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Abstract
In this paper we show that every graph G of bounded maximum average degree mad(G) and with
maximum degree ∆ can be edge-colored using the optimal number of ∆ colors in quasilinear time,
whenever ∆ ≥ 2 mad(G). The maximum average degree is within a multiplicative constant of
other popular graph sparsity parameters like arboricity, degeneracy or maximum density. Our
algorithm extends previous results of Chrobak and Nishizeki [10] and Bhattacharya, Costa, Panski
and Solomon [5].
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1 Introduction

Algorithms for edge-coloring is a classic research topic which has become active again recently.
Let us recall that edge-coloring of graph G is a function π : E(G) → N which assigns
different values (called colors) to incident edges. By k-edge-coloring we mean an edge coloring
which uses at most k colors. The minimum number of colors that suffice to color graph
G is called the chromatic index of G and denoted χ′(G). For a maximum degree of G

denoted ∆(G) it is clear that χ′(G) ≥ ∆(G), while the classic theorem of Vizing states that
χ′(G) ≤ ∆(G) + 1. For general graphs, determining whether χ′(G) = ∆(G) is NP-complete,
as shown by Holyer [20].

1.1 Algorithms for general graphs
Vizing’s proof can be easily transformed to an algorithm for edge-coloring graphs in ∆ + 1
colors running in time O(nm), where n and m denote the number of vertices and edges,
respectively, of the input graph (we use this notation throughout the whole paper). Gabow,
Nishizeki, Kariv, Leven, and Terada [18] were the first to show an algorithmic progress: they
designed two algorithms, one running in time O(m

√
n log n) and another in time O(m∆ log n).

Both these algorithms saw improvements recently: Sinnamon [24] obtained deterministic
time O(m

√
n), Bhattacharya, Carmon, Costa, Solomon and Zhang [4] have randomized time

O(mn1/3), while Bernshteyn and Dhawan [3] randomized time ∆O(1)m. Another direction
of research is improving the running time at the price of an increased number of colors: very

© Łukasz Kowalik;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 81; pp. 81:1–81:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kowalik@mimuw.edu.pl
https://orcid.org/0000-0002-7546-2969
https://doi.org/10.4230/LIPIcs.ESA.2024.81
https://doi.org/10.48550/arXiv.2401.13839
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


81:2 Edge-Coloring Sparse Graphs with ∆ Colors in Quasilinear Time

Table 1 Summary of state-of-the-art edge-coloring algorithms. Note that α = Θ(mad(G)). The
dice symbol denotes a randomized algorithm.

Number Graph class Time Reference
of colors

(1 + ϵ)∆ general O(mϵ−1 log n) Elkin and Khuzman [16]
(1 + ϵ)∆ general O(m log(1/ϵ)) Assadi [1]

∆ + O(log n) general O(m log ∆) Assadi [1]
∆ + 2α − 2 arboricity α O(m log ∆) Christiansen et al. [8]

∆ + 1 general O(m
√

n) Sinnamon [24]
∆ + 1 general O(mn1/3) Bhattacharya et al. [4]
∆ + 1 general O(m∆ log n) Gabow et al. [18]
∆ + 1 general O(m∆18) Bernshteyn and Dhawan [3]
∆ + 1 general O(n2 log n) Assadi [1]
∆ + 1 arboricity α O(mα log n) Bhattacharya et al. [5]
∆ + 1 arboricity α O(mα7 log n) This work
∆ + 1 arboricity α Õ(m

√
n α

∆ ) Bhattacharya et al. [5]
χ′(G) bounded treewidth O(n) Zhou et al. [31]

∆ bipartite O(m log ∆) Cole, Ost and Shirra [13]
∆ bounded genus, ∆ ≥ 19 O(n) Chrobak and Yung [11]
∆ bounded genus, ∆ ≥ 9 O(n log n) Chrobak and Nishizeki [10]
∆ planar, ∆ ≥ 9 O(n) Cole and Kowalik [12]
∆ ∆ ≥ 2 mad(G) O(mα3 log n) This work
∆ ∆ ≥ 2 mad(G) O(mα7 log n) This work

recently, Elkin and Khuzman [16] presented a deterministic algorithm that uses at most
(1 + ϵ)∆ colors for any ϵ ≥ 1

∆ and works in time O(mϵ−1 log n), while Assadi [1] was able
to get the improved time of O(m log(1/ϵ)), at the price of randomization; see also Duan et
al. [15] for an earlier result of this kind.

1.2 Algorithms for graph classes
Restricting the input graph may allow for algorithms with improved performance. By the
classical Kőnig’s Theorem, for bipartite graphs only ∆ colors suffice, and Cole, Ost and
Shirra [13] provided an O(m log ∆)-time algorithm. Zhou, Nakano and Nishizeki [31] gave
an algorithm that uses χ′(G) colors and runs in linear time for graphs of bounded treewidth.
Chrobak and Yung [11] gave a linear time algorithm that uses only max{∆, 19} colors and
works for graphs of bounded genus. Graphs from this class can be also colored using only
max{∆, 9} colors by an algorithm of Chrobak and Nishizeki [10] that runs in time O(n log n).
For the special case of planar graphs, Cole and Kowalik [12] improved that to linear time.

1.3 Uniformly sparse graphs and our result
Maximum average degree is defined as mad(G) = maxH ad(H), where the maximum is over
all nonempty subgraphs of G and ad(H) = 1

s

∑
v∈V (H) dH(v) is the average degree of H.

Hence, when mad(G) is low, graph G is uniformly sparse. It is easy to see that mad(G)
equals exactly twice the maximum density of G, i.e., maxS |E(S)|/|V (S)|, which is close to
the arboricity defined as α(G) = maxS,|V (S)|>1⌈|E(S)|/(|V (S)| − 1)⌉. Indeed, all these three
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parameters (and also the degeneracy), are within a small constant of each other (see e.g. [21]).
In particular, when one of them is bounded by a constant, so are all the others. Moreover,
planarity, bounded treewidth or bounded genus all imply bounded maximum average degree,
arboricity, etc.

Very recently, Bhattacharya, Costa, Panski and Solomon [5] obtained two algorithms that
use ∆ + 1 colors and work in randomized time O(m

√
n∆/α(G)) and O(mα(G) log n). In

particular, the latter one is quasilinear for bounded arboricity, and both algorithms improve
over the results of Gabow et al. [18] when ∆(G) = ω(α(G)). Another recent result is an
algorithm of Christiansen, Rotenberg and Vlieghe [8] that uses ∆ + 2α(G)− 2 colors and
runs in deterministic time O(m log ∆).

In this work we continue this line of research with the goal of improving the number of
colors used. Note that the quasilinear algorithm of Chrobak and Nishizeki [10] uses only
∆ colors for the special case of graph G of bounded genus g and such that ∆ ≥ 9. Since
then mad(G) ≤ 6 + O(g/n) it is natural to ask if it is possible to generalize it to any class of
uniformly sparse graphs. We answer this question in the affirmative by showing the following
main result.

▶ Theorem 1. Every graph G with n vertices and m edges such that ∆(G) ≥ 2 mad(G) can
be ∆(G)-edge-colored
1. by a randomized algorithm running in time O(m mad(G)3 log n) in the expectation and

with high probability,
2. by a deterministic algorithm in time O(m mad(G)7 log n).

In particular, whenever mad(G) = logO(1) n, the algorithms work in quasilinear time.
Here, by high probability we mean probability at least 1 − n−k, for an arbitrary constant
k > 0. Note that as a corollary we get also the first deterministic quasi-linear time algorithm
for (∆ + 1)-edge-coloring graphs of bounded mad(G) (or arboricity, etc.), thus derandomizing
the result of Bhattacharya et al. [5]. Indeed, if ∆(G) ≥ 2 mad(G) we apply our result, and
otherwise just apply the O(m∆ log n)-time algorithm of Gabow et al. [18].

Let us comment on the assumption ∆(G) ≥ 2 mad(G). Clearly, some kind of assumption
is needed because there are sparse graphs of chromatic index ∆(G) + 1. Vizing [28] (see
also [25]) conjectured1 that for χ′(G) = ∆(G) it suffices that mad(G) ≤ ∆− 1. While this
conjecture is still open, there has been a substantial progress. Fiorini [17], Haile [19] and
Sanders and Zhao [23] obtained sufficient conditions of the form mad(G) ≤ 1

2∆ + o(∆).
Next, it was improved to mad(G) < 2

3 (∆ + 1) by Woodall [29, 30], and further to mad(G) <

min{ 3
4∆ − 2, 0.738∆ − 1.153} by Cao, Chen, Jiang, Liu and Lu [7]. All these results are

in fact constructive and correspond to polynomial-time algorithms (but not quasilinear2).
However, while the proof of Sanders and Zhao [23] relies on a simple procedure for extending
a partial coloring called Vizing Adjacency Lemma (VAL, see Theorem 2 below), the later
proofs result in considerably more complicated algorithms. In fact we show that the constant
2 is optimal if we restrict ourselves to algorithms that color the graph edge by edge using
VAL (see Theorem 7 for a formal statement). Since we prefer to keep this article short, we
leave the task of improving the assumption as an open problem.

1 The original conjecture states that in every critial graph (in a sense, a minimal graph with chromatic
index ∆ + 1) we have |E(G)| ≥ 1

2 ((∆(G) − 1)|V (G)| + 3).
2 The algorithm corresponding to the proof of Sanders and Zhao [23] can be implemented in time O(nm);

for the other the worst time complexity is at least that large.
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1.4 Sketch of our approach
Let D be the number of available colors. Let us recall the following classical result (usually
stated in terms of critical graphs). Here, for a statement P the expression [P ] equals 1 if P

holds and 0 otherwise.

▶ Theorem 2 (Vizing Adjacency Lemma, VAL [27]). Let G be a simple graph and let e = xy

be an edge such that x has at most D − d(y) + [d(y) = D] neighbors of degree D. Then any
partial D-edge-coloring of G which colors a subset Ec of edges of G, e ̸∈ Ec, can be extended
to a partial D-edge-coloring that colors Ec ∪ {e}.

In this work, an edge xy that satisfies the assumption of VAL is called (D, x)-weak, or
simply x-weak when D is known. Moreover, xy is weak if it is x-weak or y-weak.

Note that for D = ∆(G) + 1, every edge is weak, just because then every vertex has
no neighbors of degree D. Hence, in a simple implementation of standard proofs of Vizing
Theorem, we color the input graph G edge by edge, using the algorithm originating from the
Vizing’s proof of VAL. This algorithm uses so-called fans and alternating paths. Given an
edge e = xy, an e-fan is roughly a certain sequence of neighbors of x (equivalently, incident
edges) – a precise definition will be given later. An alternating path is just a maximal path
with edges colored alternately in two colors. Of course the algorithm behind VAL may need
to recolor some of the already colored edges. However, it turns out that it always suffices to
recolor some edges of an xy-fan and a single alternating path Pxy.

When we aim at a quasilinear algorithm, even for D = ∆(G)+1, the approach above poses
the following problem: even if coloring edge xy takes just O(1) time per a recolored edge, our
bound on the number of those edges is deg(x)+ |Pxy|, and the sum

∑
xy∈E(G)(deg(x)+ |Pxy|)

can be as large as Θ(nm), for n := |V (G)|, m := |E(G)|. The problem with long alternating
paths has been resolved in an elegant way by Sinnamon [24]: he shows, roughly, that if we
pick a random uncolored edge xy out of all ℓ uncolored edges, then the probability that a
fixed alternating path is chosen is O( 1

ℓ ). Then he argues that the total length of alternating
paths is only O(∆m), so E(|Pxy|) = O( 1

ℓ ∆m). This means that when ℓ is large, i.e., most of
the time, the path is usually short, and the total expected length of the alternating paths
used by the algorithm is O(Hℓ∆m), where Hℓ = O(log ℓ) is the ℓ-th harmonic number.

Another solution for the same problem was used by Chrobak and Nishizeki [10]. They
also need a large number ℓ of uncolored edges. They show that then we can pick a set I of
size Ω(ℓ/∆(G)4) of these edges so that all the corresponding alternating paths are of the
same type (alternate the same pair of colors) and moreover coloring one of edges from I using
VAL does not interact with coloring the others, intuitively: the VAL algorithm for one of
these edges works the same, independent of whether it was invoked for some other edges
from I before or not. Hence we can apply VAL to all the edges of I. The total length of
the alternating paths is then linear, since they all have the same type and hence they are
disjoint. A simple calculation shows that after iterating this O(log n ∆(G)4) times all edges
get colored, and the total running time of coloring the ℓ edges is O(m log n ∆(G)O(1)).

Now we turn to the setting of this work, where D = ∆(G) and ∆(G) ≥ 2 mad(G). For
simplicity assume that mad(G) is bounded. The problem we encounter is that in our case
not all edges are weak. However, Sanders and Zhao [23] show that there is always at least
one weak edge. Their proof can be transformed to an algorithm that finds a weak edge xy,
removes it, colors the graph recursively, and then extends the coloring. Unfortunately, then
the path Pxy may be long.

In this work, we show that when average density is bounded, then at least a constant frac-
tion of edges are weak, thus generalizing a similar lower bound of Chrobak and Nishizeki [10]
for bounded genus graphs. This allows for a recursive procedure as follows: find weak edges,
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color the other edges recursively, and then color the weak edges in time O(m log n ∆(G)O(1))
using the approach of Sinnamon or Chrobak-Nishizeki. Since the number of weak edges is
Ω(m), this is only O(log n ∆(G)O(1)) per edge.

The last missing piece in this construction is getting rid of the dependency on ∆(G). The
solution of this particular issue can be found by adapting a technique of Zhou, Nakano and
Nishizeki [31]. Namely, one can show that edges of the input graph can be partitioned in
such a way that each of the resulting induced graphs has maximum degree at least 2 mad(G)
and at most 4 mad(G) + 2, and moreover the maximum degrees of all the individual graphs
sum up to ∆(G), so we can just color each of them separately using disjoint palettes of colors,
and merge the results. In this way, we trade the dependency on ∆(G) for the dependency on
mad(G). Having ∆(G) bounded makes many issues easy, for example controlling the running
time of the algorithm behind VAL.

1.5 Organization of the paper
This paper is organized as follows. In Section 2 we show a lower bound for the number of
weak edges for graphs with ∆ ≥ 2 ad(G). At the end of the section we will also prove that the
constant 2 in the assumption cannot be improved if we want to get any positive lower bound.
Next, in Section 3 we show an implementation of the Vizing Adjacency Lemma stating some
of its properties that we need. In Section 4 we describe the complete algorithm and we prove
Theorem 1. Finally, in Section 5 we summarize the paper and suggest some open problems.

2 Lower bound for the number of weak edges

By a d-vertex (resp. d-neighbor) we mean a vertex (resp. neighbor) of degree d. For an
integer i, let di(v) be the number of i-neighbors of v. Let D be an integer. In what follows,
we call an edge uv (D, u)-weak if dD(u) ≤ D − d(v) + [d(v) = D]. Moreover, uv is D-weak
if it is (D, u)-weak or (D, v)-weak. Note that for D ≥ ∆(G) + 1, every edge is D-weak.
For simplicity, whenever D is known, we write that an edge is u-weak or weak when it is
(D, u)-weak or weak, respectively. An edge uv is strong if it is not weak, i.e., it is neither
u-weak nor v-weak. A vertex is called weak if it is incident to at least one weak edge,
otherwise it is called strong.

In this section we focus on the case D = ∆(G) and we show that for bounded average
degree, if ∆(G) is large enough, then at least a constant fraction of edges are weak.

▶ Theorem 3. Let G = (V, E) be a nonempty graph with no isolated vertices and such that
∆(G) ≥ 2 ad(G). Then the number of ∆(G)-weak edges in G is at least

|E|
2 ad(G)2 .

Proof. For brevity, we denote d̃ = ad(G). We use the discharging method [14], in a similar
spirit as Sanders and Zhao [23], with a crucial difference that here we need a linear lower
bound, and not just an existence of a weak edge. We assign an initial charge to each vertex
v as follows:

ch(v) = d(v)− d̃.

Note that the total charge is zero:∑
v∈V

ch(v) =
∑
v∈V

d(v)− |V |
∑
v∈V

d(v)/|V | = 0.

ESA 2024
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Next, we move the charge as follows: every vertex x of degree d(x) ≥ d̃ + 1
2 , sends

ch(x)− 1
2

d(x)−∆ + d(y)− 1

units of charge to every neighbor y of degree < d̃ + 1
2 such that edge xy is strong. We claim

that the expression above is always well defined and positive. Indeed, since xy is strong,
d(x) ≥ [d(y) < ∆] + d∆(x) ≥ [d(y) < ∆] + ∆− d(y) + [d(y) = ∆] + 1 = ∆− d(y) + 2. This
also implies that d(y) ≥ ∆− d(x) + 2 ≥ 2, which we state below as a claim for later use.

▷ Claim 4. If a vertex receives charge, then it has degree at least 2.

For a vertex v, let ch′(v) denote the charge of v after moving the charge. Since the charge
is only being moved between vertices,

∑
v∈V ch′(v) =

∑
v∈V ch(v) = 0. Our goal is to show

that
(i) for every strong vertex the final charge is at least 1

2 , and
(ii) for every weak vertex the final charge is at least 1− d̃.

Then, denoting the set of weak vertices by Vw, we have

0 =
∑
v∈V

ch′(v) ≥ |Vw| · (1− d̃) + (|V | − |Vw|) · 1
2 ,

which implies (d̃− 1
2 )|Vw| ≥ |V |/2. Then, since G has no isolated vertices, d̃ ≥ 1, and hence

|Vw| ≥ |V |/(2(d̃− 1
2 )) > |V |/(2d̃). Since every weak vertex is incident with at least one weak

edge, we get at least |V |/(4d̃) = |E|/(2d̃2) weak edges, as required. Hence, indeed it suffices
to show (i) and (ii).

▷ Claim 5. For any vertex v of degree d(v) ≥ d̃ + 1
2 we have ch′(v) ≥ 1

2 .

Proof. Since ch(v) ≥ 1
2 , the claim holds trivially when v does not send charge. Hence in

what follows assume v sends charge. Then v is incident to at least one strong edge. Let w be
a neighbor of v such that vw is strong and d(w) is minimum among such neighbors. Note
that d(w) < d̃ + 1

2 , for otherwise v does not send charge to any vertex. Then v sends at most

d(v)− d̃− 1
2

d(v)−∆ + d(w)− 1

to each neighbor u of v such that vu is strong and d(u) < d̃ + 1
2 , and does not send to other

vertices. Note that v does not send to ∆-vertices, because d̃+ 1
2 ≤

1
2 ∆+ 1

2 = ∆− 1
2 (∆−1) ≤ ∆.

Since vw is strong, d∆(v) ≥ ∆−d(w)+ 1. Hence v has at most d(v)−∆+d(w)−1 neighbors
of degree smaller than ∆ and this is also an upper bound for the number of neighbors it
sends charge to. It follows that in total v sends at most d(v)− d̃− 1

2 charge, and hence it
keeps at least 1

2 of charge, as required. ◁

▷ Claim 6. For any strong vertex v of degree d(v) < d̃ + 1
2 we have ch′(v) ≥ 3

2 .

Proof. Let w be a neighbor of v of minimum degree. Since vw is strong, d(w) ≥ d∆(w) ≥
∆− d(v) + 1 > 2d̃− (d̃ + 1

2 ) + 1 = d̃ + 1
2 . It follows that all neighbors of v send charge to v,

and

ch′(v) = d(v)− d̃ +
∆∑

i=d(w)

ni ·
i− d̃− 1

2
i−∆ + d(v)− 1 ,
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where ni is the number of i-neighbors of v. Since ∆− d(v) + 1 > 2d̃− (d̃ + 1
2 ) + 1 = d̃ + 1

2 ,

we infer that i−d̃− 1
2

i−∆+d(v)−1 = 1 +
∆−d(v)+1−

(
d̃+ 1

2

)
i−∆+d(v)−1 is decreasing with increasing i, so

ch′(v) ≥ d(v)− d̃ + d(v) ·
∆− d̃− 1

2
d(v)− 1 .

Since d(v) ≥ 2 by Claim 4 and ∆ ≥ 2d̃, we get ch′(v) ≥ 3
2 , as required. ◁

To finish the proof, note that (i) follows from claims 5 and 6. For (ii), a weak vertex of
degree at least d̃ + 1

2 has final charge at least 1
2 by Claim 5, which is more than 1− d̃ since

d̃ ≥ 1 (no isolated vertices). Finally, a weak vertex v of degree < d̃ + 1
2 does not send charge,

so it has final charge ch′(v) ≥ ch(v) = d(v)− d̃ ≥ 1− d̃, as required. This ends the proof. ◀

We conclude this section by showing that the assumption ∆(G) ≥ 2 ad(G) in the
formulation of Theorem 3 is the best possible.

▶ Theorem 7. For every ϵ > 0 there are arbitrarily large graphs G with no isolated vertices,
with no weak edges and such that ∆(G) ≥ (2− ϵ) ad(G).

Proof. Let d be an integer such that d ≥ max{ 3
ϵ − 1, 3} and set ∆ = d(d − 1). Set also

nd = (d − 1)(∆ − d + 2) and n∆ = d(∆ − d + 2). Construct graph G as follows. Begin
with ∆ − d + 2 copies of the complete bipartite graph Kd−1,d (note that since d ≥ 2,
∆ − d + 2 = d(d − 2) + 2 ≥ 5). Let Vd be the set of the vertices of the resulting graph
of degree d, and let V∆ be the remaining vertices, i.e., the vertices of degree d − 1. Note
that |Vd| = nd and |V∆| = n∆. Next, we partition V∆ arbitrarily into d disjoint sets of size
(∆− d + 2) and for each such set we add all edges between its verties so that it induces the
clique K∆−d+2. Observe that then every vertex in V∆ has degree d − 1 + ∆ − d + 1 = ∆.
Note that since d ≥ 2, we have ∆ ≥ d and hence G has maximum degree ∆. This completes
the construction of G.

Then, we have

ad(G) = dnd + ∆n∆

nd + n∆
=

∆︷ ︸︸ ︷
d(d− 1) +∆d

d− 1 + d
= d + 1

2d− 1∆.

It follows that

∆ = 2d− 1
d + 1 ad(G) =

(
2− 3

d + 1

)
ad(G) ≥ (2− ϵ) ad(G).

Now it suffices to check that G has no weak edges. Let uv be an edge such that u ∈ Vd and
v ∈ V∆. Then uv is not u-weak because d∆(u) = d− 1 > 1 = ∆−d(v) + [d(v) = ∆]. Also, uv

is not v-weak because d∆(v) = ∆− d + 1 > ∆− d = ∆− d(u) + [d(u) = ∆]. Finally, consider
an edge uv between two vertices of V∆. Then d∆(u) = ∆−d+1 > 1 = ∆−d(v)+ [d(v) = ∆],
so by symmetry uv is not weak. ◀

3 Algorithmic Vizing Adjacency Lemma

The goal of this section is to provide an efficient algorithm which implements the Vizing
Adjacency Lemma (Theorem 2). The contents of this section is mostly standard and
well-known.

ESA 2024
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Figure 1 Rotating a fan. The numbers next to vertices denote free colors.

Throughout this section by D we denote the number of available colors. Of course in
this paper we are mostly interested in the case when D is the maximum degree ∆, but it is
convenient to state results also for the case D > ∆, since our algorithm colors subgraphs
of the input graph recursively and at some point the maximum degree drops. A partial
edge-coloring of graph G is a function π : E(G)→ {1, . . . , D} ∪ {⊥} such that it is an edge-
coloring when restricted to edges colored by {1, . . . , D}. For a vertex x we define π(x) as the
set of colors used at edges incident with x, i.e., π(x) = {π(xy) | y ∈ NG(x)} \ {⊥}. Moreover,
π̄(x) denotes the set of colors free at x, i.e., π̄(x) = {1, . . . , D} \ π(x). An (a, b)-alternating
path is a path P in G such that its edges are colored alternately in a and b. We call P

maximal if it cannot be extended to a longer (a, b)-alternating path. The unordered pair
{a, b} is called the type of P .

Fans, developed by Vizing [26] are useful structures in edge-colorings. The notion appears
is several variations. Here we need a new one, which differs from the standard fan by
modifying condition (F3) and adding condition (F4) below. The definition is somewhat
inspired by multi-fans in the book of Stiebitz et al. [25].

Let G = (V, E) be a graph and let π be a partial edge-coloring of G. Then, a fan is a
sequence F = (x, y1, . . . , yk) such that
(F1) y1, . . . , yk are different neighbors of x,
(F2) xy1 is uncolored by π,
(F3) for every i = 2, . . . , k edge xyi is colored by π and π(xyi) ∈

⋃i−1
j=1 π̄(yj),

(F4) for every i = 2, . . . , k, d(yi) < D.
The number k is called the size of fan F . Since in this work we we do not use other variants
of fan, we do not give it a special name. The notion of a fan is motivated by the fact that
there is a simple procedure, called rotating the fan, which, given a color c ∈ π̄(x) ∩ π̄(yk)
recolors some edges of the form xyi so that edge xy1 can be colored with a free color, see
Algorithm 1 and Figure 1. Of course, the definition of the fan does not guarantee that such
a color c exists.

▶ Lemma 8. Given graph G, its partial coloring π, a fan F = (x, y1, . . . , yk) and color
c ∈ π̄(x) ∩ π̄(yk), Algorithm 1 finds a new partial coloring, which colors the same edges as π

and additionally xy1.

Proof. It suffices to observe that at the beginning of the loop the following invariant is
satisfied: for some j = 1, . . . , i we have c ∈ π̄(x) ∩ π̄(yj). ◀

We call a fan F = (x, y1, . . . , yk) active when one of the two conditions below hold:
(A1) there is i = 1, . . . , k such that π̄(yi) ∩ π̄(x) ̸= ∅,
(A2) there are i, j = 1, . . . , k such that i ̸= j and π̄(yi) ∩ π̄(yj) ̸= ∅.
If additionally F ′ = (x, y1, . . . , yk−1) is not active, we call F a minimal active fan.
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Algorithm 1 Rotating a fan.

input : a fan F = (x, y1, . . . , yk), color c ∈ π̄(x) ∩ π̄(yk).
1 i← k

2 while i ≥ 1 do
// Invariant: for some j = 1, . . . , i we have c ∈ π̄(x) ∩ π̄(yj)

3 if c ∈ π̄(yi) then
4 c′ ← π(xyi)
5 π(xyi)← c

6 c← c′

7 i← i− 1

We will prove a series of simple lemmas. In all of them we work with a graph G and its
partial coloring π.

▶ Lemma 9. If a fan F = (x, y1, . . . , yk) is not active, then∣∣∣∣∣
k⋃

i=1
π̄(yi)

∣∣∣∣∣ ≥ D − d(y1) + k.

Proof. Since xy1 is uncolored, |π(y1)| ≤ d(y1)− 1. Then, we have |π̄(y1)| = D − |π(y1)| ≥
D − (d(y1)− 1) and by (F4), |π̄(yi)| ≥ 1 for i = 2, . . . , k. It follows that∣∣∣∣∣

k⋃
i=1

π̄(yi)

∣∣∣∣∣ (A2)=
k∑

i=1
|π̄(yi)| ≥ D − (d(y1)− 1) + (k − 1) · 1 = D − d(y1) + k. ◀

▶ Lemma 10. Let xy1 be an x-weak edge. If a fan F = (x, y1, . . . , yk) is not active, then it
can be extended to another fan F ′ = (x, y1, . . . , yk+1).

Proof. Consider the set Z = {z ∈ NG(x) | π(xz) ∈
⋃k

i=1 π̄(yi)}. Then,

|Z| (A1)=

∣∣∣∣∣
k⋃

i=1
π̄(yi)

∣∣∣∣∣ Lemma 9
≥ D − d(y1) + k.

As xy1 is x-weak, we have dD(x) ≤ D − d(y1) + [d(y1) = D]. Since y1 ̸∈ Z, because xy1 is
not colored, we know that Z contains at least D − d(y1) + k − (D − d(y1)) = k vertices of
degree < D. It follows that Z \ {yi | i = 2, . . . , k} has at least one vertex of degree < D, call
it yk+1. It is easy to check that (x, y1, . . . , yk+1) satisfies conditions (F1)-(F4). ◀

Now we turn to lemmas that describe algorithms. These algorithms use the following
data structures that represent the input graph and a partial coloring of it:

adjacency lists, i.e., array N such that N [v] is a list of neighbors of v;
for every v ∈ V we keep an associative array Mv that maps every color c ∈ π(v) to the
edge incident with v colored with c. The array is also used to test membership in π(v).
We use a simple array of size D. Note that the total size of these arrays is O(nD), but
we will use it only when D is somewhat small, i.e., D = O(mad(G)).

The lemma below is rather standard (similar statements, but for different variants of the
fan notion, can be found for example in Sinnamon [24] or Bhattacharya [5]).

▶ Lemma 11. Given an uncolored x-weak edge xy1, one can find a minimal active fan
F = (x, y1, . . .) in time O(D). The algorithm also returns the color that makes (A1) or (A2)
satisfied.
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Proof. Our algorithm is as follows. We begin with the fan F1 = (x, y1). Then we extend it
vertex by vertex, until we get an active fan. Let us describe a single step of this process. We
will use a set S of colors, initially (i.e., before all steps) empty, implemented using a bitmap
(of size |D|). We also use a queue Q storing a subset of S. Let Fi = (x, y1, . . . , yi) be a fan
built so far. We know that i = 1 or Fi−1 is not active (otherwise yi would not be added).
We maintain the invariant that S consists of all the colors free at any yj , j < i. First we
check if Fi is active. To this end, for each color c ∈ π̄(yi) we check if c ̸∈ π(x) or c ∈ S in
O(1) time per color c. If one of these checks is positive (A1) or (A2) holds, respectively, so
we stop (without checking further colors of π̄(yi)) and return Fi. Otherwise we add c both to
S and Q and proceed to the next c (or finish the loop). Let us call the loop described above
as the activity checking loop. When this loop finishes without returning a fan, we know that
Fi is not active. At this point we know by Lemma 10 that Fi can be extended by a vertex
yi+1. Our algorithm finds yi+1 as follows. We remove a color c from Q, and find the edge
xz colored with c using Mx. If d(z) < D we set z = yi+1, and otherwise we remove another
color from Q and so on. This loop will be called the extension loop.

Now let us analyze the time complexity. Let F = (x, y1, . . . , yk) be the fan returned.
Clearly, each iteration of each of the two loops takes constant time, so it suffices to bound
the total number of iterations. For the activity checking loop, note that by (A1) each but the
last iteration corresponds to a different color that is in π(x) (it is not the case for the last
iteration only if F was returned at this iteration). Hence the number of these iterations is at
most |π(x)| ≤ d(x)− 1. Finally, the number of iterations in the extension loop is bounded
by the number of colors inserted to Q. However, we insert to Q only in the activity checking
loop, one element per iteration. Hence the total number of insertions to Q is bounded by
d(x)− 1. It follows that the total number of iterations in both loops is O(d(x)), and each of
them is done in constant time. Since d(x) ≤ D and initializing bitmap S takes O(D) time,
we get the O(D) time bound as required. ◀

Now we are ready to prove the main theorem of this section. Its proof is basically an
algorithmization of the proof of Theorem 2.1 from Stiebitz et al. [25], using Lemma 11. Recall
that for a vertex v the closed neighborhood of v is the set N [v] = N(v) ∪ {v}.

▶ Theorem 12 (Algorithmic VAL). Let G be a simple graph and let e = xy be an x-weak edge.
Then there is an algorithm which, given any partial D-edge-coloring π of G which colors a
subset Ec of edges of G, e ̸∈ Ec finds a partial D-edge-coloring π′ that colors Ec ∪ {e}. The
algorithm runs in time O(D + |P |), where P is a maximal alternating path with an endpoint
in x, possibly P = ∅. Moreover,
(V1) if needed, one can specify the color c′ ∈ π̄(x) that alternates in P ,
(V2) π′ may differ from π only on edges incident to x and on edges of P ,
(V3) if π(v) ̸= π′(v) for a vertex v, then v ∈ N [x] or v is the other endpoint of P ,
(V4) the type of P can be determined in time O(D),
(V5) the type of P depends only on {(π(xz), π(z)) | z ∈ N(x)}.

Proof. Let y1 = y. We apply Lemma 11. Let F = (x, y1, . . . , yk) be the returned minimal
active fan. Note that k ≤ d(x) ≤ D.

Since F is active, it satisfies (A1) or (A2). In the former case, we have a color c ∈
π̄(yk) ∩ π̄(x). Then we rotate F using Algorithm 1, which clearly runs in time O(k) since
the condition in line 3 is checked in constant time using My1 . By property (F3), this results
in the desired partial edge-coloring. Note that (V 2) is satisfied, and (V 1), (V 3)-(V 5) are
trivial since P = ∅.
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Now assume F does not satisfy (A1) but it does satisfy (A2), i.e., by Lemma 11 we have
a color c that is free both in yk and yi for some i = 1, . . . , k− 1. Such yi can be found simply
by testing if c ∈ π(yj) for every j = 1, . . . , k − 1: this takes time O(k) = O(D).

Let c′ be any color free at x (it exists since xy is uncolored, and if c′ is not given, it
can be found in time O(D)). Find a maximal (c, c′)-alternating path P starting at x. This
can be easily done in time O(|P |) using the associative arrays M∗. Then there is j ∈ {i, k}
such that the other endpoint of the path P is not yj . We swap the colors c and c′ on P

in O(|P |) time, obtaining another partial coloring with the same set of colored edges, but
with c ∈ π̄(x) ∩ π̄(yj). Then we rotate Fj using Algorithm 1. We see that this procedure
satisfies (V 2), (V 3) and (V 5). For (V 4), we just perform the procedure without finding P

and without recoloring. ◀

4 The main algorithm

In this section we present our main result.
We begin with two lemmas which will be used to control the length of alternating paths

from Theorem 12. The first one is due to Sinnamon [24] and uses randomization.

▶ Lemma 13 (Lemma 10 in Sinnamon [24]). Let G be a simple graph and with a partial
edge-coloring π which colors all but ℓ edges of G. Let e be a random uncolored edge, let x

be an arbitrary endpoint of e and let c0 be a random color of π(x). Let c1 be an arbitrary
color different than c0. Consider the unique maximal (c0, c1)-alternating path Pr starting at
x. Then, E(|Pr|) = O(|E(G)|∆(G)/ℓ).

Note that if we iterate Theorem 12 for ℓ = Ω(|E|) times, then by Lemma 13 the expected
length per edge is low, namely O(∆(G)Hℓ) = O(∆(G) log n). Below we state a lemma of
Chrobak and Nishizeki, which achieves a similar goal deterministically. Since their proof
does not analyze the dependency on ∆(G), we reproduce it here, but involving ∆(G) in the
analysis.

▶ Lemma 14 (Chrobak and Nishizeki [10]). Let G be a simple graph and let Ew ⊆ E(G)
be a subset of weak edges. Denote E0 = E(G) \ Ew. There is a deterministic algorithm
which, given G, Ew and a partial ∆-edge-coloring π which colors E0, finds a new partial
∆-edge-coloring π′ of G which colors E1 such that E0 ⊆ E1 and |E1 \ E0| ≥ |Ew|/(9∆(G)5).
The algorithm runs in time O(|E(G)|+ |Ew|∆(G)).

Proof. First, for every edge xy ∈ Ew we determine the type {a, b} of a maximal alternating
path Pxy that would be used if xy was colored using Theorem 12; let’s call it the type of xy.
For the special case Pxy = ∅, the type of xy is also defined as ∅. By Theorem 12, property
(V 4), this takes O(|Ew|∆(G)) time.

Since there are
(∆(G)

2
)

+ 1 ≤ ∆2 types, there is a type, call it t, with at least |Ew|/∆(G)2

edges. Let Et
w be a set of ⌈|Ew|/∆(G)2⌉ edges of type t.

Consider two two different edges e = xy, e′ = x′y′, both from Ea,b
w , that are x-weak and

x′-weak, respectively. We say that e interacts with e′ if coloring e using Theorem 12 changes
the type of e′ or recolors an edge of Pe′ , or vice versa, i.e., coloring e′ changes the type of e

or recolors an edge of Pe.

▷ Claim 15. Edges e and e′ do not interact when
(i) N [x] ∩N [x′] = ∅, and
(ii) Pe does not end in N [x′] and Pe′ does not end in N [x].
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Proof. Consider z′ ∈ N(x′). Assume π(x′z′) changes after coloring e using Theorem 12. By
(V 2), x′z′ is incident to x or x′z′ ∈ Pe. The former is excluded by (i), so assume the latter.
It means t = {a, b} for some colors a, b. By (ii), path Pe does not end in x′, so a and b are
not free at x′, a contradiction with Pe′ being a maximal (a, b)-path with an endpoint in x′.
Hence π(x′z′) does not change. Similarly, π(z′) does not change, for otherwise by (V 3) we
have z′ ∈ N [x], contradicting (i), or Pe ends in z′, contradicting (ii). Thus, by (V 5), the
type of e′ does not change.

Assume an edge of Pe′ was recolored after coloring e using Theorem 12. Then Pe′ ̸= ∅, so
t = {a, b} for some colors a, b. By (ii), we have Pe′ ̸= Pe, so by (V 2) path Pe′ has an edge
incident to x. Also by (ii), path Pe′ does not end at x, contradicting Pe being a maximal
(a, b)-path with an endpoint in x. ◁

We proceed as follows. We form a graph Q = (Et
w, E(Q)), where E(Q) is the set of pairs

e, e′ ∈ Et
w that violate (i). By definition, ∆(Q) ≤ ∆(G)(∆(G) − 1)2 so a simple greedy

algorithm finds a maximal independent set S in Q of size

|S| ≥ |Et
w|

∆(Q) + 1 ≥
|Et

w|
∆(G)3 ≥

|Ew|
∆(G)5 .

The greedy algorithm runs in time linear in the size of Q, which is |Et
w|∆(Q) = O(Ew∆(G)).

Finally, when t ̸= ∅, i.e., t = {a, b}, we form yet another graph Q′ = (S, E(Q′)), where
E(Q′) is the set of pairs e, e′ ∈ S that violate (ii). To form Q′ we need to find all the
(a, b)-alternating paths that correspond to edges in S, but it takes only time O(|E(G)) thanks
to the fact that these paths are pairwise disjoint. We claim that |E(Q′)| ≤ |V (Q′)|. Indeed,
consider xy ∈ S and the (a, b)-alternating path Pxy starting at x. Let w be the other endpoint
of Pxy. Since edges of S satisfy (i), x is not in a closed neighborhood of an endpoint of an edge
from S different from e. If w is in a closed neighborhood of an endpoint of an edge ew from
S, then again by (i) we know that ew is unique. Hence, xy generates at most one edge in Q′,
and |E(Q′)| ≤ |V (Q′)|. It follows that Q′ has a set Z of at least |V (Q′)|/3 vertices of degree
at most 2, because otherwise |E(Q′)| = 1

2
∑

e∈V (Q′) dQ′(e) > 1
2 · 3 ·

2
3 |V (Q′)| = |V (Q′)|, a

contradiction. By repeatedly selecting a vertex of Z and discarding its at most two neighbors
we get an independent set I in Q of size

|I| ≥ |V (Q′)|/9 = |Ew|
9∆(G)5 .

This takes linear time in the size of Q′, which is O(|S|) = O(Ew). If t = ∅ we just set I = S.
We conclude by applying Theorem 12 to color all edges of I. Since the corresponding

alternating paths are disjoint, and they do not change because edges of I do not interact
with each other, their total length is bounded by |E(G)|. By Theorem 12, it follows that the
total time of this coloring is O(|I|∆(G) + |E(G)|) = O(|Ew|∆(G) + |E(G)|). ◀

Now we need a graph partitioning technique due to Zhou, Nakano, Nishizeki [31]. Since
we state the properties of this technique somewhat differently than them, below we provide
a self-contained proof.

Let G = (V, E) be a graph. For an integer c, a (∆, c)-partition of G is any partition
E = E1 ∪ E2 ∪ · · ·Ek such that for graphs Gi = G[Ei], i = 1, . . . , k we have
(P1) ∆(G) =

∑k
i=1 ∆(Gi), and

(P2) ∆(Gi) = c for i = 1, . . . , k − 1, while c ≤ ∆(Gk) < 2c.

Recall that the degeneracy of G is the smallest integer k such that every subgraph of G

has a vertex of degree at most k.
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▶ Lemma 16 (implicit in Zhou, Nakano, Nishizeki [31]). For every graph G of degeneracy k,
for every integer c ≥ k, a (∆, c)-partition of G can be found in linear time.

Proof. Set s = ⌊∆(G)
c ⌋. It follows that sc ≤ ∆(G) < (s + 1)c.

Let n = |V (G)| and let v1, . . . , vn be the degeneracy ordering of V (G), i.e., for every
i = 1, . . . , n, there are at most k edges between vi and vertices v1, . . . , vi−1. It is well known
that degeneracy ordering can be found in linear time (by repeatedly removing vertices of the
smallest degree and reversing the order).

Sets E1, . . . , Es are constructed using the following procedure. Begin with Ei = ∅ for
i = 1, . . . , s. Next process vertices vi, i = 1, . . . , n one by one, as follows. For every vertex vi

we assign the edges incident to vi and vertices {vj | j > i} to sets E1, . . . , Es in a way we
describe later. This means that when we process vi, its incident edges to vertices {vj | j < i}
are already assigned. However, since we use the degeneracy ordering, the total number of
these latter edges is at most k, so in particular for every ℓ = 1, . . . , s the set Eℓ contains at
most k edges incident to vertices {vj | j < i}. Then, for every ℓ = 1, . . . , s− 1 we proceed as
follows. Let r be the number of the yet not assigned edges from vi to {vj | j > i}. Assign
min{c− dG[Eℓ](vi), r} edges to G[Eℓ]. If all edges incident to vi are assigned, proceed to vi+1.
If after adding edges to all graphs Eℓ, ℓ = 1, . . . , s− 1 there are still unassigned edges left,
assign all of them to Es.

Note that after processing any vi, we have dG[Eℓ](vi) ≤ c for every ℓ = 1, . . . , s − 1.
Also, dG[Es](vi) < 2c, because otherwise dG(vi) =

∑s
ℓ=1 dG[Eℓ](vi) ≥ (s + 1)c > ∆(G), a

contradiction. These degrees do not change when we process vertices {vj | j > i}. Hence,
∆(G[Eℓ]) ≤ c for every ℓ = 1, . . . , s− 1 and ∆(G[Es]) < 2c.

Now consider vi such that dG(vi) = ∆(G). We claim that dG[Eℓ](vi) = c for every
ℓ = 1, . . . , s− 1. Indeed, otherwise at most c(s− 1)− 1 edges incident to vi were assigned to
all Eℓ, ℓ = 1, . . . , s− 1 and at most k edges incident to vi were assigned to Es, and these are
all edges incident to vi so ∆(G) = dG(vi) ≤ c(s− 1)− 1 + k ≤ cs− 1, a contradiction with
the choice of s. Hence indeed dG[Eℓ](vi) = c for every ℓ = 1, . . . , s− 1. This, together with
sc ≤ dG(vi) < (s + 1)c implies that c ≤ dG[Es](vi) < 2c. By the previous paragraph we get
that ∆(G[Eℓ]) = c for every ℓ = 1, . . . , s− 1 and c ≤ ∆(G[Es]) < 2c, as required. ◀

Now we proceed with a lemma that is a basic building block of our main result.

▶ Lemma 17. Every graph G with n vertices and m edges such that ∆(G) ≥ 2 mad(G) can
be ∆(G)-edge-colored
1. by a randomized algorithm running in time O(m∆(G) mad(G)2 log n) in the expectation

and with high probability,
2. by a deterministic algorithm in time O(m∆(G)5(mad(G)2 + ∆(G)) log n).

Proof. The algorithm is recursive: it invokes itself recursively for a subgraph of the given
graph. Consider a single recursive call and let H ⊆ G be the graph passed to the current call.
We have D = ∆(G) colors. We begin by removing all isolated vertices from H. If we end up
with the empty graph, we return the empty coloring. Otherwise, we find the set Ew of weak
edges of H. This can be easily done in linear time, by first computing, for each vertex v its
degree d(v) and ∆-degree d∆(v); then checking if an edge is weak directly from definition
takes O(1) time. By Theorem 3, |Ew| ≥ |E(H)|/(2 mad(G)2). In what follows we assume
|Ew| = ⌈|E(H)|/(2 mad(G)2)⌉ by skipping some edges if needed. Next, we form a graph
H ′ = H − Ew in time linear in the size of H. Then, if E(H ′) ̸= ∅, we color H ′ recursively.
Thus we obtain a partial coloring π of H.

Now we proceed differently depending on whether we aim at randomized or deterministic
algorithm. In the randomized case, we color edges of Ew in random order, using Theorem 12
(the color c′ mentioned in the theorem statement is chosen randomly: it takes time O(D)
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to generate the list of free colors and next we sample from it in constant time). In the
deterministic case, we apply Lemma 14 repeatedly until everything is colored (in every
iteration Ew in Lemma 14 is the set of yet uncolored edges). This completes the description
of the algorithm.

Now we proceed to the running time analysis. Let us analyze the time complexity of the
single level of the recursion.

Begin with the randomized case. By Theorem 12 and Lemma 13, when ℓ = 1, . . . , |Ew|
edges are still uncolored, coloring a random uncolored edge xy of Ew takes expected time
O (∆(G) + |E(H)|∆(G)/ℓ) = O(|E(H)|∆(G)/ℓ). Hence, coloring all the ℓ edges is done in
expected time O(|E(H)|H|Ew|∆(G)), where H|Ew| is the |Ew|-th harmonic number. Since
H|Ew| < ln |Ew| + 1 = O(log n) we get the bound O(|E(H)|∆(G) log n) and this is also a
bound on the expected running time for a single level of the recursion, since Ew and H ′ can
be found in time O(|E(H)|).

For the deterministic case, we see that after each invocation of Lemma 14, the number of
uncolored edges decreases at least by the factor r0 = 1− 1

9∆(G)5 . The number of invocations
is then at most log1/r0 |Ew| = O(∆(G)5 log |Ew|) by standard properties of logarithm. By
Lemma 14, it follows that in the deterministic case a single level of the recursion takes time
O((|E(H)|+ |Ew|∆(G))∆(G)5 log n) = O((1 + ∆(G)/ mad(G)2)|E(H)|∆(G)5 log n).

Now we bound the time of all the levels of the recursion. Note that if ∆(H) < ∆(G) = D,
then every edge of H is weak and there are no more recursive calls. Otherwise, we have
D = ∆(H) and ∆(H) = ∆(G) ≥ 2 mad(G) ≥ 2 ad(H), so by Theorem 3 we have |E(H ′)| ≤
r|E(H)| for

r = 1− 1
2 ad(H)2 ≤ 1− 1

2 mad(G)2 .

Hence, in the randomized case, all the L levels of the recursion take expected time

O

(
L−1∑
i=0

ri|E(G)|∆(G) log n

)
.

Since
∑L−1

i=0 ri <
∑∞

i=0 ri = 2 mad(G)2, the total time complexity is
O(m∆(G) log n mad(G)2) in expectation, as required. The same kind of calculation for the
deterministic case gives the running time bound of O(m(mad(G)2 + ∆(G))∆(G)5 log n).

Obtaining the high probability guarantee for the running time in the randomized case is
fairly standard, we omit it here (see the full version [22]). ◀

Now we are ready to prove our main result.

▶ Theorem 1. Every graph G with n vertices and m edges such that ∆(G) ≥ 2 mad(G) can
be ∆(G)-edge-colored
1. by a randomized algorithm running in time O(m mad(G)3 log n) in the expectation and

with high probability,
2. by a deterministic algorithm in time O(m mad(G)7 log n).

Proof. Let c = ⌈2 mad(G)⌉. We begin with finding a (∆, c)-partition E1, . . . , Es of G using
Lemma 16. Note that by definition, degeneracy is at most mad(G) so the assumptions of the
lemma are satisfied.

Thanks to property (P2) of (∆, c)-partition, for every i = 1, . . . , s,

2 mad(G[Ei]) ≤ 2 mad(G) ≤ ∆(G[Ei]) < 2⌈2 mad(G)⌉ < 4 mad(G) + 2.
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Hence we can use Lemma 17 to ∆(G[Ei])-edge-color each graph G[Ei], i = 1, . . . , s sepa-
rately, in expected time O(|Ei| log n mad(G)3) or deterministic time O(|Ei|mad(G)7 log n).
In the randomized case, by linearity of expectation, we get O(m log n mad(G)3) expected
time in total (and the high probability bound also follows since the probability of a bad
event increases only at most s ≤ ∆ ≤ n times). In the deterministic case, after summing we
get O(m mad(G)7 log n). Since by the property (P1) we can use disjoint sets of colors, this
results in the desired coloring of G. ◀

5 Conclusion and further research

We showed that every graph G of bounded maximum average degree can be edge-colored
using the optimal number of ∆ colors in quasilinear time, whenever ∆ ≥ 2 mad(G). We
presented two algorithms: a randomized one in time O(m mad(G)3 log n) and a deterministic
one in time O(m mad(G)7 log n). As a corollary we get also that every graph G of bounded
maximum average degree can be (∆ + 1)-edge-colored in quasilinear deterministic time, thus
derandomizing the result of Bhattacharya et al [5]. We conclude with some open problems
as follows.
1. Is it possible to relax our assumption to ∆ ≥ c mad(G) for c < 2? As shown in Theorem 7

this would involve something more than the VAL in the coloring procedure. Since the
graphs constructed in Theorem 7 have arbitrarily large minimum degree, it is also not
sufficient to find reducible configurations with vertices of bounded degree, as it was the
case in the work of Cole and Kowalik [12].

2. Is it possible to design a data structure for dynamic ∆-edge-coloring graphs of bounded
maximum average degree, assuming ∆ ≥ c mad(G) for a constant c, with updates in
sublinear time? Or in polylogarithmic time? Note that the dynamic edge-coloring is an
active area of research recently, see e.g. [15, 8, 6, 9].

3. Is it possible to implement a version of Theorem 1 in the LOCAL model using only
poly(∆, log n) rounds? For some recent related results see e.g. [9, 2].
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