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Abstract
Selecting k out of m items based on the preferences of n heterogeneous agents is a widely studied
problem in algorithmic game theory. If agents have approval preferences over individual items and
harmonic utility functions over bundles – an agent receives

∑t

j=1
1
j

utility if t of her approved items
are selected – then welfare optimisation is captured by a voting rule known as Proportional Approval
Voting (PAV). PAV also satisfies demanding fairness axioms. However, finding a winning set of
items under PAV is NP-hard. In search of a tractable method with strong fairness guarantees, a
bounded local search version of PAV was proposed [2]. It proceeds by starting with an arbitrary
size-k set W and, at each step, checking if there is a pair of candidates a ∈ W , b ̸∈ W such that
swapping a and b increases the total welfare by at least ε; if yes, it performs the swap. Aziz et
al. show that setting ε = n

k2 ensures both the desired fairness guarantees and polynomial running
time. However, they leave it open whether the algorithm converges in polynomial time if ε is very
small (in particular, if we do not stop until there are no welfare-improving swaps). We resolve this
open question, by showing that if ε can be arbitrarily small, the running time of this algorithm
may be super-polynomial. Specifically, we prove a lower bound of Ω(klog k) if improvements are
chosen lexicographically. To complement our lower bound, we provide an empirical comparison of
two variants of local search – better-response and best-response – on several real-life data sets and a
variety of synthetic data sets. Our experiments indicate that, empirically, better response exhibits
faster running time than best response.
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1 Introduction

We study the collective decision problem where the goal is to select k out of m items
(candidates) based on the preferences of n agents (voters). This problem (or, more precisely,
its generalisation to the setting where different items may have different costs and there is a
budget constraint) is known as the combinatorial public project problem in the algorithmic
mechanism design literature, where the focus in on optimisation of the utilitarian welfare
subject to strategyproofness constraints [7, 8]. In the computational social choice literature, it
is known as the the multiwinner voting problem, and an important concern is proportionality,
i.e., ensuring that large groups of voters with similar preferences are fairly represented by
the elected candidates [10].
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82:2 A Lower Bound for Local Search Proportional Approval Voting

Proportional Approval Voting (PAV) [9], which belongs to the class of Thiele’s methods [1],
is a multiwinner voting rule that can be viewed both from the welfare maximisation perspective
and from the proportionality perspective. Given an election with a set of voters N , a set
of candidates C, a target committee size k, and the voters’ approval ballots (Av)v∈N ,
where Av ⊆ C for all v ∈ N , it computes the PAV score of a committee W ⊆ C as
pavsc(W ) =

∑
v∈N

∑|Av∩W |
j=1

1
j , and outputs all size-k committees with the maximum PAV

score. This rule admits a utilitarian interpretation: agent v with ballot Av is assumed
to compute the utility of bundle W as

∑|Av∩W |
j=1

1
j , and the rule maximises the utilitarian

welfare. Another interpretation makes no assumptions about agents’ values for bundles, but
aims to achieve proportionality. Intuitively, proportionality means that an α-proportion
of the population that jointly approves at least αk items should be represented by an
α-fraction of the k selected items. There are several ways to formalise this intuition,
including justified representation axioms, such as PJR and EJR [1, 14], or the notion of
proportionality degree [15], and PAV is among the very few voting rules that satisfy EJR and
have optimal proportionality degree. Unfortunately, however, PAV is known to be NP-hard
to compute [16, 3].

Algorithm 1 ε-local search PAV (ε-ls-PAV).

Data: ε > 0, arbitrary committee Winit of size k, voters’ approval ballots (Av)v∈N

Result: W of size k

W ←Winit;
while ∃b /∈W, a ∈W such that ∆(W, a, b) ≥ ε do

W ← (W ∪ {b}) \ {a}
end
return W

Since PAV has excellent proportionality properties, there has been a lot of interest in
identifying tractable variants of this rule. Two natural approaches to explore in this context
are greedy sequential optimisation and local search. The former is a special case of the greedy
algorithm for submodular function maximisation, and approximates the social welfare by a
factor of (1 − 1

e ) [11]. Unfortunately, high PAV score does not imply good proportionality
guarantees [1], so approximation algorithms do not appear to be very useful from the fairness
perspective.

In contrast, the local search approach turns out to be well-suited for identifying fair
outcomes. The reason for this is that proofs of proportionality guarantees for PAV use
local swap arguments: they show that if a committee W is proportional, there is no pair of
candidates a ∈ W, b /∈ W such that swapping them increases the PAV score, i.e., the quantity

∆(W, a, b) = pavsc((W \ {a}) ∪ {b}) − pavsc(W )

is positive. The local search algorithm that starts with an arbitrary committee and performs
PAV score-improving swaps is therefore a natural heuristic for PAV. It was first introduced
and studied by Aziz et al. [2]. However, Aziz et al. were unable to show that local search
converges after polynomially many iterations, as a single iteration may only increase the PAV
score by a tiny amount. To overcome this issue, they considered a parameterised version of
local search, which only performs swaps if they improve the PAV score by at least ε (see
Algorithm 1 for the pseudocode). They observed that if ε is sufficiently small, the algorithm,
which we will call ε-ls-PAV, preserves the proportionality guarantees of PAV, and if ε is
sufficiently large, it converges in polynomial time; setting ε = n

k2 achieves both of these
objectives. However, Aziz et al. left it as an open problem if ε-ls-PAV converges in polynomial
time for all values of ε > 0. The following conjecture is implicit in their work:
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▶ Conjecture 1 (left open by [2]). For small ε, ε-ls-PAV may make a super-polynomial
number of swaps.

60 voters approve
c1 c2 c3 c4 c5

30 approve

(a) 60 voters approve c1, c2, c3
and 30 voters approve c4, c5

56 voters approve
c1 c2 c3 c4 c5

28 approve 6

(b) 6 voters leave their groups and vote for them-
selves. 56 voters approve c1, c2, c3 and 28 voters
approve c4, c5

Figure 1 For k = 3 and initial committee W = {c1, c2, c3} , n
k2 -ls-PAV would replace a member

of W with one of c4, c5 in the instance in Figure 1a, but not in the instance in Figure 1b.

Now, while setting ε = n
k2 preserves the worst-case proportionality guarantees, the faster

running time comes at a cost: for large values of n and small values of k the algorithm
may get “lazy” and choose not to perform a swap even if it would result in a much fairer
outcome. Indeed, consider an instance with 90 voters, 60 of which vote for {c1, c2, c3} and
30 vote for {c4, c5} (see Figure 1a). For a committee size of k = 3, a fair outcome gives two
representatives to the group of 60 and one to the group of 30. Indeed, one can check that the
majoritarian committee W = {c1, c2, c3} is not locally optimal, in the sense that n

k2 -ls-PAV
will replace one of the candidates in W with c4 or c5. However, if the voters’ preferences
are a bit more diffuse, this is no longer the case. To see this, consider Figure 1b, where the
groups of size 60 and 30 lose four and two members, respectively, and the six breakaway
voters become candidates and vote for themselves. For this instance, W = {c1, c2, c3} is an
output of 10-ls-PAV, because the PAV scores of W and (W \ {c3}) ∪ {c4} are, respectively,
56 · (1 + 1/2 + 1/3) and 56 · (1 + 1/2) + 28, and 28 − 56

3 < n
k2 = 10. On the other hand, for

the “vanilla” version of ls-PAV, which does not stop until there are no PAV-score improving
swaps, the “unfair” committee W is not among the outputs of local search on the modified
instance.

There are other reasons to favour “vanilla” ls-PAV over n
k2 -ls-PAV. For instance, the

former rule is easier to explain to voters, who may be disappointed that the latter rule stops
despite the availability of score-improving swaps. Also, “vanilla” ls-PAV is more decisive –
it is easy to see that for ε < ε′ each output of ε-ls-PAV is an output of ε′-ls-PAV, but the
converse is not necessarily true – and decisiveness is viewed as a desirable property in the
social choice literature. Thus, it is important to understand whether the conjecture of [2] is
true, i.e., whether ε-ls-PAV converges in polynomial time even for small values of ε.

Motivated by these considerations, in this work we investigate Conjecture 1 and resolve
it in the positive. Specifically, for adversarially chosen swaps we show a lower bound of
Ω(klog k) via a subtle combinatorial construction. We then extend our result to a natural
pivoting rule, which chooses swaps lexicographically. While our result does not rule out the
possibility that the outputs of ε-ls-PAV can be computed by a different polynomial-time
algorithm (the complexity of this problem remains an interesting open question), it justifies
the choice of ε = n

k2 in the work of Aziz et al. [2].

ESA 2024



82:4 A Lower Bound for Local Search Proportional Approval Voting

Importantly, while our lower bound holds for better response with the lexicographic
pivoting rule, it does not extend to another natural pivoting rule: choosing the swap that
offers the maximum increase in the PAV score, i.e., best-response dynamics. Indeed, it
remains an open problem to determine if the best-response variant of ls-PAV may take
superpolynomially many steps. Motivated by this question, in the extended version we
provide an empirical comparison between lexicographic better response and best response,
using several real-life and synthetic datasets. We measure the performance of each algorithm
on a given instance as the number of candidate swaps it needs to consider before termination
(this is a useful proxy for running time as long as we do not have access to parallel processing
hardware). Interestingly, on the datasets we investigate, better response considers fewer
swaps than best response. Hence, while our theoretical worst-case results seem to favour
best response over better response, the empirical results paint the opposite picture.

1.1 Roadmap of our Approach

We study the runtime of ε-ls PAV with the threshold ε set to a very small positive value
(which we will denote by 0+). Specifically, for each k ≥ 0 we construct a multiwinner election
Ek with target committee size k and the following properties: (1) the number of voters in
Ek is polynomial in k; (2) on Ek, 0+-ls-PAV may require Ω(klog k) steps until convergence.
Our argument is closely connected to the following simple-to-formulate number-theoretic
question:

minimise
k∑

i=1

wi

i
subject to (1)

k∑
i=1

wi

i
> 0, where wi ∈ Z and wi = poly(k) (2)

If wi are not required to be polynomial in k, it is not difficult to see that the minimum of
the sum in (1) is the inverse of the least common multiple of {1, 2, . . . , k}. However, in our
construction the number

∑k
i=1 |wi| corresponds to the size of the voter set. Hence, if we

want the size of Ek to be polynomial in k, the wi need to be polynomial in k as well. At
the heart of our construction is an instance of size polynomial in k that corresponds to a
value of 1

klog k for the above objective. We use it to build an election with a carefully crafted
combinatorial structure on which 0+-ls-PAV is forced to repeatedly undo previously achieved
progress. We note that if wi ∈ {−1, 1}, then the best known upper bound is due to [4] and
matches our construction in Lemma 4.3.

As a warm-up, in Section 3, we first prove a simpler result, which illustrates one of the
main ideas behind the more complex construction. We study n

k2 -ls-PAV where swaps may be
chosen adversarially, and show that its worst-case runtime is Θ̃(k2). In Section 4.2 we first
construct an election together with a committee where a swap increases the PAV score just
by Θ( 1

klog k ). We use this as a building block to construct two further levels of complexity,
which give us our desired instance (Sections 4.3 and 4.4). This instance is used to show our
main result for the adversarial setting (Section 4.5): In Theorem 3, we exhibit a sequence
of swaps of length super-polynomial in k that may be performed by 0+-ls-PAV. Finally,
in Section 4.6 we show that lexicographic better response executes a subsequence of our
sequence from Theorem 3, and the length of this subsequence is still superpolynomial in k.
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1.2 Related Work
Initially, proportionality in multiwinner committee voting was considered from an axiomatic
perspective: there is a spectrum of justified representation axioms, ranging from Justified
Representation (JR) (which is rather mild and easy to satisfy) to more demanding axioms such
as Proportional, Extended and Full Justified Representation (PJR, EJR and FJR) [1, 14, 12];
as well as EJR+ [6]; n

k2 -ls-PAV is among the very few polynomial-time computable voting
rules that satisfy EJR. Subsequently, Skowron [15] pursued a qualitative approach, and put
forward the notion of the proportionality degree, which formalises to what degree β it holds
that an α proportion of the population proposing at least αk candidates will be represented
(so, ideally β ∼ α and the group is represented by roughly βk candidates on average). PAV
exhibits excellent performance according to this measure: for PAV the ratio β

α approaches 1.
For k ≤ 200 Skowron shows that Sequential PAV has a proportionality degree of at least
0.7, but for larger k the proportionality of Sequential PAV remains open. Other voting rules
with good proportionality guarantees are Sequential Phragmén’s rule (which satisfies PJR)
[9, 5] and the Method of Equal Shares (which satisfies the stronger EJR axiom) [13]. Unlike
PAV, both of these rules are formulated in terms of voters sharing the “load” incurred by
the candidates in the committee, and have a proportionality degree of 0.5.

2 Preliminaries

For n ∈ N, we write [n] = {1, . . . , n}. An approval election is a 4-tuple E = (N, C, (Av)v∈N , k),
where N = [n] is a set of voters, C is a set of candidates, |C| = m, Av ⊆ C is the ballot of
voter v ∈ N , and k ∈ [m] is the target committee size. Subsets of C (not necessarily of size
k) are called committees.

We define the PAV satisfaction of a set of voters V from a committee W as pavscV (W ) =∑
v∈V

∑|Av∩W |
j=1

1
j ; if V is a singleton, i.e., V = {v}, we omit the braces and write pavscv

instead of pavsc{v}. Given a committee W , a pair of candidates b /∈ W , a ∈ W , and a set of
voters V , we denote by ∆V (W, a, b) the change in the PAV-satisfaction of V that is caused
by swapping a with b:

∆V (W, a, b) = pavscV (W ∪ {b} \ {a}) − pavscV (W ).

For readability, we omit V from the notation when V = N , i.e., we write ∆(W, a, b) :=
∆N (W, a, b).

The “vanilla” local search algorithm, which swaps a ∈ W with b ̸∈ W as long as
∆(W, a, b) > 0, can be described as ε-ls-PAV for ε ≤ min{∆(W, a, b) : W ⊆ C, |W | = k, b ̸∈
W, a ∈ W, ∆(W, a, b) > 0}. It can be shown that this condition can be satisfied by setting
ε = 1

lcm([k]) , where for each S ⊂ N we denote by lcm(S) the least common multiple of the
integers in S. In what follows, we denote this value of ε by 0+.

Given a committee W , we say that a sequence of swaps

X = (a1, b1), (a2, b2), . . . , (as, bs)

is valid if for each t ∈ [s] the committee Wt = (Wt−1 ∪ {bt}) \ {at} (where W0 := W ) satisfies
at ∈ Wt−1, bt /∈ Wt−1. The length of a sequence X, denoted by |X|, is the number of pairs
in X. We define the inverse (sequence) of X as X−1 = (bs, as), (bs−1, as−1), . . . , (b1, a1).
Given two finite sequences of swaps X and Y, we define their concatenation X ⊕ Y as the
sequence with prefix X followed by suffix Y. For our proofs, it will be useful to have an
arbitrarily large pool of “dummy” candidates. We therefore define Dk = {d1, . . . , dk} so that
Dk+1 = Dk ∪ {dk+1}, D0 = ∅ and D = ∪∞

k=1{Dk}.

ESA 2024



82:6 A Lower Bound for Local Search Proportional Approval Voting

We omit some proofs due to space constraints; the respective claims are marked with ⋆.
All missing proofs and the simulation results appear in the extended version of the paper.

3 Warm-up: Lower Bound for n
k2 -ls-PAV

To showcase the ideas behind our main lower bound (Theorem 9), we start by presenting a
lower bound on n

k2 -ls-PAV in the adversarial setting. Specifically, for each n-voter election
and committee size k, we consider a directed graph whose vertices are committees, and
whose edges are pairs (W, W ′) such that W ′ can be obtained from W via a swap and the
PAV score of W ′ is at least n

k2 higher than that of W . We exhibit an election for which this
graph contains a path of length Ω(k2). We call this setting adversarial, because these swaps
may be suggested by an adversary whose aim is to maximise the number of iterations.

This result establishes that the upper bound on the number of iterations of the algorithm
of [2] is tight up to a log k factor. Indeed, since the maximum PAV score of a size-k committee
is O(n log k), it follows that n

k2 -ls-PAV converges in at most O(k2 log k) iterations.

c1,1

c2,1

c1,2

c2,2

c1,3

c2,3

c1,4

c2,4

c1,5

c2,5

c1,6

c2,6

c1,7

c2,7

1 2 3 4 5 6

7

c1,1

c2,1

(a) Illustration of swaps 1–7.

c1,1

c2,1

c1,2

c2,2

c1,3

c2,3

c1,4

c2,4

c1,5

c2,5

c1,6

c2,6

c1,7

c2,7

13 12 11 10 9 8

14

c1,7

c2,2

(b) Illustration of swaps 8–14.

c1,1

c2,1

c1,2

c2,2

c1,3

c2,3

c1,4

c2,4

c1,5

c2,5

c1,6

c2,6

c1,7

c2,7

15 16 17 18 19 20

21

c1,1

c2,3

(c) Illustration of swaps 15–21.

c1,1

c2,1

c1,2

c2,2

c1,3

c2,3

c1,4

c2,4

c1,5

c2,5

c1,6

c2,6

c1,7

c2,7

27 26 25 24 23 22

28

c1,7

c2,4

(d) Illustration of swaps 22–28.

Figure 2 Highlighted candidates are in the committee; arrows from a to b labelled with t indicate
that a is replaced by b in iteration t. Observe that pink candidates are only replaced by pink
candidates; similarly, blue candidates are only replaced by blue candidates. This illustrates a swap
sequence similar to that in the proof of Theorem 2, with the exception that, to make the figure
visually appealing, we display an equal number of blue and pink candidates.

▶ Theorem 2. For every k ≥ 1 there exists a committee election with poly(k) voters, a
committee W0, |W0| = k, and a sequence of Ω(k2) swaps starting from W0 such that each
swap in this sequence strictly increases the PAV score by at least n

k2 .

Proof. Let k ≥ 4 and t = ⌊ k
4 ⌋. We define the election E = (N, C, (Av)v∈N , k) as follows.

C = C1 ∪ C2 ∪ Dk−2, C1 = {c1,1, . . . , c1,t+1}, C2 = {c2,1, . . . , c2,k};

N = V1 ∪ V2 ∪
⋃

j∈[k]

Sj ∪ U, where Vℓ = {vℓ,1, . . . , vℓ,t}, ℓ ∈ [2], |U | =
⌊

k2

4 − k

2

⌋
,

|Sj | = t, j ∈ [k].
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The approval sets of voters v1,i and v2,i, i ∈ [t], are given by

Av1,i
= {c1,i+1, . . . , c1,t+1} ∪ {c2,j ∈ C2 | j is even} and

Av2,i
= {c1,1, . . . , c1,i} ∪ {c2,j ∈ C2 | j is odd},

For each j ∈ [k] the approval set of each voter s ∈ Sj is As = {c2,j , . . . , c2,k}. Each u ∈ U

has approval set Au = Dk−2. Intuitively, voters in U are dummy voters and candidates in
Dk−2 are dummy candidates. The sequence of swaps we will exhibit affects voters in N \ U

and candidates in C1 ∪ C2, but no other voters or candidates.
Set-up. Consider n

k2 -ls-PAV on the above instance with an initial committee

W0 = Dk−2 ∪ {c1,1, c2,1}.

We first show that n
k2 ≤ 1

2 . Indeed, we have

n = |V1| + |V2| +
k∑

j=1
|Sj | + |U | =

⌊
k

4

⌋
+

⌊
k

4

⌋
+ k ×

⌊
k

4

⌋
+

⌊
k2

4 − k

2

⌋
≤ k2

2 .

In what follows, we will say that a swap (a, b) is a good swap for W if ∆(W, a, b) ≥ n
k2 ; we

will say that (a, b) is a good swap if W is clear from the context. As we have argued that
n
k2 ≤ 1

2 , every valid swap that increases the PAV score by at least 1
2 is a good swap.

Sequence of Swaps. Define Y = ⊕t
i=1(c1,i, c1,i+1) and let Zj = Y if j is odd and Zj = Y−1

if j is even. Let X = ⊕k−1
j=1 (Zj ⊕ (c2,j , c2,j+1)), and note that |Y| = |Y−1| = t, so |X| =

(k − 1) · (t + 1) = Ω(k2). We will argue that all swaps in X are good.

To this end, we split up the analysis into the following four claims.
(i) For committee W = Dk−2 ∪ {c1,i, c2,j}, if j is odd and i ≤ t, (c1,i, c1,i+1) is a good

swap.
(ii) For committee W = Dk−2 ∪ {c1,i, c2,j}, if j is even and i > 1, (c1,i, c1,i−1) is a good

swap.
(iii) For committee W = Dk−2 ∪ {c1,t+1, c2,j}, if j < k is odd, (c2,j , c2,j+1) is a good swap.
(iv) For committee W = Dk−2 ∪ {c1,1, c2,j}, if j < k is even, (c2,j , c2,j+1) is a good swap.

Together, these four claims imply that X is a sequence of good swaps. Indeed, suppose that
j is odd, and consider the committee W = Dk−2 ∪ {c1,1, c2,j}. By Claim (i), Zj = Y is a
sequence of good swaps. After executing Y we obtain a committee W = Dk−2 ∪ {c1,t+1, c2,j}
satisfying the condition in Claim (iii). Hence, if j < k, then (c2,j , c2,j+1) is a good swap.
This swap results in a committee W = Dk−2 ∪ {c1,t+1, c2,j+1} satisfying the condition in
Claim (ii). This implies that Zj+1 = Y−1 is a sequence of good swaps, resulting in a
committee W = Dk−2 ∪ {c1,1, c2,j+1}. This committee, in turn, is as described in (iv), so
if j + 1 < k, then (c2,j+1, c2,j+2) a good swap. This results in W = Dk−2 ∪ {c1,1, c2,j+2},
which again satisfies the condition in (i). As this reasoning applies to all odd values of j,
including j = 1 (which corresponds to our starting point W0), we can conclude that the
sequence X is a sequence of good swaps. It remains to prove Claims (i)–(iv).
Claim (i). Suppose W = Dk−2 ∪ {c1,i, c2,j} where j ∈ [k] is odd and i ∈ [t]. Then
|Av2,i ∩ W | = 2 and |Av1,i ∩ W | = 0. Moreover, v2,i approves c1,i and not c1,i+1, and
conversely for v1,i, while every other voter approves either both or neither of c1,i and c1,i+1.
We conclude that (c1,i, c1,i+1) is a good swap, because ∆(W, c1,i, c1,i+1) = +1 − 1

2 = 1
2 .

Claim (ii). Suppose W = Dk−2 ∪ {c1,i, c2,j}, where 1 < i ≤ t + 1 and j ∈ [k] is even. Then
|Av1,i−1 ∩ W | = 2, |Av2,i−1 ∩ W | = 0, and every other voter approves either both of c1,i−1
and c1,i or neither of them. Thus, ∆(W, c1,i, c1,i−1) = +1 − 1

2 = 1
2 .

ESA 2024



82:8 A Lower Bound for Local Search Proportional Approval Voting

Claim (iii). Suppose W = Dk−2 ∪ {c1,t+1, c2,j}, where j < k is odd. Each voter in Sj+1
approves c2,j+1 and not c2,j . Every voter in V2 approves c2,j , but not c2,j+1, while every
voter in V1 approves c2,j+1 and not c2,j . By construction, the remaining voters (i.e., the
voters in Sℓ, ℓ ̸= j + 1, and the voters in U) approve either both of c2,j and c2,j+1 or neither.
For s ∈ Sj+1, their satisfaction is |As ∩ W | = 0. For every i ∈ [t] we have |Av1,i

∩ W | = 1 as
v1,i only approves c1,t+1 in W , and |Av2,i ∩ W | = 1, because v2,i only approves c2,j as j is
odd. Thus, ∆(W, c2,j , c2,j+1) = +|Sj+1| + 1

2 · |V1| − |V2| = t + t
2 − t = t

2 ≥ 1
2 , provided k ≥ 4.

This shows that (c2,j , c2,j+1) is a good swap.

Claim (iv). Suppose W = Dk−2 ∪ {c1,1, c2,j}, where j < k is even. Similarly to the proof
of Claim (iii), we can show that ∆(W, c2,j , c2,j+1) ≥ 1

2 . This concludes the proof. ◀

4 Main Result

We are now ready to present our main result.

▶ Theorem 3 (⋆). For every k ≥ 1 there exists a committee election with poly(k) voters, a
committee W0, |W0| = k, and a sequence of Ω(klog k) swaps starting from W0 such that each
swap in this sequence strictly increases the PAV score.

The proof of our main lower bound is in many ways similar to the proof of Theorem 2.
We start by giving a high-level overview of the proof, and then describe our construction;
the proof of correctness is mostly relegated to the extended version of the paper. We first
consider the adversarial setting; in Section 4.6 we will show how to extend our proof to
lexicographic better response.

4.1 Proof Overview
We construct a committee W of size k and a sequence of swaps of length Ω(klog k) such
that 0+-ls-PAV may execute this sequence when initialised on W . Just as in the proof of
Theorem 2, this sequence of swaps leaves most members of the initial committee untouched.
Most of the action takes place in the first k1 = O(log k) committee spots; the candidates
in the remaining spots stay in place throughout the entire sequence of swaps. For each
i = 1, . . . , k1, the committee spot i is assigned its own set of candidates Ci, so that in the
sequence we construct, a candidate in Ci can only be replaced by another candidate from Ci.

Furthermore, each of the first k1 committee positions has its corresponding set of voters,
and between different committee positions, initially the voters’ satisfaction is very unequal:
voters corresponding to the first position are most happy, and voters corresponding to later
committee positions are increasingly unhappy. The sequence of swaps will again start by
making the most happy voters happier and then move on to less happy voters, making them
better off. Thereby it will undo all the work it has done so far and will have to repeat it.

Consider Figure 3, where each board represents a committee. The figure should be read
left to right and top to bottom, where the next board/committee results from the previous
one if certain swaps are made. More precisely, within a board each square corresponds to
a candidate, so that Ci is the set of candidates in the i-th column. The coloured squares
mark the candidates that are in the committee, and arrows between squares indicate swaps
between candidates. The result of the swap(s) can be seen in the next board.

The pattern in Figure 3 may not be immediately evident; the reader may want to revisit
it after having read the proof of Theorem 3. For now, we use Figure 3 to illustrate how we
build up our instance in several steps, creating increasingly larger building blocks. Observe
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Figure 3 We illustrate the sequence of swaps in Theorem 3 by a small example. Each one of the 23
3×4 grids shows 12 candidates, one for each empty square, the 4 coloured ones indicating candidates
currently in the committee. The empty squares in column i are the candidates in Ci; they are
ordered as ci,1, ci,2, ci,3 from top to bottom. We omit the dummy candidates from this picture, and
let k1 = 4 and t + 1 = 3, as larger t is only necessary for the sequence length in the proof. An arrow
indicates the swap that will transform the current committee into the next committee. The top left
initial committee is {c1,3, c2,3, c3,3, c4,1} and the bottom right final committee is {c1,3, c2,3, c3,3, c4,3}.

that in Figure 3 swaps only occur along a column (corresponding to candidates Ci for some
i): indeed, as we mentioned earlier, in our construction swaps can only replace candidates in
Ci with other candidates in Ci.
1. Zooming in on a single swap, the voters responsible for this swap form an atomic building

block of our construction. This building block, Election E(j, k), is given in Section 4.2.
Here, j is carefully picked to depend on the column i (i.e., the i-th spot on the committee).
In Lemma 5 we show that the corresponding swap increases the PAV score by exactly

δ(j, k) = j!∏j
j′=0(k − j′)

.

2. Zooming out to just the i-th column, the election responsible for the dynamics along the
i-th column is Et(j, k), where t = |Ci| − 1. We discuss how to construct Et(j, k) from
E(j, k) in Section 4.3.

3. Finally, the entire board roughly corresponds to election E, constructed out of the building
blocks Et(j, k) (Section 4.4).
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With the constructed election E in hand, in Section 4.5 we exhibit an initial committee
and a sequence of good swaps of length superpolynomial in k, such that, starting from this
committee, 0+-ls-PAV under adversarial better response executes this sequence of swaps.
Finally, in Section 4.6 we show how to modify this instance to establish that, even when the
improving swaps are selected according to a fixed pivoting rule (rather than adversarially),
0+-ls-PAV may still make super-polynomially many swaps. To this end, we prove that a long
subsequence of the swap sequence from Theorem 3 is preserved by the pivoting rule.

4.2 First Steps: Election E(j, k)

We now introduce a family of elections that form the smallest building blocks of our instance.
We will frequently say that an election E has structure X if it is isomorphic to election
X. As in the proof of Theorem 2, we write Dℓ = {d1, . . . , dℓ} to denote a set of ℓ dummy
candidates. For committee size k ∈ N, we will use induction on j to construct elections
F (j, k) = (N, C, (Av)v∈N , k) with |N | = 2j and C = Dk−1 ∪ {a, b} for each 1 ≤ j < k.

Construction 1. [Election F (j, k)] Fix j, k ∈ N with 1 ≤ j < k. For j = 1, let F (j, k) =
({1, 2}, C, (Av)v=1,2, k), where C = Dk−1 ∪ {a, b}, A1 = Dk−1 ∪ {a} and A2 = Dk−2 ∪ {b}.

For j > 1 (and k ≥ j +1), we construct F (j, k) as follows. Consider elections F (j −1, k) =
(N1, C1, (Av)v∈N1 , k) and F (j −1, k −1) = (N2, C2, (Av)v∈N2 , k −1), where N1 ∩N2 = ∅ (we
relabel the voters to ensure they are distinct), and C1 = Dk−1∪{a1, b1}, C2 = Dk−2∪{a2, b2}.
We set C = Dk−1 ∪ {a, b}, N = N1 ⊔ N2, and modify the voters’ ballots as follows: for each
v ∈ N1 we replace each occurrence of a1 and b1 in Av with b and a, respectively, and for
each v ∈ N2 we replace each occurrence of a2 and b2 in Av with a and b, respectively. We
then define F (j, k) = (N, C, (Av)v∈N , k).

Observe that for each k ≥ 1 the number of voters in F (j, k) is exactly 2j ; this follows
easily by induction since there are two voters in election F (1, k), and for j > 1, elections
F (j − 1, k) and F (j − 1, k − 1) have disjoint sets of voters of size 2j−1 each.

Construction 2. [Election E(j, k)] Election E(j, k) is built similarly to F (j, k). We start
with two copies of F (j − 1, k − 1), merge them as in the construction for F (j, k), introduce
two new candidates x and y, and make all voters from the first copy approve x and all voters
from the second copy approve y.

Formally, consider two disjoint copies of F (j −1, k −1) given by (N1, C1, (Av)v∈N1 , k) and
(N2, C2, (Av)v∈N2 , k), where C1 = Dk−2 ∪ {a1, b1}, C2 = Dk−2 ∪ {a2, b2}, and define a new
election (N, C, (A′

v)v∈N1∪N2 , k) as follows. Set N = N1 ⊔ N2 and C = Dk−2 ∪ {x, y} ∪ {a, b}.
Again, modify the voters’ ballots accordingly: for each v ∈ N1 replace each occurrence of
a1 and b1 in Av with b and a, respectively, and for each v ∈ N2 replace each occurrence
of a2 and b2 in Av with a and b, respectively. Then, set A′

v = Av ∪ {x} if v ∈ N1 and
A′

v = Av ∪ {y} if v ∈ N2. Let s : N1 7→ N2 be the natural bijection between the sets of
voters in the two isomorphic elections that E(j, k) is built from; we will say that s(v) is the
counterpart of v, and v is the counterpart of s(v). We collect a few simple properties of
E(j, k) in the following observation.

▶ Proposition 4. For all 1 ≤ j < k, the election E(j, k) has the following properties:
1. Av ∩ D = As(v) ∩ D,
2. v approves a (resp., b) if and only if s(v) approves b (resp., a), and
3. v approves x (resp., y) if and only if s(v) approves y (resp., x).
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Consider the committee W = Dk−2 ∪ {x, a}. The election E(j, k) satisfies two important
properties with respect to W , which will be needed in the proof of Theorem 3. We state
them in the following lemma. To make the lemma easier to use, we define δ : N × N 7→ R as

δ(j, k) = j!∏j
j′=0(k − j′)

.

▶ Lemma 5 (⋆). For all 1 ≤ j < k, the election E(j, k) and the committee W = Dk−2∪{x, a}
have the following properties:
1. ∆(W, a, b) = δ(j, k), and
2. for every voter v ∈ N we have |Av ∩ W | ≥ k − (j + 1).

Proposition 4 together with Lemma 5 imply the following corollary.

▶ Corollary 6. Consider election E(j, k) with 1 ≤ j < k and committees W = Dk−2 ∪ {x, a}
and W ′ = Dk−2 ∪ {y, b}. It holds that ∆(W, a, b) = δ(j, k), and hence (a, b) is a good swap.
Moreover, ∆(W ′, b, a) = δ(j, k), and hence (b, a) is a good swap.

4.3 Level up: Election Et(j, k)
We now combine t copies of the election E(j, k) into a single election, which we will call
Et(j, k). This election is the building block in our final construction that is responsible for
the up-and-down movement within columns, as shown in Figure 3.

Construction 3. [Election Et(j, k)]. Let t ∈ N. For each i ∈ [t], we consider an election
Ei = (Ni, Ci, (Av)v∈Ni

, k), where Ei has structure E(j, k) with Ci = Dk−2 ∪{ai, bi}∪{xi, yi}.
For each i = 1, . . . , t − 1, we identify bi with ai+1, and relabel a1, . . . , at, bt as c1, c2, . . . , ct+1.
Furthermore, we identify xi with yi+1 as well as yi with xi+1 for i = 1, . . . t − 1, and we
write x = x1 = y2 = x3 . . . and y = y1 = x2 = y3 . . .. We then set C = {c1, c2, . . . , ct+1, x, y}.
Let C−

i = {c1, . . . , ci} and C+
i = {ci+1, . . . , ct+1}. For each v ∈ Ni, if Av ∩ C−

i ̸= ∅, we add
all candidates in C−

i to v’s ballot, and if Av ∩ C+
i ≠ ∅, we add all candidates in C+

i to v’s
ballot; that is, we set

A′
v = Av ∪

⋃
X∈{C−

i
,C+

i
}:

X∩Av ̸=∅

X.

Then, each voter v ∈ Ni views the candidates c1, . . . ci as clones: she either approves all or
none of them. Similarly, she views ci+1, . . . , ct+1 as clones, too. Finally, let N = ⊔t

i=1Ni,
and define Et(j, k) = (N, Dk−2 ∪ C, (A′

v)v∈N , k). Since each E(j, k) is an election with 2j

voters, we can easily calculate the number of voters in Et(j, k).

▶ Proposition 7. The number of voters in Et(j, k) is t2j.

Consider an election E with structure Et(j, k) and voters ⊔t
i=1Ni, as in the above

construction. Since in election Ei with structure E(j, k) each voter v in Ni approves exactly
one candidate from {ai, bi}, in Et(j, k) voter v also approves exactly one of ci and ci+1. So,
by the above construction, in Et(j, k) for each v ∈ Ni we have either Av ∩ C = {c1, . . . , ci}
or Av ∩ C = {ci+1, . . . , ct+1}. Consequently, in election Et(j, k) each of the swaps (ci, ci+1)
and (ci+1, ci) can only change the satisfaction of voters in Ni ⊂ N .

We can therefore make some useful observations regarding good swaps in election Et(j, k)
with respect to the committee W = {d1, . . . , dk−2, z, c}, where z ∈ {x, y} and c ∈ {c1, ct+1}.
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▶ Proposition 8 (⋆).
(1) If W1 = Dk−2 ∪ {x, c1}, then (c1, c2), (c2, c3), . . . , (ct, ct+1) is a sequence of t good swaps

starting from W1, increasing the PAV score by tδ(j, k).
(2) If W2 = Dk−2 ∪ {y, ct+1}, then (ct+1, ct), (ct, ct−1), . . . , (c2, c1) is a sequence of t good

swaps starting from W2, increasing the PAV score by tδ(j, k).
(3) If W3 = Dk−2 ∪ {x, ct+1} then ∆(W3, x, y) = −tδ(j, k).
(4) If W4 = Dk−2 ∪ {y, c1}, then ∆(W4, y, x) = −tδ(j, k).

4.4 Final Election Instance E

Let k be the desired committee size, and let k1 = ⌈log k⌉, k2 = k − k1. We will construct an
election E = (N, C, (Av)v∈N , k) together with an initial committee W0 so that there exists a
sequence of swaps of super-polynomial length starting from W0. Briefly, E is obtained by
combining k1 elections of the form Et(2j, k2 + 1) for j = 1, . . . , k1, with some modifications
of the ballots.

Constructing the Instance Let t = 2 · ⌈ k
2 ⌉, so that t ∈ {k, k + 1} and t is even. For each

i ∈ [k1], let Ci = {ci,1, . . . , ci,t+1, xi, yi} and

Ei = (Ni, Ci ∪ Dk2−1, (Av)v∈Ni , k2 + 1) with structure Et(2k1 − 2(i − 1), k2 + 1). (3)

The committee size of k2 + 1 in this construction is chosen so that k2 − 1 spots are reserved
for dummy candidates Dk2 , one spot is reserved for one of xi and yi, and the last spot is
reserved for one of the candidates ci,j , 1 ≤ j ≤ t + 1. We define E by merging these elections
in the natural way, but we additionally modify some approvals. Informally, for all i ∈ [k1],
we remove all candidates xi, yi and let the candidates in Ci+1 \ {xi+1, yi+1} take on the roles
of xi and yi for voters Ni. That is, in election E we modify the ballots so that for each
i < k1 it holds that all voters in Ni who approve xi in Ei instead approve of all ci+1,j with
j odd, and all voters in Ni who approve yi in Ei instead approve of all ci+1,j with j even.
Furthermore, we add an additional dummy voter dk2 to the election and identify dk2 with
xk1 , so that every voter in Nk1 who previously approved xk1 now approves dk2 instead. More
formally, let E = (N, C, (A′

v)v∈N , k1 + k2), where

N =
k1⋃

i=1
Ni, C = Dk2 ∪

k1⋃
i=1

(Ci \ {yi, xi}), and

A′
v =

{
Av ∪ {ci+1,j | j is odd, xi ∈ Av or j is even, yi ∈ Av} \ {yi, xi} if v ∈ Ni, i < k1

Av ∪ {dk2 | xk1 ∈ Av} \ {xk1 , yk1} if v ∈ Nk1

To see why the size of E is polynomial in k, note that |C| = k2 + k1 · (t + 1) ≤ 2k log k,
and by Proposition 7 we have |Ni| ≤ t22(⌈log k⌉)−2(i−1) ≤ t · 22⌈log k⌉ ≤ 4k2(k + 1) and so
|N | =

∑k1
i=1 |Ni| = poly(k).

4.5 Adversarial Better Response
We are now ready to prove our lower bound of Ω(klog k). We refer to our sequence of swaps
as adversarial better response, because these are the swaps that an agent that points out
improvements of the existing state, but acts adversarially, might choose to show us.
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Let the initial committee be

W0 = (c1,t+1, c2,t+1, . . . , ck1−1,t+1, ck1,1, d1, . . . dk2),

so |W0| = k1 + k2 = k. We will exhibit a sequence of good swaps that results in the final
committee

(c1,t+1, c2,t+1, . . . , ck1,t+1, d1, . . . , dk2).

Our basic building block is the sequence Y1 = ⊕t
j=1(c1,j , c1,j+1). Let X1

1 = Y1 and
X0

1 = Y−1
1 . Further, for i > 1 define

X0
i = ⊕t

j=1

(
(ci,t−j+2, ci,t−j+1) ⊕ Xj−1 mod 2

i−1

)
, X1

i = ⊕t
j=1

(
(ci,j , ci,j+1) ⊕ Xj−1 mod 2

i−1

)
.

Our proof shows that 0+-ls-PAV will perform the sequence of swaps X1
k1

when run on election
E (constructed in Section 4.4) with initial committee W0. That is, X1

k1
is a sequence of

good swaps. Further, since |X0
i | = |X1

i |, the length of Xℓ
i , ℓ ∈ {0, 1}, is t(|Xℓ

i−1| + 1) and
|Xℓ

1| = t ≥ k. Hence, X1
k1

has length Ω(tk1) = Ω(klog k), i.e., it is a sequence of good swaps
with super-polynomial length.

4.6 Extension to a Fixed Pivoting Rule
We adapt the proof of Theorem 3 to a natural non-adversarial setting. An intuitive method to
select swaps is to consider a fixed ordering on the candidates C = {c1, . . . , cm}, for example
c1 < . . . < cm. To find a good swap (c′, c) ∈ W × (C \ W ), we go over the candidates in
C \ W , in the order suggested by <; for each c ∈ C \ W , we go over candidates in W , in
the order suggested by <, to find c′ such that (c′, c) is a good swap. That is, we consider a
lexicographic ordering on pairs (c, c′) (where c is to be added and c′ is to be removed from
the committee) induced by the order <. In light of this, we call the corresponding pivoting
rule lexicographic better response.

▶ Theorem 9 (⋆). For any k ≥ 1 there exists a committee election with poly(k) voters and
a committee W0 such that executing 0+-ls-PAV with lexicographic better response from W0
results in Ω(klog k) swaps.

Due to space constraints, we relegate the proof of Theorem 9 to the extended version of
the paper.

5 Discussion

We have shown that if ε can be arbitrarily small, the running time of ε-ls-PAV with
lexicographic better response may be super-polynomial, resolving the open question of Aziz
et al. [2]. Thus, while using very small values of ε would be attractive both in terms of
obtaining a more decisive rule and in terms of providing fairness guarantees to small minorities
of voters, this would come at a cost of superpolynomial execution time in the worst case.
While a similar result for best response remains elusive, our simulations (see the extended
version of the paper) shows that, at least empirically, better response is preferable to best
response on both synthetic and real-world datasets. We note that our lower bound does not
preclude the possibility that an outcome of 0+-ls-PAV can be found in polynomial time by
other means; it is an interesting open question whether this is indeed possible.
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