
Scalable Distributed String Sorting
Florian Kurpicz #

Karlsruhe Institute of Technology, Germany

Pascal Mehnert #

Independent, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Matthias Schimek #

Karlsruhe Institute of Technology, Germany

Abstract
String sorting is an important part of tasks such as building index data structures. Unfortunately,
current string sorting algorithms do not scale to massively parallel distributed-memory machines
since they either have latency (at least) proportional to the number of processors p or communicate
the data a large number of times (at least logarithmic). We present practical and efficient algorithms
for distributed-memory string sorting that scale to large p. Similar to state-of-the-art sorters for
atomic objects, the algorithms have latency of about p1/k when allowing the data to be communicated
k times. Experiments indicate good scaling behavior on a wide range of inputs on up to 49 152 cores.
Overall, we achieve speedups of up to 4.9 over the current state-of-the-art distributed string sorting
algorithms.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Theory of
computation → Massively parallel algorithms; Computing methodologies → Distributed algorithms;
Theory of computation → Bloom filters and hashing

Keywords and phrases sorting, strings, distributed-memory computing, distributed membership
filters, scalability

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.83

Related Version This paper is based on the master’s thesis of Pascal Mehnert [21].
Full Version: https://arxiv.org/abs/2404.16517 [19]
Brief Announcement: https://dl.acm.org/doi/10.1145/3626183.3660256 [18]

Supplementary Material
Software (Source Code): https://github.com/mschimek/scalable-distributed-string-sorting
[22], archived at swh:1:dir:1d60272c5beeb821650519f3f0ce805434b705fa

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.
eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG
at Leibniz Supercomputing Centre (www.lrz.de).
This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

1 Introduction

Sorting strings is a fundamental building block of many important string-processing tasks
such as the construction of index data structures for databases and full-text phrase search [10,
16, 25]. The problem differs from atomic sorting – where keys are treated as indivisible
objects that can be compared in constant time. Strings on the other hand can have variable

© Florian Kurpicz, Pascal Mehnert, Peter Sanders, and Matthias Schimek;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 83; pp. 83:1–83:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kurpicz@kit.edu
https://orcid.org/0000-0002-2379-9455
mailto:pascalmehnert@posteo.de
https://orcid.org/0009-0002-2370-7503
mailto:sanders@kit.edu
https://orcid.org/0000-0003-3330-9349
mailto:schimek@kit.edu
https://orcid.org/0009-0002-6402-9016
https://doi.org/10.4230/LIPIcs.ESA.2024.83
https://arxiv.org/abs/2404.16517
https://dl.acm.org/doi/10.1145/3626183.3660256
https://github.com/mschimek/scalable-distributed-string-sorting
https://github.com/mschimek/scalable-distributed-string-sorting
https://archive.softwareheritage.org/swh:1:dir:1d60272c5beeb821650519f3f0ce805434b705fa;origin=https://github.com/mschimek/scalable-distributed-string-sorting;visit=swh:1:snp:b7d6ae83b53f38e7fa3ff170e825a48098d71a4b;anchor=swh:1:rev:ae07b962b4259b92d1037b5b6d9c671b08c6982b
www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 Scalable Distributed String Sorting

lengths and the time needed to compare two strings depends on the length of their longest
common prefix. Therefore, string sorting algorithms try to avoid the repeated comparison
of whole strings. Instead, they only inspect the distinguishing prefixes of the strings, i.e.,
the characters needed to establish the global ordering, once. The sum of the lengths of all
distinguishing prefixes is usually denoted by D whereas N is the total number of characters
and we often find D ≪ N . The lower bound for sequential string sorting based on character
comparisons is Ω(n log n + D) with existing algorithms matching this bound [4].

While the problem has been extensively researched in the sequential and (shared-memory)
parallel setting – both in theory and practice – the results for distributed-memory string
sorting algorithms are limited. Bingmann et al. present the two state-of-the-art distributed
string sorting algorithms [8].

For the first one, they follow the standard (distributed-memory) parallel merge sort
scheme [31, 2] in which the input is first sorted locally on each of the p processing elements
(PEs). Then p− 1 splitter elements are determined globally and used to partition the locally
sorted input into p parts on each PE. Subsequently, the ith such part is communicated to
the ith PE. Finally, a local p-way merging step is performed to obtain the globally sorted
output. Bingmann et al. augment every step of this scheme with string-specific optimization
like LCP-compression and LCP-aware merging [24, 8, 6]. Their second algorithm takes
one step further towards the goal of a communication-efficient string sorting algorithm by
approximating the distinguishing prefix of each string before the actual sorting process. Then
only the approximated distinguishing prefixes are sorted using the distributed string merge
sort algorithm. Furthermore, they also adapt the distributed hypercube quicksort algorithm
[2, 3] to variable length keys but without incorporating further string-related optimizations.

While currently representing the state-of-the-art, these algorithms are only efficient for
very small or large inputs, because they have a prohibitively high communication volume
(hypercube quicksort) or do not scale to the largest available machines due to their latency
which is (at least) proportional to the number of processors p (merge sort algorithms).

Our Contribution. Our new algorithms close this gap in the current landscape of distributed
string sorting by providing a viable trade-off between latency and communication volume.
This is achieved by adapting a multi-level approach known from distributed atomic sorting
to Bingmann et al.’s string sorting algorithms, i.e., we use k levels where processor groups
work on independent sorting problems. The resulting multi-level mergesort has internal
work and communication volume close to N for each level (Theorem 7). This is significantly
improved with prefix-doubling mergesort where internal work and communication volume per
level are close to D (Theorem 11). As a side result of independent interest, we present a
multi-level distributed single-shot Bloom filter (Theorem 9). We also improve the variable-
length hypercube quicksort algorithm (Theorem 1) by including some previously missing
string-related optimizations such as exploiting LCP values during sorting.

While the idea to combine the best string sorting and atomic sorting algorithm is simple
in principle, we view the analysis of a quite complicated overall algorithm in a realistic model
of distributed-memory computing as a significant contribution. In particular, because this
guides an efficient, highly scalable implementation. In an experimental evaluation, on up to
49 152 cores, the multi-level algorithms are up to 4.9× faster than the single-level ones.

Related Work. There has been extensive research on string sorting in the sequential setting.
For a systematic overview and a good starting point in this field, we refer to [5, 15, 30]. Here,
however, we focus on parallel sorting algorithms. Let n be the total number of strings and

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:3

Table 1 Symbols used in this paper.

Machine Model

p number of processing elements (PEs)
r number of groups in each recursion level
k number of recursion levels
α message start-up latency
β time to communicate a bit

String Properties

n total number of strings
N total number of characters
ℓ̂ length of longest string

ˇ
ℓ length of shortest string
d̂ length of longest distinguishing prefix

N be the total number of characters. See Table 1 for a full list of variables and notation
used throughout this paper. For the PRAM model, there are (comparison-based) algorithms
solving the string sorting problem in O(n log n + N) work and O(log2 n/ log log n) time [14].
For integer alphabets Hagerup proposes an algorithm with O(N log log N) work and running
time in O(log N/ log log N) [12]. Recently, Ellert et al. proposed an algorithmic framework
for the PRAM model to turn any string sorting algorithm into a D-aware sorting algorithm,
i.e., an algorithm whose (work) complexity depends on D instead of N , increasing the time
complexity only by a logarithmic factor in the length of the overall longest distinguishing
prefix d̂ [9].

For the distributed setting, the algorithms by Bingmann et al. that we briefly discussed
in the introduction are the current state-of-the-art. They surpass the first dedicated string
sorting algorithm that was utilized for suffix sorting by Fischer and Kurpicz [11]. We are not
aware of other publications targeting distributed string sorting algorithms. However, string
sorting is also considered in other parallel settings, e.g., on the GPU [23].

2 Preliminaries

Machine Model and Communication Primitives. We assume a distributed-memory ma-
chine model consisting of p processing elements (PEs) allowing single-ported point-to-point
communication. The cost of exchanging a message of h bits between any two PEs is α + βh,
where α accounts for the message start-up overhead and β quantifies the time to exchange
one bit. Let h be the maximum number of bits a PE sends or receives, then collective
operations broadcast, prefix sum, (all-)reduce, and (all-)gather can be implemented in time
O(α log p + βh) [26]. For personalized all-to-all communication, there is a trade-off between
communication volume and start-up latency. When data is delivered directly, we obtain
a time complexity in O(αp + βh), while using a maximum degree of indirection yields
O(α log p + βh log p). In our analysis, we resort to a more abstract view introduced by
Axtmann et al. – a black box data exchange function Exch(h, r) yielding the time complexity
of exchanging data , when each PE sends or receives at most h bits in total from at most
r PEs [2]. We find αr + βh as a lower bound for the time complexity of Exch(h, r), and
although matching upper bounds are not known, there are indications suggesting that one
can come close to this (see [2] for a brief discussion). We use Ex̃ch(h, r) = (1+o(1))Exch(h, r)
to sum up multiple exchanges by the dominant one.

String Properties and Input Format. The input to our algorithms is a string array
S = [s0, s1, . . . , sn−1] consisting of n = |S| unique strings. A string s of length |s| = ℓ is a
sequence of characters from an alphabet Σ with s = [s[0], . . . , s[ℓ− 2],⊥] where ⊥ /∈ Σ is a
sentinel character; ℓ̂ denotes the length of the longest string in S. Note that due to the sentinel
character, all strings are prefix-free. By N = ∥S∥, we denote the total number of characters

ESA 2024

83:4 Scalable Distributed String Sorting

in S. The ℓ-prefix of a string s comprises the first ℓ characters of s. The longest common
prefix (LCP) of two strings s ̸= t is the prefix of s with length lcp(s, t) = arg min s[i] ̸= t[i].
For a sorted string array, the corresponding LCP array [⊥, h1, h2, . . . , hn−1] contains the
LCP values hi = lcp(si−1, si,). For sorting the string array, we do not necessarily have to
look at all characters in S. The distinguishing prefix of a string s (with length dist(s))
are the characters that need to be inspected to rank s in S. The sum of the lengths of all
distinguishing prefixes of S is denoted by D. By d̂, we denote the length of the longest
distinguishing prefix. A string array is usually represented as an array of pointers referring to
the start of the corresponding character sequence. This allows for moving or swapping strings
in constant time. The concatenation of all the character sequences forms the character array
C(S) with |C(S)| = ∥S∥.

In our distributed setting, we assume that each PE i obtains a local subarray Si of S as
input such that S is the concatenation of all local string arrays Si. Furthermore, we assume the
input to be well-balanced, i.e., |Si| = Θ(n/p), ∥Si∥ = Θ(N/p), and

∑
s∈Si

dist(s) = Θ(D/p).

Algorithmic Building Blocks. We make use of an r-way LCP loser tree [6] for merging r

sorted sequences of strings with associated LCP arrays. This data structure combines the
binary LCP-merging technique proposed by Ng and Kakehi [24] with the (atomic) r-way
loser tree [17]. An r-way loser tree is a binary tree with r leaves. Each leaf is associated with
the current head of a sorted sequence of elements. For initialization, this head element is
passed up the tree. In each internal node of the tree, the arriving elements are compared
and the smaller one is forwarded up while the larger element, i.e., the loser, is stored at the
node. Continuing this process, the overall smallest element w finally arrives at the root. We
now have the invariant that in each node of the tree the smaller element originating from
its two children is stored. When removing w and advancing the corresponding sequence
by one element, this invariant can be re-established in O(log r) time as only the states of
internal nodes on w’s path from its leaf to the root have to be repaired. Loser trees can be
adapted to strings by additionally storing the intermediate LCP values of compared strings
in each internal node. These values can then be exploited in the next round to save character
comparisons as both strings know their LCP value to a common smaller string – the previous
winner string at the node. This allows us to merge m strings in r sorted sequences augmented
with LCP values in time O(m log r + D). While merging, we obtain the LCP values of the
resulting merged string sequence as a by-product.

Furthermore, we use LCP compression, i.e., we send the longest common prefix of two
consecutive strings (in a sorted sequence) only once. While being very useful for many inputs
in practice, LCP compression cannot substantially reduce the communication volume in the
worst case [8, 28].

Robust Hypercube Quicksort (RQuick) is a sorting algorithm initially proposed for atomic
sorting [3, 1] that has been adapted to handle strings [8]. RQuick only works for a number
of PEs that is a power of two. Hence, with d = ⌊log p⌋, PEs with index i ≥ 2d send
their data to a PE within the d-dimensional hypercube. Then the input data is randomly
permuted among the PEs to make imbalances less likely. Subsequently, each PE sorts its
local data. Then the actual d hypercube (quick)sorting rounds are executed, where the input
is recursively partitioned into sub-hypercubes using a pivot element. Hence, the elements are
communicated at least d = ⌊log p⌋ times.

▶ Theorem 1 (String RQuick, [8, Theorem 1] combined with [1, Theorem 6.6]). If all input
strings are unique, RQuick runs in time O

(
ℓ̂ n

p log n + α log2 p + β
(

n
p ℓ̂ log p + ℓ̂ log2 p

)
log σ

)
with probability ≥ 1− p−c for any constant c > 0.

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:5

PE 0 PE 1 PE 2 PE 3

group 0 (p′ = p/r PEs) group 1 (p′ = p/r PEs)

local sorting

distributed partitioning

string exchange

local merging

distributed partitioning

string exchange

local merging

ex
ec

ut
io

n

le
ve

l1
le

ve
l2

r = k
√

p groups of PEs

Figure 1 Overview of the main steps in the multi-level string sorting scheme with k = 2 levels.

RQuick can be easily improved by exploiting the LCP values computed during the local
sorting phase for LCP-aware merging. Our implementation RQuick+ uses this optimization.
Therefore, the overall work performed by all PEs for these two steps is O(n log n + D).

3 Multi-Level String Sorting

Our multi-level merge sort (MS) algorithm adapts ideas of Axtmann et al. for multi-level
atomic sorting [2, 3] to string sorting. The key point is to allow each string to be moved
multiple (k) times between PEs instead of only once and therefore trade communication
volume for latency with k being a tunable parameter. In the algorithm, we partition the
input into independent (string) sorting problems, split the PEs into groups, and let each
group recursively work on one of the sorting problems until the input is globally sorted.
Figure 1 provides an overview of the main phases of the approach.

There are k levels of recursion with arbitrary splitting factors between levels. To simplify
the analysis, we assume that p can be perfectly subdivided into r groups of p/r consecutive
PEs, i.e., on the first level the jth group consists of PEs jp/r, . . . , (j +1)p/r−1. Furthermore,
we generally assume approximately equal factors on each level, i.e., r = Θ(k

√
p) which implies

p = Θ(rk), and that the final level splits the PEs into groups of size 1. To obtain the
single-level variant [8] of the algorithm choose k = 1.

We now discuss the main steps of our approach in more detail. The algorithm consists of
a one-time initialization and a recursive phase which is invoked k times.

Initialization. On each PE i, sort the local input array Si. The LCP array can be obtained
as a by-product of sorting.

Recursion. A global order is established recursively. Initially, all string arrays Si must be
locally sorted. On each level of recursion, we have p′ PEs and r groups of size p′′ = p′/r.

ESA 2024

83:6 Scalable Distributed String Sorting

Si

PE 0 PE 1 PE 2 PE 3

Vi

.Samples

Global Sorting & Splitter Selection

{f1, f2, f3}

Si B0
0 B1

0 B2
0 B3

0 B0
1 B1

1 B2
1 B3

1 B0
2 B1

2 B2
2 B3

2 B0
3 B1

3 B2
3 B3

3

f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

Figure 2 Overview of the partitioning phase.

1. Distributed Partitioning. Globally determine r − 1 splitter strings fj and on each
PE i compute local buckets B0

i , . . . ,Br−1
i with Bj

i = {s ∈ Si | fj < s ≤ fj+1} for
j ∈ {0, . . . , r − 1} using sentinels f0 = −∞ and fr =∞.

2. String Assignment and Exchange. On PE i, the strings in bucket Bj
i are assigned to

PEs belonging to group j. By Bj =
⋃

i B
j
i , we denote the union of all strings assigned to

group j. Then, all strings and LCP values are exchanged using direct messaging.
3. Local LCP-aware Merging. On PE i, the received string sequences are merged to

obtain locally sorted string arrays Oi (using the LCP values). We also update the LCP
values for Oi during merging. We then set p′ ← p′/r and Si ← Oi in the subsequent
recursive step.

We now describe the distributed partitioning (Section 3.1) and the distributed assignment
and exchange phase (Section 3.2) in more detail. An analysis of the overall running time will
be given in Section 3.3.

3.1 Distributed Partitioning
Due to the multidimensionality of the string sorting problem, determining balanced partitions
is more challenging than in atomic sorting. Some of the steps of our merge sort algorithm
depend on the number of strings in the local string array while others depend on the number
of characters or the size of the distinguishing prefix. We therefore adapt string-based and
character-based partitioning [8] to our multi-level approach. These schemes bound the
number of strings and characters, respectively. The general approach is to draw and globally
sort a number of samples on each PE. Then, r − 1 splitters fj are chosen from the global
sample array, see Figure 2. Since all strings are locally sorted before the partitioning step,
we can make use of a regular sampling approach [20, 29] in which the samples are drawn
equidistantly.

3.1.1 String-Based Partitioning
On the tth recursion level, there are rt−1 groups of PEs working on independent sorting
problems, see Figure 1. We now describe the partitioning process from the point of view
of one such group. Let S ′ be the concatenation of the local string arrays of the PEs of one
such group of size p′. Unlike for single-level MS, now, we cannot assume an equal number of
strings on each PE as from the second level of recursion on, this number is subject to the
result of a previous partitioning round which is not exact. For multi-level MS, string-based
partitioning consists of the following two steps:

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:7

Local Sampling: Let v > 0 be the sampling factor. In total, there will be p′(v + 1) samples
drawn from the local string arrays. To simplify the discussion, we assume |S ′| to be
divisible by p′(v + 1). Let ω = |S ′|/(p′(v + 1)). PE i then draws ⌈|Si|/ω⌉ − 1 samples Vi

from its local string array spaced as evenly as possible. V is the union of all local samples.
If |V| < p′(v + 1), then the first p′(v + 1) − |V| PEs draw one additional sample. This
ensures that at most ω strings are between two local samples on each PE. Also, the global
number of samples is a multiple of p′ and of r as we find p′ = rk+1−t on recursion level t.

Splitter Computation: The samples V are globally sorted using hypercube quicksort. Then
r − 1 splitters fj = V[j|V|/r − 1] for 0 < j < r are determined using a prefix sum.
Subsequently, the r−1 splitters are communicated to all PEs using an all-gather operation.

A sampling factor v = Θ(r) yields a maximum number of strings per bucket in Θ(|S ′|/r).
This is shown in detail by using a generalization of the sample density lemma from [8] in the
full version [19]. The proof of the following Lemma 2 can also be found there.

▶ Lemma 2. On recursion level t with r = k
√

p in step 1 of multi-level MS, string-based
regular sampling with sampling factor v yields a maximum bucket size of |Bj | ≤

(
1 + r

v

)t n
rt .

The term (1 + r/v)t signifies that the imbalance between the buckets multiplies with each
level of recursion. Therefore, we need to choose v = Θ(kr) for any number of k levels to
keep the term asymptotically constant during the entire sorting process. For single-level MS,
v = Θ(r) = Θ(p) samples per PE are sufficient. Note the large difference between drawing
kr samples per PE (on average) here and rk = p samples in the single-level case. Using the
assignment strategy described in Section 3.2, which equally distributes the strings over the
PEs in each group, we arrive at Theorem 3.

▶ Theorem 3 (String-Based Sampling). Using a sampling factor of v = Θ(kr) = Θ(k k
√

p) the
number of strings per PE is in O(n/p) in each level of the algorithm.

3.1.2 Character-Based Sampling
We generalize character-based regular sampling [8] to our multi-level approach to achieve
tighter bounds on the number of characters per PE than the conservative O(ℓ̂n/p). Now, each
PE of the considered group draws ⌈∥Si∥/ω′⌉ − 1 equally spaced samples from its character
array with sampling distance ω′ = ∥S ′∥/(p′(v + 1)). To arrive at the final string samples, we
shift the sampled character positions by at most ℓ̂− 1 characters to the beginning of a string.
If the total number of samples is smaller than p′(v + 1), the first PEs draw one additional
sample.

In Lemma 4, we give bounds on the number of characters per bucket over the course of
our algorithm when using character-based partitioning. This is shown in detail by using a
generalization of the (character-) sample density lemma [8] in the full version [19].

▶ Lemma 4. On recursion level t with r = k
√

p in step 1 of multi-level MS using character-
based regular sampling with a sampling factor of v, each bucket contains at most ∥Bj∥ ≤(
1 + r

v

)t
(

N
rt + t

(
1 + v+1

r

)
p

rt−1 ℓ̂
)

characters.

The additional term depending on ℓ̂ stems from shifting the sampled positions to the beginning
of strings. By distributing the characters equally over the PEs in each group up to additional
O(ℓ̂) characters (see Section 3.2), we can limit the maximum number of characters per PE in
Theorem 5.

ESA 2024

83:8 Scalable Distributed String Sorting

▶ Theorem 5 (Character-Based Sampling). Using a sampling factor in Θ(kr) the maximum
number of characters per PE in each level is in O

(
N
p + k2rℓ̂

)
.

For the single-level case with k = 1, this is equivalent to O(N/p + pℓ̂) which is the bound
in the original algorithm [8]. For k > 1, we even have an improvement over the single-level
algorithm. Assuming k in O(log p/ log log p), we find k2rℓ̂ = O(log2(p) k

√
pℓ̂) = o(pℓ̂). This

may seem counter-intuitive at first as we introduce a potential imbalance already in the first
recursion level. However, the subsequent assignment step distributes this imbalance equally
over p′/r PEs.

3.2 String Assignment and Exchange
We now assign the strings in bucket Bj to the jth (sub-)group consisting of PEs jp′′,. . . ,
(j + 1)p′′ − 1 with p′′ = p′/r = rk−t on the tth level. The resulting assignment needs to
ensure that each PE receives approximately the same amount of data. Additionally, the
number of sent and received messages per PE should be bounded by the number of groups r.
We generalize an approach proposed by Axtmann et al. [2] for distributed atomic sorting
to string sorting. For the sake of simplicity, we assume that each PE contributes the same
number of strings (characters) in the assignment process. With (slightly) imbalanced data
(due to the partitioning) the below-stated results hold up to a small factor.

For string-based partitioning, we want to balance the number of strings per PE. Since
the assignment algorithm does not rely on internal properties of the elements, we can treat a
string as an atomic object and apply Axtmann et al.’s assignment algorithm directly.

For character-based partitioning, we want to achieve a balanced number of characters
but cannot split strings. Therefore, we reiterate the steps of the algorithm and describe
the necessary adjustments. A local bucket Bj

i is small if it contains at most ∥Bj∥/(2rp′′)
characters. Small buckets are separately enumerated for each group j using a prefix sum
where each PE contributes its number of small buckets for group j. The qth small bucket
belonging to group j is then assigned to PE ⌊q/r⌋ of group j. This way, each PE gets assigned
no more than half of its final capacity and receives messages from at most r different PEs.

Then, a description of each large bucket located on PE i and destined for group j is first
sent to PE ⌊i/r⌋ in group j and each group computes a balanced assignment independently
of each other. Conceptually, this works by performing separate prefix sums over residual
capacities (remaining after assigning small buckets) and sizes of unassigned buckets, in each
group. The resulting sorted sequences of integers R (residual capacities) and U (unassigned
buckets) must then be merged such that the bucket beginning at the ith element is preceded
by the PE containing the ith open slot. A subsequence of ⟨ri, uj , . . . , uj+h, ri+1, z⟩ in the
merged sequence of R and U means that the local buckets uj , . . . , uj+h are assigned to PE
i. The last bucket uj+h potentially needs to be split up (respecting string boundaries in
the character-based assignment) and partly assigned to ri+1 or even ri+2 if z = ri+2. Since
we cannot split up strings, we may end up with a PE obtaining up to ℓ̂ − 1 additional
characters. Strings from one local bucket cannot be assigned on more than 3 PEs as the
residual capacity on each PE is at least ∥Bj∥/(2p′′). Since large buckets contain more than
∥Bj∥/(2rp′′) elements, a single PE can store at most 2r of them. Hence, each PE receives
O(r) messages. We refer to [2] for details on the actual group-local merging process.

▶ Theorem 6 (Bounded Assignment). Using the bounded assignment algorithm [2], we obtain
a message assignment where each PE sends and receives O(r) messages and each PE in
group j obtains |Bj |

p′′ strings (string-based) or at most ∥Bj∥
p′′ + ℓ̂ characters (character-based).

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:9

Hence, even for character-based sampling, we can find an assignment, such that the
number of characters per PE remains in the bounds of Theorem 5. Afterwards, each PE
sends its strings according to their assignment. The time for computing the assignment is
dominated by the actual data exchange [2]. 1

3.3 Overall Running Time
Let Θ(kr) be the sampling factor of our algorithm with character-based sampling. By
Theorem 5, the maximum number of characters per PE at any time is O(Ñ/p) with
Ñ = N + k2rℓ̂p. Since n ≤ N/

ˇ
ℓ and N ≤ nℓ̂, the number of strings per PE then is

O(ñ/p) with ñ = ℓ̂/
ˇ
ℓ(n + k2rp).

We now combine the running time of the three phases of our algorithm at each level,
including O(n/p log n/p + D/p) time for the initial local string sorting [9].

1. Distributed Partitioning. Here, we have to globally sort O(rk) local sample strings of
length ≤ ℓ̂ per PE. With RQuick, this is possible in O(rkℓ̂ log p(1 + β log σ) + α log2 p)
expected time. Allgathering the r − 1 splitters needs O(α log p + βrℓ̂ log σ) time. As we
have rℓ̂ = O(Ñ/p) by definition and the local string array as well as the splitters are
sorted, computing the local buckets Bi

j is possible in time O(Ñ/p).
2. String Assignment and Exchange. The string assignment is dominated by the

data exchange which is possible in time Ex̃ch(O(Ñ/p log σ),O(r)) on level t. This holds
as a PE stores O(Ñ/p) characters (Theorem 5) encoded in log σ bits each. By the
bounded assignment algorithm each PE exchanges strings with at most O(r) other PEs
(Theorem 6).

3. Local (LCP-aware) Merging. The O(r) sorted sequences of strings received in the
data exchange now need to be merged to restore our invariant on the local string array.
While being beneficial for many inputs in practice, asymptotically, LCP-aware merging
does not yield substantial advantage. Thus, we resort to uninformed merging for our
analysis. Processing the O(r) sorted sequences with O(Ñ/p) characters in total is possible
in O(Ñ/p + ñ/p log r) time, dominating the time required for computing the local buckets
during partitioning.

▶ Theorem 7. Multi-level MS with r = k
√

p, Ñ = N + k2rℓ̂p, and ñ = ℓ̂/
ˇ
ℓ(n + k2rp), using

character-based sampling and bounded assignment, runs in expected time

TMS(n, N, ℓ̂) = O
(local sorting︷ ︸︸ ︷

n

p
log n

p
+ D

p
+

merging︷ ︸︸ ︷
k

Ñ

p
+ ñ

p
log p +

partitioning︷ ︸︸ ︷
k
(

α log2 p + k k
√

pℓ̂ log p(1 + β log σ)
))

+ k · Ex̃ch(O
(

Ñ

p
log σ

)
,O(k
√

p))︸ ︷︷ ︸
assignment + exchange

.

1 For string-based assignment, this naturally transfers from the atomic sorting case. For character-based
assignment, we have to compensate a communication volume in O(r log N). Assuming unique strings,
we find ℓ̂ ≥ d̂ = Ω(log n/ log σ) and N ≤ nℓ̂ and therefore log(N) = O(ℓ̂ log σ). Since our bound for the
number of (received) characters per PE contains an imbalance of at least rℓ̂ characters (which require an
encoding of log σ bits each), the data exchange dominates the assignment also for character-assignment.

ESA 2024

83:10 Scalable Distributed String Sorting

Algorithm 1 Approximate Distinguishing Prefix Computation.

Input: Local string array Si = [s0, s1, . . . , sni−1] with ni = |Si| on each PE i.
1 distPrefix ← [|s0|, |s1|, . . . , |sni−1|]
2 l←

⌈
log p
log σ

⌉
// current approx. prefix length

3 Ci ← {0, . . . , ni − 1} // indices of candidate strings
4 while

∑
i|Ci| > 0 do

5 Hi ← {(j, Hash(sj [0, l − 1])) | j ∈ Ci ∧ |sj | ≥ l} // hash prefix
6 Di ← FindDuplicates(Hi)
7 for j ∈ Ci \ Di do
8 distPrefix[j]← l // set length for unique prefixes
9 Ci ← Di // continue with duplicates

10 l← l · (1 + ϵ) // increase prefix length
Output: Array distPrefix storing for each string in Si its approximate distinguishing

prefix length.

As we only draw O(k k
√

p) local samples and receive k
√

p− 1 splitter strings for k > 1 as
opposed to O(p) samples and p − 1 splitters in the single-level case we no longer have to
compensate the mediocre scalability of the single-level partition phase with a huge amount
of data and are capable of sorting small to medium sized inputs on a large number of PEs.
Assuming the exchange primitive Exch(h, k

√
p) to run in O(α k

√
p + βh) [2], we achieve a

latency in O(αk k
√

p) = o(αp) at the cost of an k times higher communication volume. If we
additionally assume ℓ̂ ≤ N/(k2 k

√
pp log p) and k ≤ log p/(2 log log p), we can state a simplified

running time of multi-level MS in Corollary 8.

▶ Corollary 8. With the above assumptions, we obtain a running time of multi-level MS in
O
(

N
p log n + αk k

√
p + βk N

p log σ
)

in expectation.

4 Multi-Level Prefix Doubling Merge Sort

The distinguishing prefix of S is usually much smaller than the total number of characters N .
In a distributed algorithm, we can use this property to reduce the communication volume by
only exchanging the distinguishing prefixes. By doing so, instead of explicitly sorting the
input strings we obtain the information on where to find the ith smallest string of the input.
This, however, is sufficient in many use cases where string sorting is used, e.g., for suffix
sorting [16].

Bingmann et al. approximate the distinguishing prefix of each string by an upper bound
in an iterative doubling process [8] using a distributed single-shot Bloom filter (dSBF) [27].
Conceptually, a distributed single-shot Bloom filter of size m is a bit array of the same size
which is equally distributed over the p PEs. To insert an element e, the element is hashed to
a random position h(e) within the interval [0, m) and the corresponding bit is set on the PE
responsible for this position, where h denotes a random hash function. For querying whether
an element e is contained in the filter, one simply has to check whether the corresponding
bit at position h(e) is set. This may result in a false positive result. Note that for duplicate
detection in our setting, the bit array does not necessarily need to be materialized as a PE
only has to report back whether it has received a hash value multiple times.

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:11

For the distinguishing prefix approximation, in each round prefixes with geometrically
increasing length of the strings are hashed and globally checked for uniqueness of the hash
values. If the hash value of a prefix with length d of string s is unique, we find dist(s) ≤ d

and s no longer needs to participate in the process. That way for each string s an approximate
distinguishing prefix with length dist≊(s) ≥ dist(s) can be determined in expected O(log(d̂))
rounds assuming a constant false positive probability of the Bloom filter. Algorithm 1 shows
pseudo-code for this computation. This can be achieved with expected latency in O(αp log d̂)
and expected bottleneck communication volume in O(n/p log p) + o(D/p log σ) [8].2 By
employing a k-level Bloom filter for duplicate detection which communicates along a k-
dimensional grid, we generalize this approach to arbitrary levels of indirection.

▶ Theorem 9. Using communication on a k-dimensional grid, performing at most n̂ op-
erations (insertions, queries) per PE on a dSBF of size m ≥ en can be done in time
O
(
k
(
αp1/k + βn̂ log mp

n + n̂ log k
))

in expectation and with probability ≥ 1− 1/pω(1) assum-
ing the total number of operations n = ω(k2p1+1/k log p) and additionally m = poly(n).

A proof of Theorem 9 can be found in the full version [19]. A problem of using Bloom filters
in the prefix doubling process is that the precondition on the overall number of operations
required in Theorem 9 might not hold when more and more strings drop out of the process
because their distinguishing prefixes have already been determined. We therefore switch to
duplicate detection using (atomic) hypercube quicksort for sorting the hash values if there
are too few strings left. Once the hash values are globally sorted, a scan over the local
elements and two additional message exchanges for the first and last local hash values suffices
to identify duplicates. These can then be reported back to their issuing PEs.

Combining duplicate detection using multi-level dSBF and sorting results in Theorem 10.

▶ Theorem 10. For each string s ∈ S with dist(s) ≥ log p/ log σ an approximation dist≊(s)
with E[dist≊(s)] = O(dist(s)) can be computed in time

O

latency︷ ︸︸ ︷

αk k
√

p log d̂ +

communication volume︷ ︸︸ ︷
βk

(
n

p
log p + D

p
log σ

)
+

local work︷ ︸︸ ︷
k

n

p
log k log log σ + D

p

in expectation. We assume a balanced distribution of strings and their distinguishing prefixes,
i.e., Θ(n/p) strings and Θ(D/p) per PE, and an overall number of strings n = O(poly(p)).
Additionally, we assume n/p = ω(k2 k

√
p log p log log p) and k ≤ log p/(2 log log p).

A proof for Theorem 10 can be found in the full version [19].
Since we assume all strings to be unique, we can also bound the average distinguishing

prefix length D/n = Ω(log n/ log σ) = Ω(log p/ log σ). Hence, there are only few (≤ n/σ)
strings with small distinguishing prefixes for which Theorem 10 does not yield an (expected)
constant factor approximation of the actual distinguishing prefix. Therefore, we find the
expected value of the sum D≈ of the approximate distinguishing prefixes determined with
Theorem 10 to be in O(D). In conjunction with the assumed balanced distribution of D over
the PEs, we find O(D̃/p) with D̃ = D + k2rd̂p as an upper bound on the expected number of
characters per PE in the multi-level merge sort algorithm when executed on the approximated

2 The latency can be reduced by increasing the communication volume by a factor Θ(log p) [8].

ESA 2024

83:12 Scalable Distributed String Sorting

distinguishing prefixes only. Furthermore, since d̂ = Ω(log n/ log σ) = Ω(log p/ log σ), and
we therefore approximate d̂ up to an expected constant factor, we find TMS = (n, D, d̂), as
an upper bound for the running time of the merge sort part of multi-level prefix doubling
merge sort (PDMS) in Theorem 11.

▶ Theorem 11. Multi-level PDMS with r = k
√

p, using character-based sampling and
assignment, and assuming the preconditions of Theorem 10, runs in expected time

O

add. latency︷ ︸︸ ︷

log d̂(αk k
√

p) +

add. comm. volume︷ ︸︸ ︷
kβ

n

p
log p +

add. local work︷ ︸︸ ︷
k

n

p
log k log log σ

︸ ︷︷ ︸

prefix doubling

+TMS(n, D, d̂).

Note that the O(βkD/p log σ + D/p) part of the running time of the prefix doubling process
in Theorem 10 is subsumed by TMS(n, D, d̂) and thus not explicitly stated in Theorem 11.

5 Experimental Evaluation

We now discuss the experimental evaluation of the following distributed-memory algorithms.
MSk Our new multi-level string merge sort with k levels of recursion, see Section 3.
PDMSk Our new multi-level doubling string merge sort including prefix approximation using

grid-wise Bloom filter with k levels of recursion, see Section 4.
RQuick+ RQuick [8] with our string-specific optimization, see Section 2.
The single-level variants MS1, PDMS1, and RQuick are implementations by Bingmann et al. [8]
that we improved slightly. We also include the state-of-the-art shared-memory parallel
algorithm pS5 [7]. We ran pS5 on an AMD Epyc Rome 7702P CPU with 64 cores (2 GHz
base and 3.5 GHz boost frequency) equipped with 1024 GB DDR4 ECC RAM. All distributed-
memory experiments were performed on SuperMUC-NG3 consisting of 6336 nodes (792 nodes
per island). Each node is equipped with two Intel Skylake Xeon Platinum 8174 CPUs (24
cores each, 3.1 GHz base frequency) and 96 GB RAM. Communication between nodes uses a
100 Gbit/s Omni-Path network. All algorithms are implemented in C++ and compiled with
GCC 11.2.0 with flags -O3 and -march=native. For interprocess communication, we use the
MPI-wrapper KaMPIng [13] and Open MPI v4.0.7. Reported times are the average of five
runs excluding the first iteration (MPI warm-up phase).

All variants use string-based regular sampling with a sampling factor of 2. We use RQuick+
to sort the samples. For simplicity, we use a grid-wise group (string) assignment in the
implementation of our multi-level algorithms. Here, the PEs are arranged in a p′× r grid and

3 We also conducted experiments on the smaller HoreKa supercomputer. As the results obtained there
are in line with our findings from SuperMUC-NG we omit them here.

Table 2 Characteristics of real-world data sets used for the strong scaling experiment.

n N N/n L/n D/N ℓ̂

CCrawl 2.13 G 100 G 46.98 31.27 0.726 1.04 M
Wiki 1.42 G 97.7 G 68.59 25.82 0.415 2.07 M
WikiText 0.97 G 81.7 G 84.21 25.27 0.336 2.07 M

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:13

4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nodes × 48/cores

w
al

lt
im

e/
s

n/p = 104

4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

nodes × 48/cores

n/p = 105

4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

2

4

6

8

10

12

nodes × 48/cores

n/p = 106

MS1
PDMS1
MS2

PDMS2
MS3

PDMS3
RQuick
RQuick+

Figure 3 Average sorting times (weak scaling) using DNData with ℓ = 500 and D/N = 0.5.

PEs exchange buckets only along the rows, i.e., PE i sends its bucket for subgroup j along
its row to the PE in the jth column. Also, for all-to-all exchanges a simple k-dimensional
grid all-to-all is used which provides a latency in O(α k

√
p). LCP compression is used during

string exchange phases for data sets where significant common prefixes can be expected.
Multi-level variants always ensure one group per node on the final level of sorting, i.e.,

k-level variants fall back to k−1 or k−2 levels for p < 2k−148. For three-level variants, group
sizes for the first two levels are chosen such that splitting factors are as close as possible.

For strong-scaling experiments, we use real-world data sets, see Table 2 for details. Each
line of the data sets is interpreted as a string.
CommonCrawl (CCrawl) consists of the first 100 GB of WET files from the Sep./Oct. 2023

Common Crawl archive (https://index.commoncrawl.org/CC-MAIN-2023-40/). The
WET format consists mostly of plain text with small meta data headers.

Wikipedia (Wiki) consists of a dump, from 2023-12-20, of all pages in the English Wiki-
pedia in XML format without edit history (https://dumps.wikimedia.org/enwiki/
20231220/).

WikipediaText (WikiText) is from dumps of Wikipedia without any XML metadata.

For our weak-scaling experiments, we use the DNGenerator string generator [28, 8] to
generate string sets with configurable D/N ratio (denoted by DNData). This allows us to
influence the running times of local sorting, the effectiveness of LCP compression, and the
length of distinguishing prefixes.

Additional results are given in the full version [19] for the following experiments.

5.1 Sorting Small to Medium Sized String Sets
In this weak-scaling experiment, we evaluate the algorithms on DNData with a string length
of 500 characters, D/N = 0.5, and n/p ∈ {104, 105, 106}. See Figure 3 for the results. The
largest input is near the realistic limit for this system with roughly 2 GB RAM per PE. We
could not run the RQuick variants on it, due to their memory consumption.

The running times broadly confirm the expected relation between input size and scaling
behavior of algorithms. Two-level merge sort significantly outperforms the single-level version
on all input sizes for sufficiently large values of p. For small inputs, adding a third level leads
to further improvements from 256 nodes on. As expected, the improvement is most obvious

ESA 2024

https://index.commoncrawl.org/CC-MAIN-2023-40/
https://dumps.wikimedia.org/enwiki/20231220/
https://dumps.wikimedia.org/enwiki/20231220/

83:14 Scalable Distributed String Sorting

4 8 16 32 64 12
8

0

1

2

3

4

5

6

nodes × 48/cores

w
al

lt
im

e/
s

D/N = 0.0

4 8 16 32 64 12
8

nodes × 48/cores

D/N = 0.25

4 8 16 32 64 12
8

nodes × 48/cores

D/N = 0.5

MS1 PDMS1 MS2 PDMS2 RQuick RQuick+ pS5

4 8 16 32 64 12
8

nodes × 48/cores

D/N = 0.75

4 8 16 32 64 12
8

nodes × 48/cores

D/N = 1.0

Figure 4 Average sorting times (weak scaling) using DNData with ℓ = 500 and n/p = 105.

for the smallest inputs with n/p = 104. Here, the single-level algorithms scale roughly linearly
with the number of PEs, as the running times approximately double for every doubling of p.
For MS1 the scaling behavior can mostly be attributed to the time required for partitioning,
with Θ(p) samples on each PE needing to be sorted. For PDMS1 a significant amount of
time is also spent in the distinguishing prefix approximation. The RQuick variants perform
significantly worse than our (multi-level) merge sort algorithms.

5.2 Influence of D/N Ratios
Our first experiment already shows that multi-level merge sort exhibits improved scaling
properties. Now, we have a closer look at the influence of the D/N ratio on the running times
of the different algorithms. As before, we use strings with a length of 500 characters and 105

strings per PE. Figure 4 shows the average running times. We evaluate MS and PDMS on one
and two levels and the RQuick variants. Three-level variants are not part of this experiment
as the additional level only yields clearly better performance for ≥ 512 compute nodes which
we did not include in any further experiments due to computing budget constraints.

The influence of D/N ratio is clearly visible for MSk and PDMSk, as variants with prefix
approximation are superior on instances with a ratio up to 0.5. For ratios 0.75 and 1, the
prefix approximation encompasses the whole string and is detrimental to the running time.

LCP compression is highly effective due to the nature of DNData inputs. As before,
multi-level variants outperform their single-level counterparts, usually with a crossover point
at 32 nodes. The gap seemingly increases for larger D/N ratios, e.g., for MSk on 128 nodes
the speedups are 1.49 and 1.86 for ratios 0 and 1 respectively. This can partially be explained
if communication volume is considered. On fewer PEs, two-level variants cause roughly twice
the communication volume because string exchange phases dominate. At D/N = 0, sending
0.5 kB and 1 kB per string is roughly equivalent to exchanging every string once or twice
respectively. Communication increases for single-level variants with the number of PEs as
partitioning requires more samples to be sorted. String exchanges send fewer characters for
larger D/N ratios due to LCP compression, sample sorting remains roughly constant.

The RQuick variants perform worse than the merge sort based algorithms. However, we
can also see that for an increasing D/N ratio improving the algorithms by using LCP-aware
merging pays off with RQuick+ being up to 20% faster for D/N = 1 than plain RQuick.

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:15

4 8 16 32 64 12
8

25
6

0

4

8

12

16

nodes × 48/cores

w
al

lt
im

e/
s

CommonCrawl

4 8 16 32 64 12
8

25
6

nodes × 48/cores

Wikipedia

MS1
MS2

PDMS1
PDMS2

4 8 16 32 64 12
8

25
6

nodes × 48/cores

WikipediaText

Figure 5 Average running times (strong scaling) using real-world inputs (see Table 2).

The running times of pS5(shared-memory using 64 cores) are given for the input of all p

processors. We could not run pS5 on a node of SuperMUC-NG as these are only equipped
with 96 GB RAM. With D/N ≥ 0.25, we need 384 cores to match the performance of pS5

and only 192 cores for D/N ≥ 0.5. Data with D/N ≈ 0 is difficult for distributed algorithms
since the time spent in local sorting hardly compensates for the communication overheads
and start-up latencies. Here, we only need 1536 cores to be on par with pS5. This is of
interest when string sorting is part of more complex distributed tasks as it indicates that
sorting the strings directly on the distributed system is faster than transferring them to a
sufficiently large shared-memory machine from a very modest number of cores on.

5.3 Evaluation on Real-World Data
To evaluate our algorithms on real-world data we use a strong-scaling experiment. On
all three data sets, we can observe that the two-level algorithms scale better than their
single-level counterparts and finally outperform them. On the largest PE configuration
utilizing 256 compute nodes, PDMS2 is the fastest algorithm on all three data sets. This
highlights the usefulness of our multi-level approaches – even on very skewed real-world
inputs. However, the differences in the running times are less pronounced. Also, PDMS2 fails
on CommonCrawl and MS2 fails on Wikipedia when using only 4 compute nodes, due to
imbalances of the data. This shows that string inputs can be inherently hard to partition.

Despite not all strings having the same length, we only report results for string-based
sampling. Character-based sampling proved to be not feasible on these data sets. Preliminary
experiments showed a significant imbalance on the second level, where the time spent in the
merging phase varied by a large factor among the PEs.

6 Conclusion And Future Work

We demonstrate – in theory and practice – that string sorting can be scaled to a very large
number of processors. Our best algorithm, a multi-level prefix-doubling merge sort, only
requires internal work and communication volume close to the optimum (the total length of
all distinguishing prefixes) per level. In practice, all our multi-level algorithms outperform
their single-level counterparts on a wide range of inputs on up to 49 152 cores (from a modest
number of cores on). This is especially important in scenarios where string sorting is part of
a distributed application, i.e., it is not feasible to sort the data on a large shared-memory
machine because of the transfer costs. Hence, we see our work as an important building
block to enable more complex string-processing tasks at a massively parallel scale.

ESA 2024

83:16 Scalable Distributed String Sorting

One problem we want to tackle in the future is suffix sorting based on sorting strings of
equal length [16]. To this end, we plan to extend our algorithms to support space-efficient
string sorting. Some inputs are highly compressible with lots of overlapping strings, e.g.,
the suffixes of a text with length n with a combined length of approximately n2/2 can be
represented using only n characters. However, due to the scarcity of main memory on most
supercomputers, we cannot easily materialize all strings at the same time during sorting.

References
1 Michael Axtmann. Robust Scalable Sorting. PhD thesis, Karlsruhe Institute of Technology,

Germany, 2021. doi:10.5445/IR/1000136621.
2 Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical massively

parallel sorting. In SPAA, pages 13–23. ACM, 2015. doi:10.1145/2755573.2755595.
3 Michael Axtmann and Peter Sanders. Robust massively parallel sorting. In ALENEX, pages

83–97. SIAM, 2017. doi:10.1137/1.9781611974768.7.
4 Jon Louis Bentley and Robert Sedgewick. Fast algorithms for sorting and searching strings.

In SODA, pages 360–369. ACM/SIAM, 1997.
5 Timo Bingmann. Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools. PhD

thesis, Karlsruhe Institute of Technology, Germany, 2018. doi:10.5445/IR/1000085031.
6 Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting.

Algorithmica, 77(1):235–286, 2017. doi:10.1007/S00453-015-0071-1.
7 Timo Bingmann and Peter Sanders. Parallel string sample sort. In ESA, volume 8125 of Lecture

Notes in Computer Science, pages 169–180. Springer, 2013. doi:10.1007/978-3-642-40450-4_
15.

8 Timo Bingmann, Peter Sanders, and Matthias Schimek. Communication-efficient string sorting.
In IPDPS, pages 137–147. IEEE, 2020. doi:10.1109/IPDPS47924.2020.00024.

9 Jonas Ellert, Johannes Fischer, and Nodari Sitchinava. LCP-aware parallel string sorting. In
Euro-Par, volume 12247 of Lecture Notes in Computer Science, pages 329–342. Springer, 2020.
doi:10.1007/978-3-030-57675-2_21.

10 Paolo Ferragina and Roberto Grossi. The string b-tree: A new data structure for string search
in external memory and its applications. J. ACM, 46(2):236–280, 1999. doi:10.1145/301970.
301973.

11 Johannes Fischer and Florian Kurpicz. Lightweight distributed suffix array construction. In
ALENEX, pages 27–38. SIAM, 2019. doi:10.1137/1.9781611975499.3.

12 Torben Hagerup. Optimal parallel string algorithms: sorting, merging and computing the
minimum. In STOC, pages 382–391. ACM, 1994. doi:10.1145/195058.195202.

13 D. Hespe, L. Hübner, F. Kurpicz, P. Sanders, M. Schimek, D. Seemaier, C. Stelz, and T. N. Uhl.
KaMPIng: Flexible and (near) zero-overhead C++ bindings for MPI. CoRR, abs/2404.05610,
2024. doi:10.48550/arXiv.2404.05610.

14 Joseph F. JáJá, Kwan Woo Ryu, and Uzi Vishkin. Sorting strings and constructing digital search
trees in parallel. Theor. Comput. Sci., 154(2):225–245, 1996. doi:10.1016/0304-3975(94)
00263-0.

15 Juha Kärkkäinen and Tommi Rantala. Engineering radix sort for strings. In SPIRE, volume
5280 of Lecture Notes in Computer Science, pages 3–14. Springer, 2008. doi:10.1007/
978-3-540-89097-3_3.

16 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

17 Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

18 Florian Kurpicz, Pascal Mehnert, Peter Sanders, and Matthias Schimek. Brief announcement:
Scalable distributed string sorting. In SPAA, pages 375–377. ACM, 2024. doi:10.1145/
3626183.3660256.

https://doi.org/10.5445/IR/1000136621
https://doi.org/10.1145/2755573.2755595
https://doi.org/10.1137/1.9781611974768.7
https://doi.org/10.5445/IR/1000085031
https://doi.org/10.1007/S00453-015-0071-1
https://doi.org/10.1007/978-3-642-40450-4_15
https://doi.org/10.1007/978-3-642-40450-4_15
https://doi.org/10.1109/IPDPS47924.2020.00024
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/301970.301973
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1145/195058.195202
https://doi.org/10.48550/arXiv.2404.05610
https://doi.org/10.1016/0304-3975(94)00263-0
https://doi.org/10.1016/0304-3975(94)00263-0
https://doi.org/10.1007/978-3-540-89097-3_3
https://doi.org/10.1007/978-3-540-89097-3_3
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/3626183.3660256
https://doi.org/10.1145/3626183.3660256

F. Kurpicz, P. Mehnert, P. Sanders, and M. Schimek 83:17

19 Florian Kurpicz, Pascal Mehnert, Peter Sanders, and Matthias Schimek. Scalable distributed
string sorting. CoRR, abs/2404.16517, 2024. doi:10.48550/arXiv.2404.16517.

20 Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and Hanmao Shi.
On the versatility of parallel sorting by regular sampling. Parallel Comput., 19(10):1079–1103,
1993. doi:10.1016/0167-8191(93)90019-H.

21 Pascal Mehnert. Scalable distributed string sorting algorithms. Master’s thesis, Karlsruher
Institut für Technologie (KIT), 2024. doi:10.5445/IR/1000170222.

22 Pascal Mehnert and Matthias Schimek. mschimek/scalable-distributed-string-sorting.
Software, European Research Council (ERC)(grant agreement No. 882500), swhId:
swh:1:dir:1d60272c5beeb821650519f3f0ce805434b705fa (visited on 2024-07-09). URL:
https://github.com/mschimek/scalable-distributed-string-sorting.

23 Bayyapu Neelima, Anjjan S. Narayan, and Rithesh G. Prabhu. String sorting on multi and
many-threaded architectures: A comparative study. In ICHPCA, pages 1–6. IEEE, 2014.

24 Waihong Ng and Katsuhiko Kakehi. Merging string sequences by longest common prefixes.
IPSJ Digital Courier, 4:69–78, 2008.

25 Ge Nong. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM
Trans. Inf. Syst., 31(3):1–15, 2013. doi:10.1145/2493175.2493180.

26 Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sequential
and Parallel Algorithms and Data Structures - The Basic Toolbox. Springer, 2019. doi:
10.1007/978-3-030-25209-0.

27 Peter Sanders, Sebastian Schlag, and Ingo Müller. Communication efficient algorithms for
fundamental big data problems. In IEEE BigData, pages 15–23. IEEE Computer Society,
2013. doi:10.1109/BIGDATA.2013.6691549.

28 Matthias Schimek. Distributed string sorting algorithms. Master’s thesis, Karlsruher Institut
für Technologie (KIT), 2019. doi:10.5445/IR/1000098432.

29 Hanmao Shi and Jonathan Schaeffer. Parallel sorting by regular sampling. J. Parallel
Distributed Comput., 14(4):361–372, 1992. doi:10.1016/0743-7315(92)90075-X.

30 Ranjan Sinha and Anthony Wirth. Engineering burstsort: Towards fast in-place string sorting.
In WEA, volume 5038 of Lecture Notes in Computer Science, pages 14–27. Springer, 2008.
doi:10.1007/978-3-540-68552-4_2.

31 Peter J. Varman, Scott D. Scheufler, Balakrishna R. Iyer, and Gary R. Ricard. Merging multiple
lists on hierarchical-memory multiprocessors. J. Parallel Distributed Comput., 12(2):171–177,
1991. doi:10.1016/0743-7315(91)90022-2.

ESA 2024

https://doi.org/10.48550/arXiv.2404.16517
https://doi.org/10.1016/0167-8191(93)90019-H
https://doi.org/10.5445/IR/1000170222
https://archive.softwareheritage.org/swh:1:dir:1d60272c5beeb821650519f3f0ce805434b705fa;origin=https://github.com/mschimek/scalable-distributed-string-sorting;visit=swh:1:snp:b7d6ae83b53f38e7fa3ff170e825a48098d71a4b;anchor=swh:1:rev:ae07b962b4259b92d1037b5b6d9c671b08c6982b
https://github.com/mschimek/scalable-distributed-string-sorting
https://doi.org/10.1145/2493175.2493180
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1109/BIGDATA.2013.6691549
https://doi.org/10.5445/IR/1000098432
https://doi.org/10.1016/0743-7315(92)90075-X
https://doi.org/10.1007/978-3-540-68552-4_2
https://doi.org/10.1016/0743-7315(91)90022-2

	1 Introduction
	2 Preliminaries
	3 Multi-Level String Sorting
	3.1 Distributed Partitioning
	3.1.1 String-Based Partitioning
	3.1.2 Character-Based Sampling

	3.2 String Assignment and Exchange
	3.3 Overall Running Time

	4 Multi-Level Prefix Doubling Merge Sort
	5 Experimental Evaluation
	5.1 Sorting Small to Medium Sized String Sets
	5.2 Influence of D/N Ratios
	5.3 Evaluation on Real-World Data

	6 Conclusion And Future Work

