm of Saks [17] with the recent results by [3] (and
that of Thm. 1.4) to provide a k-MA algorithm that runs in O(k ·m1+o(1)) time. The main
benefit in our 2k-MA solution of Thm. 1.5 is in providing an almost-linear time algorithm
that is independent in k. Up to the extra factor of 2, this now matches the time complexity of
maximum h-chains and maximum k-antichains. The former has been resolved only recently
by the work of Cáceres [2].

A New Ordered Version of GK Theorem. Our greedy-based approach for computing
antichains from a given chain collection is based on an ordered variant of the GK theorem,
which might find further implications. A collection of vertex-subsets S̄ = {S1, . . . , Sℓ} is
topologically ordered if for every i < j, it holds that all the vertices in Si precede each of the
vertices in Sj , in any topological ordering of G. Sets of chains C and antichains A are said to
be parallel if |Ci ∩ Aj | = 1 for every Ci ∈ C and Aj ∈ A. Note that we use here the term
parallel rather than orthogonal, since in the literature the term orthogonal has the extra
requirement that V (C) ∪ V (A) = V .

▶ Lemma 1.6 (Ordered Greene-Kleitman Theorem). For every minimum k-norm cover
C = {C1, . . . , Cr}, there exists a k-MA which is topologically ordered Ō = {O1, . . . , Ok}.
Moreover, letting C′ = {Ci ∈ C | |Ci| ≥ k}, it holds that O and C′ are parallel.

Fewer Antichains, for Posets. A partially ordered set P = (V, E) is a special type of a
DAG for which TC(P) = P . All prior algorithms for the k-MA problem assumed that the
input graph is a poset. For this class, we provide improved approximation on the number of
antichains, by obtaining (1 + ϵ)k antichains that cover αk(G) vertices. For dense posests and
constant ϵ, the running time is almost linear. Specifically, we show:

▶ Theorem 1.7. There is an algorithm k-MaximumAntichain that given an n-vertex m-edge
poset P = (V, E) and an ϵ ∈ (0, 1), computes a set of at most ℓ = (1 + ϵ)k vertex-disjoint
antichains A = {A1, . . . , Aℓ} with |V (A)| = αk(P). The running time of the algorithm is
O(
√

m · αk(G) · no(1)/ϵ + n).

This improves over the O(n3)-time algorithm of [8], at the cost of increasing the number of
antichains by a factor of (1 + ϵ).

2 Preliminaries

Throughout, we denote the number of edges in the given DAG G = (V, E) by m and the
number of vertices by n. Let TC(G) be the transitive closure of G. Let V = {v1, . . . , vn}.
We write vi <G vj if vi appears before vj in every topological ordering of G. We write
vi ≤G vj if there exists a topological ordering in which vi does not appear after vj . For two
subsets of vertices A, B ⊆ G, we say that A <G B (resp., A ≤G B) if for every a ∈ A and
b ∈ B it holds that a <G b (resp., a ≤G b). When G is clear from the context, we may omit
it and simply write A < B and A ≤ B.

S. Kogan and M. Parter 80:5

For two ordered vertex subsets Ā = {a1, . . . , aℓ} and B̄ = {b1, . . . , bℓ}, Ā ≤G B̄ if for
every i ∈ {1, . . . , ℓ}, we have ai ≤G bi. We say that u⇝G v if (u, v) ∈ TC(G). When G is
clear from the context, we may omit it and write vi < vj , vi ≤ vj , Ā ≤ B̄ and u⇝ v.

A chain is a dipath in TC(G) and an antichain is an independent set in TC(G). For
a chain C = [v1, . . . , vℓ] and 1 ≤ i ≤ j ≤ ℓ, let C[vi, vj] = C[vi, vi+1, . . . , vj]. For a subset
V ′ ⊆ V (C), the first vertex in V ′ is the vertex on C that is closest to v1. For a set of
vertex-subsets S = {S1, . . . , Sℓ}, let V (S) = ∪Si∈SSi. Then S is a cover if V (S) = V (G).
For an integer k, let βk(G), αk(G) be the maximum number of vertices that can be covered
by a collection of k vertex-disjoint chains (resp., antichains) in TC(G). The covering
properties by chains and antichains and their relations have been characterized by several
celebrated theorems, most notably are the Dilworth’s Theorem, Mirsky’s Theorem and the
Greene-Kleitman Theorem, that we state next.

▶ Theorem 2.1 (Dilworth’s Theorem, [6]). The size of the largest antichain equals the
smallest number of chains into which the vertex-set may be partitioned. I.e., α1(G) =
min{h | βh(G) = n}.

Our algorithms are also based on Mirsky’s theorem [15], the dual of Thm. 2.1:

▶ Theorem 2.2 (Mirsky’s Theorem, [15]). The size of the largest chain equals the smallest
number of antichains into which the vertices of a DAG G may be partitioned, i.e., β1(G) =
min{k | αk(G) = n}. In other words, if TC(G) has no chain of cardinality k + 1, then its
vertices can be partitioned into a union of k antichains (i.e., TC(G) is k-colorable).

Our algorithmic GK approach uses the notion of minimum k-norm covers:

▶ Definition 2.3. The minimum k-norm cover problem asks for computing a chain cover
C = {C1, . . . , Ch} with the minimum k-norm, among all other chain covers for G.

By the GK theorem, it then holds that the k-norm of the minimum chain cover equals to
αk(G). We use the following GK formulation from Gavril [8]. For every h ∈ {1, . . . , n}, let
∆h(G) = βh+1(G)− βh(G).

▶ Theorem 2.4 (Slight Restatement of Theorem 1 from [8],[7]). (i) ∆1(G) ≥ ∆2(G) ≥ . . . ≥
∆n(G). (ii) Every h-MC C = {C1, . . . , Ch} has a corresponding k-MA A = {A1, . . . , Ak}
for every ∆h+1(G) ≤ k ≤ ∆h(G), such that V (A) ∪ V (C) = V and |Ai ∩ Cj | = 1 for every
i ∈ {1, . . . , k} and j ∈ {1, . . . , h}.

The following theorem summarizes the key properties implied by the Greene-Kleitman
Theorem. While some of these properties have been explicitly stated in [8, 7, 17], we provide
a proof for completeness:

▶ Theorem 2.5 (The Extended Greene-Kleitman Theorem). For a given integer k, let
h be such that ∆h+1(G) ≤ k ≤ ∆h(G) and let C = {C1, . . . , Ch} be some h-MC (i.e.,
|V (C)| = βh(G)). Then, the following properties hold:
1. minCi∈C |Ci| ≥ k.
2. C∗ = C ∪ {{v} | v ∈ V \ V (C)} is a minimum k-norm cover.
3. TC(G)[V \V (C)] has no chain of length k+1 (hence, by Thm. 2.2 it is k-colorable).

ESA 2024

80:6 The Algorithmic Power of the Greene-Kleitman Theorem

Proof. By Theorem 2.4, there exists a k-MA A = {A1, . . . , Ak} such that V (C)∪ V (A) = V

and |Ci ∩Aj | = 1 for every i ∈ {1, . . . , h} and j ∈ {1, . . . , k}. As each chain intersects with
each of the k vertex-disjoint antichains, we have that |Ci| ≥ k. Next, as V (C) ∪ V (A) = V ,
and |V (C) ∩ V (A)| = k · h, we have that:

αk(G) = |V (A)| = k · h + |V \ V (C)| . (2.1)

By Eq. (1.1), property (1) and Eq. (2.1), the k-norm of C∗ is given by ||C∗||k =
k · h + |V \ V (C)| = αk(G). Hence, by Thm. 1.2, we deduce that C∗ is a minimum k-norm
cover. We next prove property (3). Assume towards a contradiction that TC(G)[V \ V (C)]
contains a chain C ′ of length k + 1 and let C′ = (C∗ \ {{v}, v ∈ C ′}) ∪ {C ′}. I.e., C′ is
obtained by omitting the k + 1 singleton chains {v}v∈C′ from C∗ and adding the (single)
chain C ′. Since C′ has now h + 1 chains of length at least k, its k-norm is given by
||C′||k = ||C∗||k − |C ′|+ k < ||C∗||k, a contradiction to property (2). ◀

Our goal in this paper is to provide time-efficient algorithms for computing a small
collection of antichains that maximizes the number of covered vertices. We introduce the
following notion of approximation for the k-MA problem:

▶ Definition 2.6 (Approximate k-MA). For a given DAG G = (V, E), integers k, γ ≥ 1
a collection of vertex-disjoint antichains A is γ-approximate k-MA if |A| ≤ γ · k and
|V (A)| ≥ αk(G).

In other words, a γ-approximate k-MA is a set of at most γk antichains covers at least
αk(G) vertices. In a coloring terminology, we color a subset of at least αk(G) vertices in
TC(G) with γ · k colors (rather than with the optimal number of k colors).

An alternative plausible approximation variant for the k-MA problem asks for computing
exactly k chains that cover at least δ ·αk(G) vertices, for some δ ∈ (0, 1]. That is, approximat-
ing the number of covered vertices by k chains. This approximation variant for the maximum
k-colarable subgraph has been addressed in [14] for general graphs. In this paper, we focus
on approximating the number of chains rather than on the number of covered vertices, as any
γ-approximate solution for the former can be transformed into a δ-approximation solution
for the latter for δ = 1/γ.

▶ Lemma 2.7. Any algorithm that computes γ ·k antichains that cover αk(G) vertices can be
converted into an algorithm that computes k antichains that cover at least αk(G)/γ vertices
(with the same running time).

Minimum-Cost Maximum-Flow Computation. In the minimum-cost maximum-flow
(MCMF) problem, given is a connected directed graph G = (V, E, u, c) with edges ca-
pacities u ∈ RE

≥0 and costs c ∈ RE (which can be negative). The vector x ∈ RE is an s-t
flow for s, t ∈ V if x(e) ∈ [0, u(e)] for all e in E, and for each vertex v ̸∈ {s, t} the amount of
flow entering v equals the amount of flow leaving v, i.e.,

∑
e=(a,v) x(e) =

∑
e=(v,b) x(e). The

cost of a flow x is defined by c(x) =
∑

e c(e)x(e). The value of an s-t flow, for a source s

and a sink t, is the amount of flow leaving s, i.e., val(x) =
∑

e=(s,v) x(e) (or equivalently,
entering t, i.e.,

∑
e=(v,t) xe). The objective is to compute a maximum s-t flow of minimum

cost denoted by
∑

e∈E cexe. The following theorem was proven in [19].

▶ Theorem 2.8 (Theorem 1.1 of [19]). There is a deterministic algorithm that given a m-edge
graph with integral vertex demands and edge capacities bounded by U in absolute value, and
integral costs bounded by C in absolute value, computes an (exact) minimum cost flow in
time TMCMF(m) = m1+o(1) log U log C.

S. Kogan and M. Parter 80:7

▶ Definition 2.9. For a digraph G = (V, E) and a given valid s-t flow vector x ∈ NE
≥0, a

flow decomposition is a multiset of s-t dipaths in G given by Q = {P1, . . . , Pk}, such that
for every e ∈ E, it holds that x(e) = |{Pi ∈ Q | e ∈ Pi}|. I.e., x(e) equals the number of
paths in the multiset containing e.

3 From Minimum Chain Cover to Maximum Antichain

As a warm-up, we start by providing an algorithmic version of the Dilworth’s theorem [6]
in the following sense. We need the following definition in all of our constructions: Sets of
chains C and antichains A are parallel if |Ci ∩ Aj | = 1 for every Ci ∈ C and Aj ∈ A. For
the sake of the subsequent sections, we provide a slightly more general algorithm that will
be used in computation of the approximate k-MA solutions. Alg. Chains2Antichain is given
as input a DAG G and a chain collection C which is not necessarily a cover (i.e., possibly
V (C) ̸= V) but there is a promise that there exists a antichain A that is parallel to C. The
algorithm then outputs a parallel antichain A (i.e., with |Ci ∩ A| = 1 for every Ci ∈ C).
Specifically, for the correctness of Alg. Chains2Antichain to hold it is not required that C is
an MCC but rather that there exists a parallel antichain for C. The only requirement for the
algorithm to work is that there is at least one antichain that is parallel to C. To compute
the MA, we will then apply Alg. Chains2Antichain with the MCC C∗ given as input. The
correctness of the algorithm will follow by the Dilworth Theorem which guarantees that C∗

admits a parallel antichain, which is also maximal.
We need the following notation. For every v ∈ V (C), let c(v) to be the index of the chain

in C which contains v, and p(v) be the position of v in this chain. Furthermore, we denote
by Ci(j) the vertex in position j of chain Ci. I.e., For the vertex v = Ci(j) it holds that
c(v) = i and p(v) = j.

For an input of chain collection C = {C1, . . . , Ch}, Alg. Chains2Antichain maintains
a list of indices in {1, . . . , h}, which corresponds to chains whose representatives to the
antichain haven’t been determined yet. The algorithm also maintains a partition of the
vertices into red R and non-red V \R. The distinction between red and remaining vertices is
important only for the sake of obtaining linear running time. The red vertices R are those
that provably cannot be part of any parallel antichain to C. Initially R = ∅ and the list
consists of all h indices Q = {1, . . . , h}. Importantly, the red vertices R cover contiguous
regions on the chains in C, in the following manner. If a vertex v = Ci(j) becomes red, then
all the vertices Ci(1), . . . , Ci(j) (i.e., preceding v on the chain C) are marked as red, as well.
This defines a frontier between R and V \R on each of the chains, represented by a vector
f̄ = [f(1), . . . , f(h)]. Initially, f̄ = [1, . . . , 1] and as the algorithm proceeds the frontier moves
forward until hitting the representatives of the parallel antichain on each of the chains.

An Iteration. Algorithm Chains2Antichain is iterative, and proceeds as long as the list Q

is non-empty. The list Q consists of the indices of all chains that are still unresolved (i.e.,
chains from which no representative is currently taken into the antichain). In each iteration,
the algorithm picks some (unresolved) index i ∈ Q and computes an incoming-BFS tree
Tin(v) rooted at the vertex v = Ci(f(i)) (namely, the frontier of Ci) in the graph G[V \R].
All vertices in Tin(v) \ {v} are marked as red (added to R), the frontiers of their respective
chains are updated accordingly, and their corresponding chain indices are added to the list
Q. The output antichain is obtained by taking the h vertices of the final frontier of each of
the h chains. See the formal description below.

ESA 2024

80:8 The Algorithmic Power of the Greene-Kleitman Theorem

Algorithm Chains2Antichain(G, C):

Input: DAG G = (V, E), ordered chain collection C̄ = {C1, . . . , Ch} admitting a
parallel antichain.
Output: An ordered parallel antichain Ā = {v1, . . . , vh} with vj ∈ Cj for
j ∈ {1, . . . , h}, excluded nodes R ⊆ V .

1. Set R = ∅, Q = {1, . . . , h} and f(j) = 1 for j ∈ {1, . . . , h}.
2. While Q is not empty:

a. Remove an element i from Q.
b. Set vertex v = Ci(f(i)) (the vertex at the frontier of Ci).
c. Compute an incoming BFS tree Tin(v) rooted at v in G[V \R].
d. For each vertex u ∈ Tin(v) \ {v} do:

i. R = R ∪ {u}.
ii. If u ∈ V (C) and f(c(u)) ≤ p(u) then:

f(c(u))← p(u) + 1,
Q← Q ∪ {c(u)}.

3. Return Ā = {C1(f(1)), . . . , Ch(f(h))} and R.

Analysis of Algorithm Chains2Antichain. Let ℓ be the number of iterations and let Rτ , Qτ

and f̄τ denote the variables R, Q and f̄ at the beginning of iteration τ ∈ {1, . . . , ℓ}. Initially,
R1 = ∅, Q1 = {1, . . . , h} and f̄1 = {1, . . . , 1}. Let iτ be the index taken from the list
Q in iteration τ , let vτ = Ciτ

(fτ (iτ)) be the vertex at the frontier of the chain Ciτ
and

Uτ = Tin(vτ) \ {vτ}, the vertices added to set R in iteration τ .

▶ Lemma 3.1. Algorithm Chains2Antichain can be implemented in time O(|E(G[R])|+ h)
where R is the output set of red vertices and h is the size of the output antichain.

▶ Lemma 3.2. For every τ ∈ {1, . . . , ℓ} and every i ∈ {1, . . . , h}, if Ci(j) ∈ Rτ then
j ≤ fτ (i)− 1.

Let f̄∗ = f̄τ∗ be the final frontier vector, hence the output antichain is given by Ā =
{v1, . . . , vh} where vi = Ci(fτ∗(i)) for every i ∈ {1, . . . , h}}. Let R∗ be the output set of red
vertices.

▶ Lemma 3.3. No red vertex can be a part of a parallel antichain to C. I.e., for every
parallel antichain Ō = {o1, . . . , oh} with oj ∈ O ∩ Cj for every j ∈ {1, . . . , h}, it holds that
O ∩R∗ = ∅. Hence, Ā ≤ Ō.

▶ Lemma 3.4. A is a parallel antichain, i.e., |Ci ∩A| = 1 for every Ci ∈ C.

Proof. We first claim that f∗(i) ≤ |Ci| and hence f∗(i) is well-defined for every i. By Lemma
3.2, all vertices in U ′

i = {Ci(j) | j ≤ f∗(i) − 1} are marked as red. By Lemma 3.3, the
vertices in U ′

i cannot be part of a parallel antichain. By the promise that there is a parallel
antichain, we conclude that f∗(i)− 1 ≤ |Ci| − 1, and hence f∗(i) is well-defined.

We next claim that A is an antichain. Assume towards a contradiction otherwise, that
there exist u, v ∈ A such that u⇝ v and let P be some u-v path in G. Let v = Ci(f∗(i)).
Letting τ be the iteration in which v becomes at the frontier of Ci (i.e., v = Ci(fτ+1(i))), we
have that i is in the list Qτ+1. Since the algorithm terminates only when the list is empty,
there is an iteration τ ′ ≥ τ +1, where iτ ′ = i and vτ ′ = v. Since u = Ci′(j′ = f∗(i′)) for some
i′ ≠ i, we have that u ∈ V \Rτ∗ (i.e., u never got red). If V (P) ⊆ (V \Rτ ′), then u ∈ Uτ ′

S. Kogan and M. Parter 80:9

and hence u ∈ Rτ ′+1. Contradicting that u /∈ Rτ∗ . It remains to consider the case where
V (P) \Rτ ′ ̸= ∅. Let z ∈ P be the closest vertex to u on P such that z ∈ Rτ ′ . This implies
that there is an iteration τ ′′ ≤ τ ′ − 1 on which z becomes red (and joined the set Rτ ′′+1). In
other words, an iteration τ ′′ where z is in the incoming tree of vτ ′′ in G[V \Rτ ′′]. By the
selection of z, we have that the entire segment P [u, z] is in V \Rτ ′′ and hence, P [u, z] ⊆ Uτ ′′ .
Concluding that u ∈ Rτ ′′+1, hence a contradiction. Overall, we conclude A is an antichain of
cardinality h, and as A ⊆ V (C), we have that A is parallel to C. ◀

Thm. 1.4 follows by Thm. 1.4 with the time bound for computing MCC by [2].

4 Maximum k Antichains

Recall that αk(G) is the largest number of vertices that can be covered by a collection of k

antichains in a DAG G. In this section we provide time-efficient algorithms for computing
(possibly approximate) solutions for k-MA. We start by showing that using a reduction
from k-MA to MA by Saks [17], one can compute k-MA in time TMCMF(km), and hence in
time k ·m1+o(1). Our subsequent algorithms omit the time dependency in k at the cost of
introducing a constant factor of approximation, namely, by outputting a larger collection of
antichains covering at least αk(G) vertices.

▶ Lemma 4.1. Given an n-vertex m-edge DAG G = (V, E) and an integer k, there is an
algorithm SaksCover(G, k) that computes a k-MA A in time O(TMCMF(km)).

This already improves considerably over the state-of-the-art O(n3)-time algorithm of [8]
when k = o(n) and m = o(n2).

k-MA Computation, Proof of Lemma 4.1. Our algorithm is based on Saks [17] that
presented a reduction from k-MA to MA using the notion of k-blowup graph. As we explain
later, due to running time considerations, our definition of k-blowup graphs is slightly different
than that of Saks [17].

▶ Definition 4.2. Given a DAG G = (V, E) where V = {v1, . . . , vn}, the k-blowup
of G denoted by Bk(G) = (Vk, Ek) is defined in the following way: Bk(G) contains k

copies of G denoted by G1, G2, . . . , Gk, where V (Gi) = {vi
1, vi

2, . . . , vi
n} and E(Gi) =

{(vi
j , vi

ℓ) | (vj , vℓ) ∈ E}. Then Bk(G) = (VB , EB) where VB =
⋃

i V (Gi) and
E(B) =

⋃
i E(Gi) ∪ {

(
vi

j , vi+1
j

)
| vj ∈ V }.

The k-blowup graph B′
k(G) of [17] is given by4 B′

k(G) = TC(Bk(G)). The reduction
from k-MA to MA using k-blowup graphs is based on the following observation:

▶ Theorem 4.3. Let A be an MA of Bk(G), then A = {A1, A2, . . . , Ak} is a k-MA for G

where each Ai is the antichain induced by A on the subgraph Gi of Bk(G).

Lemma 4.1 follows by Thm. 4.3 and Thm. 1.4.

4 In [17], as in all prior algorithms for this problem, the input graph for computing the MA must be a
poset as well. This is not needed in our framework, as our MA algorithm works directly on the given
DAG (even if it is not a poset).

ESA 2024

80:10 The Algorithmic Power of the Greene-Kleitman Theorem

4.1 2-Approximate Maximum k-Antichains, for General DAGs
The goal of this section is in providing an almost-linear time algorithm for computing a
collection of at most 2k antichains that cover at least αk(G) vertices, hence proving Thm. 1.5.
Given an n-vertex DAG G = (V, E) and an integer k, the algorithm has two steps. The first
step computes a minimum k-norm cover C∗, and second step uses this collection of chains to
compute at most (2k − 1) vertex-disjoint antichains covering at least αk(G) vertices. This
generalizes the maximum antichain algorithm (for k = 1) of Section 3 for any k. As we will
see, the first step can be implemented in nearly MCMF time, while the second step – our
key technical contribution – can be implemented in linear time.

4.1.1 Step I: Min k-Norm Cover in Almost-Linear Time
We show how to compute a chain cover C with the minimum k-norm. Recall that by the GK
theorem it holds that ||C||k = αk(G). We show:

▶ Lemma 4.4. There is an algorithm MinNormCover that given a DAG G = (V, E) and
an integer parameter k computes a minimum k-norm cover C. Moreover, C≥k = {Ci ∈
C | |Ci| ≥ k} is an h-MC for h = |C≥k| and k ∈ [∆h+1(G), ∆h(G)]. The running time is
Õ(TMCMF(m)).

We first observe that by combining the recent works of Cáceres [2] and Kogan and Parter
[11], one can compute the h-MC in MCMF time.

▶ Theorem 4.5 ([2]). Given a DAG G = (V, E, u, c) (on n vertices and m edges) and s, t ∈ V

as an input to the Min-Cost Max-Flow problem where u, c are the capacities (resp., costs)
of the edges, whose maximum value is polynomial. Let P be the collection of paths obtained
by computing the flow-decomposition (see Def. 2.9). Then, in time O(TMCMF(m)) one can
compute a collection of vertex-disjoint chains C such that V (P) = V (C).

By combining Theorem 4.5 with Theorem 2.5 in [11], we have:

▶ Lemma 4.6 (Corollary of Theorem 2.5 in [11]). Given n-vertex DAG G = (V, E) and integer
h, there is an algorithm MaximumChainCover that computes a h-MC C in Õ(TMCMF(m)) time.

Computing the minimum k-norm cover can be done in MCMF time by using the following
observation from Gavril [8] which concludes also the proof of Thm. 4.4.

▶ Observation 4.7 (Gavril [8]). Given an n-vertex DAG G = (V, E) and an integer
k ∈ {1, . . . , n}, one can compute the minimum k-norm cover C∗ by employing O(log ω)
applications of Alg. MaximumChainCover, where ω ∈ {1, . . . , n} is the width of the graph.

4.1.2 Step II: From Min k-Norm Cover to 2-Approximate k-Antichains
This step is given as input a minimum k-norm cover C, and the goal is to obtain 2k vertex-
disjoint antichains covering αk(G) vertices, and in linear time. The correctness of the
algorithm will follow by using the properties of the extended Greene-Kleitman theorem.
Towards the end of this section, we prove the following:

▶ Theorem 4.8 (From Minimum k-Norm Cover to 2k − 1 Antichains). Given a minimum
k-norm chain cover C of an m-edge DAG G = (V, E), one can compute (2k−1) vertex-disjoint
antichains A = {A1, . . . , A2k−1} such that |V (A)| ≥ αk(G) in O(m) time.

S. Kogan and M. Parter 80:11

Description of Algorithm AntichainCover. The algorithm has two steps, each results in
k antichains, leading to a total of 2k − 1 antichains. The algorithm starts by computing
the minimum k-norm cover C by applying the algorithm of Lemma 4.4. We then consider
the subset C1 that consists of all chains of length at least k in C, and denote the remaining
vertices by S = V \ V (C1). The first step computes a collection A of k antichains that are
parallel to C1. The second step computes a collection B of k antichains by computing a
coloring in the graph TC(G)[S] (without computing the transitive closure itself).

Step 1: Computing a Parallel Antichain Set to the Long Chains. Let C̄1 = {C1, . . . , Ch}
be an arbitrary ordering of C1. The algorithm has k iterations for computing k antichains
that are parallel to C1. Throughout the execution the algorithm also maintains a set of red
vertices that cannot be part of the future antichains, and the frontiers of each of the chains
in C1. The definition of the red vertices is important only for the sake of obtaining a linear
running time. Initially, R1 = ∅. Iteration j applies Algorithm Chains2Antichain on the graph
G[V \Rj] and with the chain collection Cj which corresponds to h suffixes of the h chains in
C (computed based on their current frontiers). The output of the iteration is an antichain
Aj , and an additional subset R′

j of red vertices. The algorithm then updates the frontier of
the h chains, resulting in Cj+1. It also defines the set Rj+1 of red vertices by adding to Rj

the sets R′
j and Aj

5. The output of the algorithm is then given by A = {A1, . . . , Ak}.

Step 2: Computing a Coloring on Remaining Vertices. The second step computes a
(k − 1)-coloring in the graph TC(G)[S] in O(m) time, as follows. It iterates over all vertices
in V according to their topological ordering v1, . . . , vn, and compute for each vertex vi the
value len(i) which corresponds to the maximum number of vertices from S that appear on
some incoming path into vi. The analysis uses the fact that TC(G)[S] is (k − 1)-colorable
to show that len(i) ≤ k − 1, and that all vertices in S with the same len(.) value form an
antichain. In other words, we show that a coloring where each vj ∈ S is colored with color
len(vj) is a valid coloring. For a detailed description see the pseudo-code below.

Algorithm AntichainCover(G, k):

Input: A DAG G = (V, E) and an integer k ≥ 1.
Output: Set of antichains A∗ with |A∗| ≤ 2k − 1 and |V (A∗)| ≥ αk(G).

1. C = MinNormCover(G, k)
2. Let C1 = {C ∈ C | |C| ≥ k}, S = V \ V (C1), h = |C1| and R1 = ∅.
3. Let C̄1 = {C1,1, . . . , C1,h} (an arbitrary ordering of C1).
4. For j = 1 to k do:

a. Set (Āj = {vj,1, . . . , vj,h}, R′
j) = Chains2Antichain(G[V \Rj], Cj).

b. For every ℓ ∈ {1, . . . , h}, let Cj+1,ℓ = Cj,ℓ[p(vj,ℓ) + 1, . . .].
c. Cj+1 = {Cj+1,1, . . . , Cj+1,h}.
d. Rj+1 = Rj ∪R′

j ∪Aj .
5. Let A = {Aj}k

j=1.
6. Let B = SubsetColoring(G, S, k).
7. Return A∗ = A

⋃
B.

5 Note that it might be the case where set R′
j is be empty, this happens when the graph is the union of

the h chains, i.e., G =
⋃h

i=1 Ci. We use the red sets Rj in the time analysis of Lemma 3.1.

ESA 2024

80:12 The Algorithmic Power of the Greene-Kleitman Theorem

Algorithm SubsetColoring(G, S, k):

Input: A DAG G and a subset S ⊆ V such that TC(G)[S] has no chain of length k.
Output: A (k − 1)-coloring of TC(G)[S] represented by ordered (k − 1)-antichains
B = {B1, . . . , Bk−1}.

1. {v1, v2, . . . , vn} ← TopologicalOrder(G).
2. Set maxlen = 0.
3. For i = 1 to n do the following:

a. If vi ∈ S then set len(i) = 1, otherwise set len(i) = 0.
b. Set len(i) = len(i) + max{j | (vj ,vi)∈E} len(j).
c. Set maxlen = max{maxlen, len(i)}.

4. For each 1 ≤ i ≤ maxlen set Bi = {vj | len(j) = i and vj ∈ S}.
5. Return B = {Bi}i∈{1,...,maxlen}.

Analysis of Algorithm AntichainCover. For a given DAG G = (V, E), let V =
{v1, . . . , vn}.To prove the correctness of Algorithm AntichainCover, one needs to show that
the desired promise holds for Cj and Gj = G[V \Rj] for every j ∈ {1, . . . , k}. I.e., that there
exists an antichain Aj in TC(Gj) that is parallel to Cj . To prove this claim, we observe
the ordered variant of the GK theorem (see Lemma 1.6) implied by the GK Theorem and
Mirsky’s Theorem.

Proof of Lemma 1.6. Let A be a k-MA which exists by Theorem 1.2. Hence, |V (A)| =
αk(G). We show that one can color the graph TC(G)[V (A)] with k ordered color sets
Ō = {O1, . . . , Ok} which are topologically ordered, i.e., O1 < O2 < . . . < Ok. By Mirsky’s
theorem (Theorem 2.2), the longest chain in TC(G)[V (A)] has length at most k. Define
a color class Oi for i ∈ {1, . . . , k} as the set of all vertices u ∈ V (A) whose longest path
in TC(G)[V (A)] from any node to u is of length i. Clearly, V (O) = V (A). We now claim
that Ō is topologically ordered by showing that there is no edge (u, z) ∈ TC(G)[V (A)]
for any u ∈ Oj and z ∈ Oi for any i ≤ j. By the definition of Oj , Oi, the longest path in
TC(G)[V (A)] ending at u, z is of length j (resp., i). The existence of an edge (u, z) provides
a path of length j + 1 > i ending at z, leading to a contradiction.

We next show that O and C′ are parallel. Suppose towards a contradiction that there is
a Oj ∈ O and Ci ∈ C′ such that Ci ∩ Oj = ∅. Letting V ′ = V (C′) and h = |C′|, since each
chain in C′ has at most k mutual vertices with V (O), we have that:

αk(G) = |V (O)| = |V (O)∩ (V \V ′)|+ |V (O)∩V ′| ≤ |V \V ′|+ k ·h−1 < ||C||k = αk(G) ,

leading to a contradiction. The claim follows. ◀

Let Ō = {O1, . . . , Ok} be a topologically ordered k-MA which is parallel to the chains C1,
whose existence is guaranteed by Lemma 1.6. The next lemma shows that in each application
j ∈ {1, . . . , k} of Alg. Chains2Antichain by Alg. AntichainCover, it holds that there exists a
collection of (k − j + 1) topologically ordered antichains Oj = {Oj , . . . , Ok} that are parallel
to Cj .

▶ Lemma 4.9. For every j ∈ {1, . . . , k}, it holds that (i) Aj ∩ Aj−1 = ∅ and (ii) Ōj =
{Oj , . . . , Ok} is parallel to C̄j = {Cj,1, . . . , Cj,h}.

S. Kogan and M. Parter 80:13

Proof. Property (i) follows by the fact that at the end of phase j, the computed antichain
Aj is added to the set of red vertices Rj+1. Since V (Cj+1) ∩Rj+1 = ∅ and Aj+1 ⊂ V (Cj+1),
we have that Aj ∩Aj+1 = ∅ for every j ∈ {1, . . . , k}.

We next turn to prove claim (ii). Assume by induction on j ≥ 1, that at the beginning
of phase j, there are k − j + 1 topologically ordered antichains Ōj = {Oj , . . . , Ok} that are
parallel to C̄j = {Cj,1, . . . , Cj,h}. By Lemma 3.4 it then holds that the output antichain of
phase j, namely, Āj , is parallel to C̄j , where Āj = {vj,1, . . . , vj,h} consists of the vertices of
Aj , where vj,ℓ ∈ Cj,ℓ. Moreover, by Lemma 3.3 it also holds that Aj ≤ Oj , and since Ōi

is topologically ordered, it also holds that Oj < . . . < Ok. Since Oj < Oj+1, we have that
V (Oj+1) ⊆ V (Cj+1) where Oj+1 = {Oj+1, . . . , Ok}. ◀

▶ Corollary 4.10. The set A = {A1, . . . , Ak} is parallel to C′. Hence, |V (A)| ≥ |C′| · k.

We next turn to consider the second set of antichains B obtained by Alg. SubsetColoring
which colors the vertices in S by k− 1 colors, where Bi ⊆ S are the vertices belonging to the
ith color-class.

▶ Lemma 4.11. Given an m-edge DAG G and a subset S ⊆ V such that TC(G)[S] has
no chain of length ≥ k, Alg. SubsetColoring computes a topologically ordered coloring
B̄ = {B1, . . . , Bℓ} for ℓ ≤ k − 1 such that V (B) = S and each Bi is an antichain. The
running time of the algorithm is O(m).

Proof. We claim by induction on i ≥ 1 that len(i) equals to the length of the longest path
in TC(G)[S] ending at vi. The base of the induction holds as len(v1) = 1 if v1 ∈ S and
0 otherwise. Assume that the claim holds up to i and consider len(i + 1). Let P be the
longest path in TC(G)[S] ending at vi+1 and let (vj , vi+1) be the last edge of P . By the
topological ordering, we have that j < i. By the induction assumption for j, we have that
len(j) = |P | − 1, and therefore len(i) = |P | as desired. The induction step holds. We next
claim that there no edge (va, vb) ∈ TC(G) for va ∈ Bi and vb ∈ Bj for any j ≤ i. Assume
towards a contradiction otherwise, we get that j = len(b) ≥ len(a) + 1 = j + 1, leading
to a contradiction. Note that by the promise TC(G)[S] has no chain of length k, hence
maxlen ≤ k−1 for every i. We conclude that V (B) = S and that B is a legal coloring. Finally,
we consider the running time, the algorithm has n iterations where iteration i is implemented
in degin(vi, E) = |{vj | (vj , vi) ∈ E(G)}|, hence overall the algorithm is implemented in
O(m) time. ◀

We are now ready to complete the correctness of Alg. AntichainCover and bound its running
time which is dominated by the computation of the minimum k-norm cover. Thm. 1.5
follows by combining Lemma 4.12, Obs. 4.7 and Lemma 2.7.

▶ Lemma 4.12. The output of Alg. AntichainCover(G, k) given by A∪ B is a 2-approximate
k-MA with |A|+ |B| ≤ 2k − 1. The running of the algorithm is Õ(TMCMF(m)).

References
1 Ron Aharoni and Irith Ben-Arroyo Hartman. On greene-kleitman’s theorem for general

digraphs. Discret. Math., 120(1-3):13–24, 1993.
2 Manuel Cáceres. Minimum chain cover in almost linear time. In Kousha Etessami, Uriel

Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of
LIPIcs, pages 31:1–31:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.ICALP.2023.31.

ESA 2024

https://doi.org/10.4230/LIPICS.ICALP.2023.31
https://doi.org/10.4230/LIPICS.ICALP.2023.31

80:14 The Algorithmic Power of the Greene-Kleitman Theorem

3 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I. Tomescu.
Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 359–376. SIAM, 2022.

4 Glenn G. Chappell. Polyunsaturated posets and graphs and the greene-kleitman theorem.
Discret. Math., 257(2-3):329–340, 2002.

5 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 612–623. IEEE, 2022.

6 RP Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
pages 161–166, 1950.

7 András Frank. On chain and antichain families of a partially ordered set. J. Comb. Theory,
Ser. B, 29(2):176–184, 1980.

8 Fǎnicǎ Gavril. Algorithms for maximum k-colorings and k-coverings of transitive graphs.
Networks, 17(4):465–470, 1987.

9 Curtis Greene and Daniel J Kleitman. The structure of sperner k-families. Journal of
Combinatorial Theory, Series A, 20(1):41–68, 1976.

10 Alan J. Hoffman and D. E. Schwartz. On partitions of a partially ordered set. J. Comb.
Theory, Ser. B, 23(1):3–13, 1977.

11 Shimon Kogan and Merav Parter. Beating matrix multiplication for n1/3-directed shortcuts.
In The 49th EATCS International Colloquium on Automata, Languages and Programming
ICALP 2022, 2022. Full version available at https://www.weizmann.ac.il/math/parter/
sites/math.parter/files/uploads/main-lipics-full-version_3.pdf.

12 Shimon Kogan and Merav Parter. Faster and unified algorithms for diameter reducing shortcuts
and minimum chain covers. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 212–239. SIAM, 2023.

13 Nathan Linial. Extending the greene-kleitman theorem to directed graphs. J. Comb. Theory,
Ser. A, 30(3):331–334, 1981.

14 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems.
In Svante Carlsson Andrzej Lingas, Rolf G. Karlsson, editor, Automata, Languages and
Programming, 20th International Colloquium, volume 700 of Lecture Notes in Computer
Science, pages 40–51, July 1993.

15 Leon Mirsky. A dual of dilworth’s decomposition theorem. The American Mathematical
Monthly, 78(8):876–877, 1971.

16 Giri Narasimhan. The maximum k-colorable subgraph problem. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 1989.

17 Michael Saks. A short proof of the existence of k-saturated partitions of partially ordered sets.
Advances in Mathematics, 33(3):207–211, 1979.

18 Michael E. Saks. Kleitman and combinatorics. Discret. Math., 257(2-3):225–247, 2002.
19 Jan van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst

Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm
for minimum-cost flow. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 503–514. IEEE, 2023.

20 Douglas B. West. "Poly-unsaturated" posets: The Greene-Kleitman theorem is best possible.
J. Comb. Theory, Ser. A, 41(1):105–116, 1986.

https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/main-lipics-full-version_3.pdf
https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/main-lipics-full-version_3.pdf

	1 Introduction
	2 Preliminaries
	3 From Minimum Chain Cover to Maximum Antichain
	4 Maximum k Antichains
	4.1 2-Approximate Maximum k-Antichains, for General DAGs
	4.1.1 Step I: Min k-Norm Cover in Almost-Linear Time
	4.1.2 Step II: From Min k-Norm Cover to 2-Approximate k-Antichains

