
Insights into (k, ρ)-Shortcutting Algorithms
Alexander Leonhardt #

Goethe University Frankfurt, Germany

Ulrich Meyer #

Goethe University Frankfurt, Germany

Manuel Penschuck #

Goethe University Frankfurt, Germany

Abstract
A graph is called a (k, ρ)-graph iff every node can reach ρ of its nearest neighbors in at most
k hops. This property has proven useful in the analysis and design of parallel shortest-path
algorithms [7, 13]. Any graph can be transformed into a (k, ρ)-graph by adding shortcuts. Formally,
the (k, ρ)-Minimum-Shortcut-Problem (kρ-MSP) asks to find an appropriate shortcut set of
minimal cardinality.

We show that kρ-MSP is N P-complete in the practical regime of k ≥ 3 and ρ = Θ(nε) for ε > 0.
With a related construction, we bound the approximation factor of known kρ-MSP heuristics [7]
from below and propose algorithmic countermeasures improving the approximation quality. Further,
we describe an integer linear problem (ILP) that optimally solves kρ-MSP. Finally, we compare the
practical performance and quality of all algorithms empirically.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Complexity, Approximation, Optimal algorithms, Parallel shortest path

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.84

Related Version The full version of this article is available on arXiv under the same name:
https://arxiv.org/abs/2402.07771 [22]

Supplementary Material Software: https://github.com/alleonhardt/k-rho-shortcutting [21]
archived at swh:1:dir:8965d090c1d32ea024b1bb4b111329990a156b37

Funding Manuel Penschuck: Funded by the Deutsche Forschungsgemeinschaft (DFG) – ME 2088/5-2
(FOR 2975 – Algorithms, Dynamics, and Information Flow in Networks).

Acknowledgements The authors thank the anonymous reviewers for their insightful comments which
greatly improved this paper.

1 Introduction

Shortest path algorithms trace back to the very roots of computer science and are an integral
part of the basic algorithmic toolbox. Consequently, a large body of literature has been
devoted to shortest-path algorithms, dating back to at least the 1950s with the classical
single-source shortest-path (SSSP) algorithms by Dijkstra [12], Bellman and Ford [5, 18].

Despite this immense attention, shortest-path algorithms remain notoriously hard to
parallelize efficiently; one of the first parallel SSSP (PSSSP) algorithms is based on the
Bellman-Ford algorithm. More efficient solutions often follow the stepping framework includ-
ing ∆-stepping [24], radius-stepping [7] and ρ-stepping [13]. Although they outperform
Bellman-Ford in practice, their theoretical guarantees on general graphs rarely reflect this.

Recently, Blelloch et al. [7] introduced the notion of (k, ρ)-graphs (Definition 3) which,
roughly speaking, asserts that every node can reach its ρ nearest neighbors via a shortest-path
with at most k edges. This notion provides just enough structure to derive new theoretical

© Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 84; pp. 84:1–84:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleonhardt@ae.cs.uni-frankfurt.de
https://orcid.org/0009-0006-8263-6900
mailto:umeyer@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0002-1197-3153
mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.ESA.2024.84
https://arxiv.org/abs/2402.07771
https://arxiv.org/abs/2402.07771
https://github.com/alleonhardt/k-rho-shortcutting
https://archive.softwareheritage.org/swh:1:dir:8965d090c1d32ea024b1bb4b111329990a156b37;origin=https://github.com/alleonhardt/k-rho-shortcutting;visit=swh:1:snp:8185b97dfef89ed4f4b0e5ae16a2b7baf76ea267;anchor=swh:1:rev:54e9d8b70fe67eb89761792fc4081482c6f11c9d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2 Insights into (k, ρ)-Shortcutting Algorithms

bounds for stepping based algorithms [7, 13]. Crucially, any graph can be converted into a
(k, ρ)-graph by introducing shortcuts. We refer to the problem of finding such a shortcut set
of minimal cardinality as kρ-MSP (Definition 5).

To the best of our knowledge, only two articles have considered (k, ρ)-graphs previously.
Blelloch et al. [7] introduce the notion, propose two kρ-MSP heuristics, and empirically study
the number of edges added by them. Further, Dong et al. [13] rely on (k, ρ)-graphs to provide
faster algorithms and new bounds without further investigating the notion itself.

Our contribution

We prove for the first time that kρ-MSP is N P-complete for all constant k ≥ 3 and some
ρ = Θ(nε) in Section 3. As hub labeling, a related concept, is already known to be N P-
complete [9], we extend this result to ρ < n − 1 for an arbitrary constant k. This finding
holds significant practical relevance as PSSSP algorithms for (k, ρ)-graphs crucially depend
on small k and large ρ for their span bounds. As a by-product, we obtain non-trivial lower
bounds on the approximation ratio of the best known kρ-MSP heuristic in Section 4.

Based on the insights derived from the lower bounds, we propose several new preprocess-
ing steps in Section 5 to improve the heuristic’s approximation factor on several random
graph models. In Section 6, we give an integer linear program (ILP) to solve kρ-MSP
optimally. Finally, we conduct an experimental evaluation that provides evidence suggesting
a commonly found property in social network graphs is responsible for frequently inducing
large approximation factors in existing heuristics. Our newly proposed heuristics are able
to partially mitigate this issue and a final assessment on real world graphs shows that our
techniques generalize well to a variety of graphs.

Related work

Although (k, ρ)-graphs themselves have not been studied extensively, a related concept of
hub labeling (HL), initially introduced by Cohen et al. [9], has received significant attention.
HL assigns every vertex v ∈ V in a directed graph G a forward label Lf (v) and a backward
label Lb(v). Frequently, the labels consist of a sequence of tuples, each of which hold a vertex
and their respective distance from v, i.e., (w, d(w, v)) ∈ Lb(v) and (w, d(v, w)) ∈ Lf (v),
where d(u, v) is the weight of the shortest u − v-path. The vertices within Lf (v) ∪ Lb(v)
are called hubs of v and are required to cover G in the sense that for any pair of vertices
x, y ∈ V, ∃v ∈ V : (v, d(x, v)) ∈ Lf (x) ∧ (v, d(v, y)) ∈ Lb(y) such that v is on a shortest
x − y-path. It is straightforward to see that such a labeling can be used to build a shortcut
set that transforms any graph into a (2, n − 1)-graph. A wide variety of work investigates
HL and related works, both in theory and in practice [3, 2, 11, 17]. Although related, most
techniques do not readily adapt to arbitrary choices of ρ and k.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E. A weighted graph
has an additional weight function W : E → R≥0, assigning each edge e the weight w(e). In
an unweighted graph, all edges have equal weight 1. We denote the neighbors of u ∈ V as
N(u) = {v | {u, v} ∈ E} and let N+(u) refer to the union of N(u) and {u}. Further, let
G[V ′] be the subgraph of G induced by the vertices V ′.

For two nodes u, v ∈ V , let d(u, v) be the total weight of the shortest path (by weight)
connecting u to v. We also refer to d(u, v) as distance from u to v. Further, let d̂(u, v) be
the hop distance between u and v, which we define as the smallest number of edges among

A. Leonhardt, U. Meyer, and M. Penschuck 84:3

all paths between u and v with a weight of d(u, v). If no path exists between u and v, set
d(u, v) = d̂(u, v) = ∞. For the sake of brevity we denote a path with weight d(u, v) as
shortest path. When referring to a shortest path with fewest hops we denote a path with
weight d(u, v) and d̂(u, v) edges.

We first restate the two central properties, k-radius and ρ-distance according to [7]:

▶ Definition 1. For u ∈ V , the k-radius r̄k(u) of u is the distance to the closest node
reachable from u, which is more than k hops away, i.e., r̄k(u) = minv∈V : d̂(u,v)>k d(u, v).

▶ Definition 2. For u ∈ V , the ρ-nearest distance of u, denoted by rρ(u), is the distance
from u to the ρ-th closest vertex to u.

These allow us to define (k, ρ)-graphs, where each node can reach any of its ρ nearest
neighbors in at most k hops. Observe that we deviate from [7] (which originally requires
rρ(v) ≤ r̄k(v) for (k, ρ)-balls) to avoid ambiguity if multiple nodes lie at hop distance k + 1.

▶ Definition 3. Vertex v ∈ V has a (k, ρ)-ball iff rρ(v) < r̄k(v); 1 i.e., the ρ-closest node of
v can be reached within k hops. Further, G is a (k, ρ)-graph iff every node has a (k, ρ)-ball.

Arbitrary graphs can be transformed into (k, ρ)-graphs by adding shortcuts, i.e., edges
that lower the hop distance d̂ between nodes without changing their shortest path distance d:

▶ Definition 4. For G = (V, E), let u, v ∈ V be different nodes with distance D = d(u, v) < ∞
and d̂(u, v) > 1. A shortcut between u and v is a new edge {u, v} with weight D.

▶ Definition 5. Given a weighted graph G = (V, E), the (k, ρ)-Minimum-Shortcut Prob-
lem (kρ-MSP) asks for a minimum cardinality set S, s.t. G′ = (V, E ∪ S) is a (k, ρ)-graph.
Further let kρℓ-MSP, the decision variant of kρ-MSP, ask whether |S| ≤ ℓ exists.

If clear from context, we use kρ-MSP as a shorthand for its decision variant kρℓ-MSP.
Finally, let A ≤p B denote a polynomial time reduction from problem A to B.

3 Complexity of kρ-MSP

The Minimum-Shortcut Problem (kρ-MSP) can be solved in polynomial time for k = 1,
since each shortcut only affects its two endpoints. Hence, each node has to be connected to
ρ of its nearest neighbors. In the following, we show that kρ-MSP is N P-complete for k > 2
and practical ρ = γ. Here γ is a parameter which refers to the number of leaf nodes needed
by the pitchfork gadget (for an overview of the construction refer to Figure 1). Since it is
trivial to verify a kρ-MSP solution in polynomial time, kρ-MSP is in N P. For ρ = n − 1
and some k, the N P-completeness can be inferred by the work of Babenko et al. [3] and
Cohen et al. [9]. Henceforth, we show that even when relaxing conditions on ρ such that
ρ < n − 1 the problem is N P-complete. We focus on its hardness by establishing that the
N P-hard [19] Vertex Cover problem is polynomial-time reducible to kρ-MSP.

Recall that, given an undirected graph G = (V, E), Vertex Cover asks to find a
minimal set of nodes C ⊆ V for which at least one endpoint of every edge is in C. Since G is
undirected and the transformation in Section 3.1 uses only unit edge weights, the arguably
simplest graph model suffices to proof the hardness of kρ-MSP.

1 This definition requires that the distances between nodes within the graph are unique (excluding pairs
of nodes (u, v) where u cannot reach v), if this is not given a consistent tiebreaker may reconcile the
definition on these graphs.

ESA 2024

84:4 Insights into (k, ρ)-Shortcutting Algorithms

k + 1 k k − 1 4 3 2 1 0

distance
from
leaves · · ·

wu,v

u

v

s1 s2 · · · sk−3 bu

s′
1 s′

2 · · · s′
k−3 bv

Vedges Vsubs original nodes V pitchfork gadgets

γ
possible

canonical shortcut

Figure 1 Transformation of edge {u, v} for the input G = (V, E). Each edge in E implies their
own nodes in Vedges and Vsubs (left); each original node in V has its own pitchfork-gadget (right).
By construction wu,v, is too far from the leaves of either pitchfork. By adding, e.g., the canonical
shortcut (see Definition 8) between u and bu, the leaves become available for the (k, ρ)-ball of wu,v.

▶ Theorem 6. Let k ≥ 3 be an integer constant, and ρ = Θ(nε) for some constant ε > 0.
Then, Vertex Cover ≤p kρ-MSP implying kρ-MSP is N P-hard.

Proof. We transform a Vertex Cover input G = (V, E) into a kρ-MSP graph GT in
Section 3.1. In Section 3.2, we show that the structure of GT implies that there exist optimal
so-called canonical kρ-MSP solutions (see Corollary 11). Then we establish with Lemma 12
a bijection between shortcuts in canonical kρ-MSP solutions to nodes in Vertex Cover.
Thus, any optimal solution for kρ-MSP on GT implies an optimal solution to Vertex
Cover. ◀

For simplicity, the proof only considers γ ≥ 7|V | + 6. We refer to the full version of this
paper [22], for the acclaimed range of γ. The extended proof is structurally similar to the
present one but employs a recursive application of the pitchfork-gadgets described in
Section 3.1.

3.1 Transforming Vertex Cover to kρ-MSP
Let G = (V, E) be an input graph for Vertex Cover. For a fixed value for parameter k ∈
[3, n), we transform G into GT in two steps:

We first obtain GP = (VP , EP) by replacing every edge {u, v} ∈ E with its own copy of
the following path template (i.e. the subgraph induced by the following nodes is a path):

(u, sk−3, . . . , s1︸ ︷︷ ︸
k − 3 subdivision

, wu,v,︸ ︷︷ ︸
named representative of edge

s′
1, . . . , s′

k−3︸ ︷︷ ︸
k − 3 subdivision

, v)

For k = 3, the template degenerates into (u, wu,v, v). As visualized in Figure 1, we
conceptually partition the vertex set VP into (i) the original nodes V , (ii) the edge
nodes Vedges = {wu,v | {u, v} ∈ E}, and (iii) the subdivision nodes Vsubs with |Vsubs| =
2|E|(k − 3). Observe that this transformation retains the degrees of the original nodes V

and that all new nodes VP \ V have degree 2.
We obtain the final graph GT = (VT , ET) from GP by adding and connecting a copy of a
so-called γ-pitchfork to each original node v ∈ V . A γ-pitchfork to the host node
v ∈ V is a (γ+1)-star graph where exactly one satellite has an additional edge to v. We
denote the star’s center of the gadget attached to node v ∈ V as the base node bv.

A. Leonhardt, U. Meyer, and M. Penschuck 84:5

The γ-pitchforks encode Vertex Cover into the kρ-MSP problem. The main idea
is that all nodes but the ones in Vedges have a (k, ρ)-ball. The latter are too distant to the
leaves of their respective γ-pitchforks. For any edge node wu,v ∈ Vedges, however, it suffices
that the distance to the γ-pitchfork of either u or v is reduced with a single shortcut. This
roughly corresponds to having at least one endpoint of each edge in a vertex cover.

3.2 Solving Vertex Cover
Let G = (V, E) be the input graph for Vertex Cover, GT = (VT , ET) the graph obtained
from the transformation in Section 3.1, and GMSP = (VT , ET ∪ S) where S is a minimal
cardinality shortcut set to ensure GMSP is a (k, ρ) graph. We begin by formally establishing
the observation that exactly the nodes Vedges have no (k, ρ) ball in GT :

▶ Lemma 7. Fix γ ≥ 7|V | + 6 and let ρ = γ. Then, v ∈ VT has a (k, ρ)-ball, iff v /∈ Vedges.

Proof. Observe that by construction of GT and choice of γ, (i) the leaves of a single γ-
pitchfork suffice to form a (k, ρ)-ball and (ii) any (k, ρ)-ball has to include some leaves of
at least one γ-pitchfork. As illustrated in Figure 1, all nodes except Vedges have a hop
distance of at most k to the leaves of their respective closest pitchfork. Contrary, any edge
node wu,v ∈ Vedges requires k + 1 hops to the leaves of the closest pitchforks which are
connected to nodes u and v, respectively. ◀

For the remainder of this section, we assume that ρ = γ and γ ≥ 7|V | + 6. Then let S be
a minimal cardinality kρ-MSP solution. We now categorize the shortcuts into canonical
and complex types, and show that any complex shortcut can be canonicalized:

▶ Definition 8. We call a shortcut canonical iff it connects a node in V to the base of its
corresponding γ-pitchfork (see Figure 1). All other shortcuts are called complex.

▶ Observation 9. A canonical shortcut at node u ∈ V allows all nodes wu,v ∈ Vedges with
{u, v} ∈ E to form a (k, ρ)-ball.

▶ Lemma 10. Let S be an optimal solution for kρ-MSP on GT and sc ∈ S be an arbitrary
complex shortcut. Then, the removal of sc destroys exactly one (k, ρ) ball.

Proof sketch. We defer the rigorous proof to the full version of this paper [22] and henceforth
only give some intuition for the ideas of the proof. Roughly speaking, it establishes two
central properties of complex shortcuts in a minimal shortcut set:

No two complex shortcuts interact in a meaningful way, i.e. there is no shortcut s1 that
relies on a shortcut s2 to close a (k, ρ) ball.
The distance between any two edge nodes in Vedges is sufficiently large, such that no
complex shortcut can affect more than one edge node v ∈ Vedges. ◀

▶ Corollary 11. For any transformation GT , there exists an optimal kρ-MSP-solution S

containing only canonical shortcuts. We call such an S canonical.

Proof. Let s ∈ S be an arbitrary complex shortcut; if non exists, the claim follows. The
removal of s destroys the (k, ρ)-ball of a unique wu,v ∈ Vedges due to Lemma 10. Thus we
can replace s with the canonical shortcut s′ = {u, bu} (or – equivalently – s′ = {v, bv}).
Observe that S′ = S \{s}∪{s′} has the same size |S| = |S′|, still turns GT into a (k, ρ)-graph,
but has one fewer complex shortcut. Finally recurse until S′ is canonical. ◀

ESA 2024

84:6 Insights into (k, ρ)-Shortcutting Algorithms

▶ Lemma 12. An optimal solution set for kρ-MSP on GT can be transformed into a solution
for vertex cover on G.

Proof. Let C be an optimal Vertex Cover solution on G. Then, by Observation 9, we
know that Sc = {{v, bv} | v ∈ C} consists only of canonical shortcuts and turns GT into
a (k, ρ)-graph; i.e. any optimal kρ-MSP solution Sc on GT satisfies |Sc| ≤ |C|.

Let S be an optimal solution of kρ-MSP on GT . Due to Corollary 11, assume without
loss of generality that S is canonical. Then, C = {u | {u, bu} ∈ S} is a Vertex Cover (see
Observation 9). Since |S| ≤ |C|, C is minimal. ◀

4 A lower bound on the approximation ratio of kρ-DP

In Section 3, we show that computing a minimal shortcut set S to convert an arbitrary graph
into a (k, ρ)-graph can be expensive. This has direct implications for preprocessing steps
of algorithms based on (k, ρ)-graphs, which tend to favor large values of ρ. For instance,
the depth2 of radius-stepping on a (k, ρ)-graph with small constant k is bounded by
O(log ρ

ρ · n log(n)L) where L is the maximal edge weight. [7]
Observe that any graph can be transformed into a (k, ρ)-graph by adding ρ shortcuts

per node, i.e. |S| ≤ nρ is trivial. Blelloch et al. [7] introduce two heuristics for smaller S:
the greedy kρ-Greedy and kρ-DP involving dynamic programming. The authors show that
kρ-Greedy with ρ = n − 1, k = 2 suffers from an approximation ratio of at least n − 5.
They demonstrate that, in practice, kρ-DP yields smaller solutions than kρ-Greedy.

Given a graph G = (V, E), the kρ-DP heuristic [7] uses a dynamic program to compute
the minimal number of shortcuts needed to form a (k, ρ)-ball around a node s ∈ V . While
the solution is optimal for this node conditioned on a shortest path tree, kρ-DP may not
find a global minimal |S|, since the algorithm treats all (k, ρ)-balls independently (and in
parallel). The conditioning is necessary since there might be several unique shortest path
trees with fewest hops each requiring a different number of shortcuts to form a (k, ρ)-ball for
the root vertex (refer to the full version for an example [22]).

For a fixed start node s ∈ V and let Ts be a shortest path tree to the ρ-nearest neighbors
of s, such that for all v ∈ Ts the path between s and v in Ts has the least hops possible in G.
kρ-Greedy works by greedily adding shortcuts along Ts, i.e. it adds shortcuts from s to all
nodes in the i’th layer of Ts whenever i mod k ≡ 0.

kρ-DP on the other hand improves on that by determining the optimal placement of
local shortcuts via dynamic programming: Let N(u) and N+(u) denote the neighbors of
u and the neighbors of u including u in Ts. If the height of Ts is at most k, s already has
an (k, ρ)-ball; otherwise, we need to add shortcuts. Consider some node u ∈ Ts with u ̸= s,
let p be its parent, and denote p’s depth as t = d̂(s, p). Then, define F (u, t) as the smallest
number of shortcuts into the subtree (of Ts) rooted in u required to put u and its children
within the (k, ρ)-ball of s:

F (u, t) = min

(add shortcut {s, u}:
depth of u is now 1︷ ︸︸ ︷

1 +
∑

w∈N+(u)

F (w, 1),

no shortcut added to u
depth of u remains t + 1︷ ︸︸ ︷∑
w∈N+(u)

F (w, t + 1)

)
if t < k else F (u, t) = ∞

Summing over the children of s,
∑

u∈N(s) F (u, 0), yields the number of shortcuts on s. To
the best of our knowledge, we now bound the solution quality of kρ-DP for the first time:

2 The depth of a parallel algorithm is the length of its critical path, bounding the runtime from below –
even for an unbounded number of processors.

A. Leonhardt, U. Meyer, and M. Penschuck 84:7

k − 1 k

···

k
−

2···

k
−

2

· · ·
k

−
2

· · ·

k
−

2

k
−

2

···

k
−

2

k + 1
k

+
1

k + 1
k +

1

··
·

optimal shortcut

γ

Figure 2 The perturbation of a star graph which induces the approximation factor mentioned in
Theorem 13. Magenta edges depict an edge that is subdivided k − 3 times, hence for k = 3 it is a
normal edge while for k > 3 it is replaced by a path of length k − 3 connecting the satellite nodes to
the center. The label on top of each edge equals the hop distance of a satellite node after traversing
the accompanied edge(s).

▶ Theorem 13. The approximation ratio of kρ-DP on a graph with Θ(n) nodes is at least
n − 1 and the approximation ratio of kρ-Greedy is Ω(n2) for any constant k ≥ 3 and some
parameter ρ.

Proof. Consider a star graph Sn where each edge is replaced by a path of length k − 3 as
previously described in the reduction and add a single γ-pitchfork at the center node
as depicted in Figure 2. In this graph only the satellite nodes do not form (k, ρ)-balls for
some k and some ρ. Clearly, by Observation 9, a single shortcut at the only γ-pitchfork is
enough to transform this graph into a (k, ρ)-graph. kρ-DP will add n − 1 shortcuts as the
only shortcuts considered start at the nodes themselves, thus preventing it to shortcut the
γ-pitchfork gadget as any node within, by definition, already forms a (k, ρ)-ball. Hence,
the aforementioned construction yields a graph of order n + (n − 1) · (k − 3) + 2 + γ = Θ(n)
which can be transformed into a (k, ρ)-graph by a single shortcut while kρ-DP adds n − 1.
On the same construction the greedy heuristic has an approximation factor of Ω(n2), every
satellite node will add γ − (k − 2 + 2 · n) = Θ(n) shortcuts thus resulting in Ω(n2) added
shortcuts. ◀

5 The kρ-DP-* family of heuristics

Based on the insights leading to the lower bounds of kρ-DP, we introduce two simple
preprocessing steps for kρ-DP, namely kρ-DP-PC (pair-shortcutting) and kρ-DP-SA (set
alignment). These new heuristics address two separate issues introduced by a central property
of kρ-DP: All proposed shortcuts start at the source vertex on which kρ-DP was invoked.

This property rules out any shortcuts starting from nodes which already form (k, ρ)-balls
even if they are globally beneficial, such as canonical shortcuts within a γ-pitchfork
gadget. We address this issue with kρ-DP-PC. The new heuristic considers a larger set of
shortcut candidates and introduces a global pooling phase to prune unpromising ones.

Additionaly we consider another variant, kρ-DP-SA, that generates a set of local (minimal)
shortcut candidates by perturbing a single solution derived from kρ-DP to maximize the
inter-set alignments.

ESA 2024

84:8 Insights into (k, ρ)-Shortcutting Algorithms

u · · · · · · · · · v

kρ-DP
kρ-DP-PC

d̂(u, x) ≤ k − 1 d̂(y, v) ≤ k − 1

(a) The additional shortcuts considered by kρ-DP-
PC in comparison to kρ-DP for any pair of nodes
(u, v) for which v is not within the (k, ρ)-ball of u.

(b) At most two leaves
of any node in a short-
est path tree with
fewest hops are consid-
ered for the score.

u Tu

Su = {(u, x), (u, y), (u, z)}

yTy

x Tx

z

Tz

(c) A part of the shortest path
tree decomposition T ′

u for u in-
duced by the shortcut set Su

derived from kρ-DP.

Figure 3 Schematics for the central components of kρ-DP-PC (a), (b) and kρ-DP-SA (c).

5.1 Pair shortCutting: kρ-DP-PC
For every node pair (u, v) with u ∈ V , v ∈ Nρ(u), and d̂(u, v) > k, consider a shortest path
with fewest hops from u to v. Let Su,v be the set of node pairs on this path such that any
tuple (x, y) in Su,v successfully asserts that a shortcut from x to y would move v into the
(k, ρ)-ball of u:

Su,v =
{

(x, y) | d̂(u, x) + 1 + d̂(y, v) ≤ k
}

(i)

Observe that a candidate (x, y) ∈ Su,v can appear in other contexts Su′,v′ as well. Hence,
we rate its global relative importance as the sum of local scores. The local score of node u is
the reciprocal of the number of vertices that u is still missing from its (k, ρ)-ball if only (x, y)
were inserted. Then, we accept all candidates with scores exceeding µ + 3 · σ where µ and σ

denote the mean and standard deviation of all scores within the shared hash map. Finally,
we run the original kρ-DP heuristic on the resulting graph to form the remaining (k, ρ)-balls.

Notice that reducing ρ with respect to n reduces the number of interactions between
distinct shortcuts. To preserve the possibility of finding exceptional shortcuts we only include
shortcuts where at least k distinct vertices participated in its score and every of these distinct
vertices has at least two nodes which are moved into their (k, ρ)-ball by the addition of the
shortcut. Furthermore we use the concept of important breadth (Figure 3(b)) since two leaves
suffice so that our heuristic will give a higher score to the parent of both leaves than to any
leaf individually, further considered leaves only exaggerate the importance of this shortcut
while overshadowing shortcuts which decrease the depth e.g., a γ-pitchfork gadget versus
a path of length 2k + 1. In addition to that the usage of the average and standard deviation
allows us to select only exceptional shortcuts to increase the probability that such a shortcut
improves the final solution.

For a thorough discussion of the runtime refer to the full version of this paper [22].

5.2 Set Alignment: kρ-DP-SA
Given a graph G = (V, E), let S = S1 ∪ S2 ∪ · · · ∪ Sn be a shortcut set, where Si denotes
shortcuts starting in node i as computed by kρ-DP. Then, for each node i, we can decompose
its shortest path tree Ti as illustrated in Figure 3(c) into separate subtrees induced by
Si. For each (i, x) ∈ Si define the subtree Ti,x rooted in x such that all leaves of Ti,x are
either leaves of Ti or the parents of a node y : (i, y) ∈ Si, y ̸= x. Now, let A = (v1 =
i, v2, . . . , ve = x) denote a shortest path with fewest hops in G connecting i to x and let

A. Leonhardt, U. Meyer, and M. Penschuck 84:9

AS := {vz | vz ∈ A ∧ (i, vz) ∈ Si} be the set of nodes on this path which are the target of
a shortcut from i. For every subtree Ti,x, where depth(Ti,x) < k − 1 we can construct a
set S′

i,x,t := (Si ∪ {(t, x)}) \ {(i, x)} where t ∈ {vz+δ | vz ∈ AS , 0 ≤ δ < k − 1 − depth(Ti,x)}
which also constitutes a minimal shortcut set for node i.

Hence for any node i, we build the set SD :=
⋃

x,t S′
i,x,t ∪ Si of distinct shortcuts being

part of an locally optimal solution for i and increase the score of such a shortcut by one in a
concurrent shared hash map3. Any entry in it displaying a score of more than one signifies a
shortcut that is in the intersection of at least two locally optimal solutions of unique nodes.

The number of perturbations a single node i can construct of its shortcut set is bounded
by O(|Si| · (k − 1) · maxAS

|AS |). By Lemma 14 this is again bounded by O(ρ · maxAS
|AS |).

This increases our span bounds as maxAS
|AS | = Ω(ρ

k) for some graphs, e.g., line graphs.
However, by only considering a subset of log ρ predecessors for any shortcut, we can bound
the span to O(ρ log ρ) and work to O(nρ log ρ); this matches the performance of kρ-DP.
Notice that in practice this limitation is often insignificant as many random graph classes
including Gilbert random graphs have in expectation either bounded shortest paths lengths
of O(log n) [6] under reasonable assumptions on the edge weight distributions or at least
a bounded diameter of O(log(n)2/(3−γ)) [14] in the case of hyperbolic random graphs for
2 < γ < 3.

▶ Lemma 14. Let Si be the shortcut set computed for node i by kρ-DP. Then, |Si| <

(ρ + 1)/(k − 1).

Proof. Let Ti be the shortest path tree with fewest hops rooted in i containing its ρ-
nearest neighbors. We decompose Ti into L0, L1, L2, ..., Lk−1 where each is defined by Lj :={

x | x ∈ Ti, d̂(i, x) ≡ j mod k
}

. Observe that
∑

j |Lj | = |Ti|, thus ∃j : |Lj | ≤ |Ti|
k < ρ+1

k−1 .
The claim follows since the set S′

i = {(i, x) | x ∈ Lj} is discoverable by kρ-DP and forms a
(k, ρ)-ball for i. ◀

5.3 MinHash
Both presented heuristics can still introduce redundant shortcuts originating from different
local contexts; for instance, consider partially overlapping shortcuts along a path. In the
following, we propose a probabilistic approach based on MinHash[8] to detect synergetic
shortcuts that partially overlap.

The omission of shortcuts displaying a high degree of overlap results in a marked redun-
dancy reduction and in turn improves the solution size of our heuristics. For the missing
details refer to the full version of this paper [22].

6 Optimal algorithm

In this section, we present – to the best of our knowledge – the first exact solver for kρ-MSP.
Since we established the problem to be N P-hard in Section 3, there is little hope for a
solution that is efficient on all instances. Hence, we propose an integer linear programming
(ILP) formulation to harness the extensive research into efficient ILP solvers. Observe that
this is an extension of the ILP provided by Gupta et al. [17] by allowing for a smaller ρ and in
consequence we also need to account for a selection of the ρ’th nearest neighbors optimally.

3 Since we only need to know if a shortcut is shared by at least two nodes there is no write congestion,
hence O(1) in expectation.

ESA 2024

84:10 Insights into (k, ρ)-Shortcutting Algorithms

Let Nρ(v) = {u ∈ V | u ̸= v, d(v, u) ≤ rρ(v)} be the set of vertices with distance at most
the ρ-nearest neighbor, and define the shorthand notation N+

ρ (v) = Nρ(v) ∪ {v}. Recall
that Nρ(v) can contain more than ρ vertices in the case that there are several vertices with
the same distance to v as the ρ-closest vertex. Define w(u, v) as the weight of the edge
{u, v} if it exists or else the weight of a shortest path between u and v. Observe that in
general w(u, v) can exceed the shortest-path distance d(u, v), that is if the edge (u, v) is
not part of the shortest u-v-path. Finally, let Spot be the set of possible shortcuts, i.e.
Spot = {(u, v) | u ∈ V, v ∈ Nρ(u), (u, v) /∈ E}.

We provide several variations of the ILP formulation for both the undirected (U) and
the directed (D) case of kρ-MSP. In contrast to the directed case, edges are bidirectionally
usable in the undirected case, thus requiring a distinct formulation to encode the altered
constraints. An explicit description of the formulation, correctness and a discussion on the
encoding size can be found in the full version of this paper [22].

7 Experiments

In this section we compare the previously discussed algorithms on several random graph
models. The ILP encoding is implemented in Python invoking Gurobi4 11.0.0. We imple-
mented all heuristics (including those proposed by Blelloch et al. [7]) in the Rust programming
language5. If not stated otherwise the following standard parameters and considerations
apply to all experiments:

We use several machines with AMD EPYC 7452 (64 threads) and 7702P (128 threads)
CPUs, up to 512 GB RAM, Ubuntu 22.04.3, Python 3.10.12 and Rust 1.77.0.
We focus on the case ρ = n−1 as this confers two benefits:

1. It is arguably the case with the most optimization potential.
2. The difference in the observed solution is solely attributable to a superior choice of

shortcuts since Nρ(v) is unique for every node v.
Each ILP instance has a timeout of 1800 s after which it is deemed unsolvable.

We are heavily using random graph models as part of our evaluation as they have
been found to emulate frequently found properties of real world networks while being
mathematically tractable to a certain degree. The Gilbert model [15] functions as null model
with almost no discernible structure. We denote it as G(n, p) where n is the number of nodes
and p the independent probability of each edge to be present.

One prominent structural feature found in many observed networks are powerlaw degree
distributions (i.e., a random node has degree X with P[X = x] ∝ x−γ). [4] This is of special
interest here, since our discussion in Section 4 suggests that such skewed distributions are hard
instances for the existing heuristics. The hyperbolic random graph model [20] H(n, a, γ, T)
with γ = 3.0, a = 3 and T = 0 is known to yield sparse graphs featuring powerlaw degree
distributions and a non-vanishing local clustering coefficient [4]. Since the presence of a
local community structure (e.g., short cycles etc.) may affect the shortcutting behavior,
we also consider a Markov Chain randomization model [16] MC(G, s), where s refers to the
number of switches per edge. It approximates a uniform sample from all simple graphs with
prescribed degrees. Thus we use this model on previously generated hyperbolic random
graphs with the same parameters as stated in Figures 5, 8, and 9 to quantify the impact

4 https://gurobi.com
5 Rust is a compiled language of comparable performance to C [10].

https://gurobi.com

A. Leonhardt, U. Meyer, and M. Penschuck 84:11

20 30 40 50 60 70
0

100

200

300

400

σ
b

=
8.

87

σ
b

=
2.

84

number of nodes

av
er

ag
e

nu
m

be
r

of
ad

de
d

sh
or

tc
ut

s
H(n, a = 3, γ = 3.0, T = 0)

kρ-DP
kρ-DP*
ILP
kρ-DP-PC-SA+MH

σh = 1.44

σ
h

=
2.

08
20 30 40 50 60 70

0

200

400

600

800

σ
b

=
7.

02

σ
b

=
2.

74

number of nodes

MC(·, 100)

kρ-DP
kρ-DP*
ILP
kρ-DP-PC-SA+MH

σh = 1.44

σ
h

=
1.

85

20 30 40 50
0

200

400

600

800

less than 85% solved

σ
b

=
2.

91

σ
b

=
2.

21

number of nodes

G(n, 3/n)

kρ-DP
kρ-DP*
ILP
kρ-DP-PC-SA+MH

σh = 1.57

σ
h

=
1.

91

kρ-DP kρ-DP-PC-SA+MH f(n) = 0.42n

20 30 40 50 60 70
0

10

20

30

9
11

14
16.5

19 19.3

23.8
26.1

28.5
31

33.3

2.
3 3 3.
5 3

5

3.
2 4.

8

3.
7

3.
3 3.
6

3.
7

number of nodes n

ap
pr

ox
im

at
io

n
fa

ct
or

σ
m

a
x

20 30 40 50 60 70
0

10

20

30

8 8.3
11.7

16
18

20.5

15.5

25
28

31 32.5

6
2.

5 3 3.
7 5

2.
8 3 4.

8
3.

6 4
6.

5

number of nodes n

20 25 30 35 40 45 50

2

2.5

3

3.5

4

2.88
3

2.75

3.72
3.9

3.4 3.42

2.
19 2.
22

2

2.
21

3.
19

2.
33

2.
29

number of nodes n

Figure 4 The comparison between the optimal algorithm and the heuristics for the kρ-MSP
problem for k = 2, ρ = n − 1 on several random graph classes for varying n. σh and σb describe the
average approximation factor for kρ-DP-PC-SA+MH and kρ-DP respectively, while σmax = maxi σi

is the maximum approximation factor wittnessed on up to 50 sampled instances.

kρ-Greedy kρ-DP kρ-DP* kρ-DP-PC+MH kρ-DP-SA+MH kρ-DP-PC-SA+MH

√
n n/10 n/4 n/3 n/2 n − 1

20

22

24

26

ρ

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

σ

H(n, a = 3, γ = 3.0, T = 0)

√
n n/10 n/4 n/3 n/2 n − 1

20

21

22

23

24

25

26

ρ

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

σ

MC(·, 100)

√
n n/10 n/4 n/3 n/2 n − 1

20

21

22

23

24

ρ

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

σ

G(n, 3/n)

Figure 5 The average approximation factor of all heuristics compared to the baseline kρ-DP-PC-
SA+MH on various random graph classes for n ≤ 8000 (the number of nodes fluctuates with the
size of the largest connected component) and k = 3.

of the degree distribution mostly independently from other structural properties. Our final
graph model is the random geometric graph model [25] denoted by RGG(n, r, d). This model
also generates graphs with a local community structure but they lack the powerlaw degree
distribution of the hyperbolic random graphs. Here r refers to the radius used to infer the
connections between the random points and d to the dimension of the underlying geometric
space.

7.1 Experimental evaluation
For our experiments we use four different heuristics:
1. kρ-DP – The heuristic introduced by Blelloch et al. and the currently best known heuristic

for this type of problem.
2. kρ-Greedy – A faster heuristic which experimentally shows a worse performance com-

pared to kρ-DP.

ESA 2024

84:12 Insights into (k, ρ)-Shortcutting Algorithms

Real world graphs

σ̄(0−2500] = 2.91 σ̄(2500−5000] = 8.99 σ̄(5000−7500] = 20.96 σ̄(7500−10000] = 11.05 σ̄ = 4.43

0 1,000 2,0002−1
20

22

25

28

211

ap
pr

ox
im

at
io

n
fa

ct
or

σ

3,000 4,000 5,000 6,000 7,000

σmax = 1499.0

8,000 9,000

Figure 6 Approximation factor of kρ-DP in relation to the baseline kρ-DP-PC-SA+MH on all
graphs from the network repository dataset [26] with up to 10000 nodes for ρ = n − 1 and k = 3.

σ̄(0−2500] = 1.58 σ̄(2500−5000] = 2.98 σ̄(5000−7500] = 2.21 σ̄(7500−10000] = 2.39 σ̄ = 1.75

0 1,000 2,0002−1

20

22

24

26

ap
pr

ox
im

at
io

n
fa

ct
or

σ

3,000 4,000 5,000

σmax = 59.17

6,000 7,000 8,000 9,000
number of nodes

Figure 7 Approximation factor of kρ-DP in relation to the baseline kρ-DP-PC-SA+MH on all
graphs from the network repository dataset [26] with up to 10000 nodes for ρ = ⌊ n−1

log(n−1) ⌋ and
k = 3.

3. kρ-DP* – Runs kρ-DP in 10 consecutive phases. In each phase n
10 vertices are processed

and shortcutted by kρ-DP.
4. kρ-DP-PC-SA+MH – A combination of the techniques described in Sections 5.1 and 5.2

with the additional usage of MinHashing.

Our construction in Section 4 to bound the approximation factor of kρ-DP relies on
carefully crafted graph structures. This raises the question, how the algorithm performs on
“ordinary” networks. Thus our first experiment considers the approximation factor of kρ-DP
on G(n, p) graphs and two other random graph models. For each model and graph size, we
sample 50 graphs and derive the average and maximum approximation factor.

For the G(n, 3/n) model, kρ-DP displays a small approximation factor on average (less
than three) in any case which is slowly growing with increasing graph order as depicted in
Figure 4. In addition, the approximation factor is strongly concentrated around the average,
suggesting that there are no commonly found exceptionally hard instances for kρ-DP on
G(n, 3/n). A similar behavior can be observed for random geometric graphs resulting in the
same moderate improvement in the approximation factor for the newly introduced heuristic
compared to kρ-DP. The extended version [22] gives more details for this class of graphs.

Notice that our lower bound construction shares some similarities with graphs demon-
strating a powerlaw degree distribution, namely the existence of high degree vertices which,
if shortcutted just right, may complete many (k, ρ)-balls at once. Hence we assumed that
these graphs are a hard input for kρ-DP. Indeed our experiments show a quickly increasing
average approximation factor for growing n for both random graph models with powerlaw
degree distributions. For these two models the maximum approximation factor scales almost
linearly with n. Unfortunately larger graphs are out of reach for our ILP formulation, thus
preventing us to confirm this behavior on larger graphs.

A. Leonhardt, U. Meyer, and M. Penschuck 84:13

kρ-Greedy kρ-DP kρ-DP* kρ-DP-PC+MH kρ-DP-SA+MH kρ-DP-PC-SA+MH

√
n n/10 n/4 n/3 n/2 n − 1

20

22

24

26

28

ρ

k
=

4
av

er
ag

e
ap

pr
ox

im
at

io
n

fa
ct

or
σ

H(n, a = 3, γ = 3.0, T = 0)

√
n n/10 n/4 n/3 n/2 n − 1

20

22

24

26

28

ρ

MC(·, 100)

√
n n/10 n/4 n/3 n/2 n − 1

20

21

22

23

24

ρ

G(n, 3/n)

√
n n/10 n/4 n/3 n/2 n − 1

20

22

24

26

28

ρ

k
=

5
av

er
ag

e
ap

pr
ox

im
at

io
n

fa
ct

or
σ

√
n n/10 n/4 n/3 n/2 n − 1

2−1

21

23

25

27

29

ρ

√
n n/10 n/4 n/3 n/2 n − 1

20

21

22

23

24

25

ρ

Figure 8 Shows the average approximation factor of all heuristics compared to the baseline
kρ-DP-PC-SA+MH on various random graph classes for n ≤ 8000 (the number of nodes fluctuates
with the size of the largest connected component).

Although the gap between kρ-DP-PC-SA+MH and kρ-DP on these graphs is larger than
for Gilbert and random geometric graphs the gap does not scale with increasing graph size
(see Figure 5). In addition Figures 5 and 8 show that the advantage of kρ-DP-PC-SA+MH
is highly dependent on a large ρ. This is unsurprising as our heuristic depends on synergies
at a global scale which dramatically decrease for falling values of ρ. Still our new heuristic
manages to improve upon the good performance of kρ-DP by deriving solutions which are
on average smaller by a factor of 1 to 8, depending on the concrete values of ρ and the
underlying random graph model.

Observe that our heuristic is a multi-stage algorithm as it first invokes kρ-DP-PC,
then kρ-DP-SA and finally kρ-DP (i.e., each stage observes previously inserted shortcuts).
This alone provides our heuristic with a considerable advantage compared to kρ-DP which
works completely oblivious of the other computed shortcuts. kρ-DP* evidently simulates a
continuously growing globally known shortcut set and allows us to further discern the root of
better performance of our heuristic. As reported in Figure 4, kρ-DP* barely improves over
kρ-DP on graphs with powerlaw degree distributions, while it performs significantly better
on G(n, p). We attribute these observation to the fact, that multiple stages do not help to
find and place globally good shortcuts as needed to solve powerlaw degree instance; yet they
uncover “accidental” synergies in the large number of shortcuts needed for Gilbert graphs.

7.2 Measuring solution quality and speedup
As depicted in Figure 9(a), the average run time of our ILP solver grows dramatically in
the graph size n in particular for Gilbert graphs and random geometric graphs. While we
can solve all instances in the reported parameter regime for all other models within the
time budget of 1800 s, the fraction of solved instances on Gilbert and random geometric
graphs shrinks with increasing n, refer to the extended version for more details [22]. Thus we

ESA 2024

84:14 Insights into (k, ρ)-Shortcutting Algorithms

20 30 40 50 60 70

0

500

1,000

number of nodes

av
er

ag
e

so
lv

in
g

tim
e

of
so

lv
ed

in
st

an
ce

s
(s

) Average ILP solving time

G(n, 3/n)
MC(·, 100)
H(n, a = 3, γ = 3.0, T = 0)
RGG(n,

√
5/(n · π), 2)

(a) The average time for the ILP
solver to solve the random graph
instances with respect to their or-
der.

20 30 40 50 60 70

2

4

6

number of nodes

fa
ct

or
of

ed
ge

bl
ow

up

Average edge blowup

ILP G(n, p = 3/n)
kρ-DP G(n, p = 3/n)
ILP H(n, a = 3, γ = 3.0, T = 0)
kρ-DP H(n, a = 3, γ = 3.0, T = 0)
ILP MC(·, s = 100)
kρ-DP MC(·, s = 100)
ILP RGG(n,

√
5/(n · π), 2)

kρ-DP RGG(n,
√

5/(n · π), 2)

(b) The average edge blowup i.e. the ratio of
edges in the shortcutted graph to the edges
in the input graph |E ∪ S|/|E| where S is the
generated shortcut set.

2.5 3 3.5

0

500

1,000

1,500

approximation factor σ

so
lv

in
g

tim
e

(s
)

G(n, 3/n)

86% solved

(c) Solving time for
the ILP as a function
of the approximation
factor σ for n = 35.

Figure 9 Miscellaneous results including average running time, average factor of edge increases
and solvability on Gilbert random graphs.

visually highlight the regime with only partial results in Figure 4 to clearly mark potentially
biased results. Despite various preliminary tests, no association between the solving time and
the approximation factor could be found in this regime as depicted in Figure 9(c). Hence this
reduces the probability that the unsolved instances induce a systemic bias on the investigated
measures due to an association to the solving time.

For an input graph G = (V, E) and a computed shortcut set S define the edge blowup
factor as the relative increase |E ∪ S|/|E| of edges. Recall that a main use case for (k, ρ)-
graphs are sharper theoretical bounds for stepping based PSSSP algorithms. The blowup
factor directly affects the work of these algorithms, at least multiplicatively.

Surprisingly, for random graphs with powerlaw degree distributions, the ILP solution
displays a small edge blowup factor of approximately 1.4 which in addition seems to decrease
for increasing graph sizes. This suggests that the additional work for PSSSP algorithms
induced by the (k, ρ) transformations are, on average, asymptotically irrelevant on these
practically relevant graph classes. In comparison kρ-DP initially sets out with an edge
blowup factor of less than two for both aforementioned models which in line with previous
results, subsequently displays an increasing trend on graphs of higher order. Contrasting this
are the results for Gilbert random graphs, here both the heuristic and the ILP algorithm
persistently increase their edge blowup factor for larger graphs.

In the spirit of the main application of our heuristic being faster parallel shortest path
algorithms we provide a basic parallelized implementation of the aforementioned heuristics6.
Our experiments indicate that the algorithms themselves are highly amenable to paralleliza-
tion; more details can be found in the extended version [22]. Our experiments confirm that
kρ-Greedy is the fastest of the heuristics but it suffers from a large approximation factor
and thus induces a larger overhead for most applications on the resulting graph. The other
heuristics are sequentially around 2-7 times slower than kρ-Greedy but provide a smaller
shortcut set with the same guarantees as kρ-Greedy.

6 Neither the final shortcut traversal nor the edge insertions into the graph are parallelized yet.

A. Leonhardt, U. Meyer, and M. Penschuck 84:15

7.3 Performance on real world graphs

In contrast to Blelloch et al. [7] we consider networks from the network repository [26],
instead of graphs from the SNAP datasets [23]. On account of our different parameter
regime for k and ρ, testing the heuristics (even the original ones), is prohibitively expensive
for the graphs originally used by them. Nonetheless to quantify the robustness of our new
heuristic, we consider observed networks from the network repository [26], including protein
interactions, social, citation and neurological networks. We test the heuristics on 2748 graphs
from [26] (those with less than 10000 nodes) and filter out those graphs which are already
(k, ρ)-graphs. The results are split into four separate plots where each displays a specific
range of n. We again use kρ-DP-PC-SA+MH as baseline as illustrated in Figures 6 and 7.
On the investigated graphs kρ-DP-PC-SA+MH either matches the performance of kρ-DP or
improves upon it by up to several orders of magnitude. This culminates into a maximum
observed approximation factor of 1499.0 for ρ = n − 1, i.e., on average for each edge added by
kρ-DP-PC-SA+MH, kρ-DP adds 1499. When reducing ρ to ⌊ n−1

log(n−1) ⌋ we can still observe
a maximum approximation factor of 59.17. Including exceptional instances, the average
approximation factor over all tested graphs is σ̄ = 4.43 and σ̄ = 1.75 for ρ = n − 1 and
ρ = ⌊ n−1

log(n−1) ⌋ respectively. This provides strong empirical evidence that our new heuristic is
robust on practical instances for differing values of ρ.

7.4 Discussion

Our heuristics empirically show a good performance on real world networks and on various
random graph models. Still, this performance is conditioned on the specific parameter regimes
we tested for k and ρ. As can be seen in multiple figures, our heuristics depend on a large ρ

to detect synergies between shortcut sets and their performance quickly degrades for a lower
value of ρ. We would expect that our algorithms perform on par or worse than Blelloch et al.
heuristics for small values of ρ and k, as at least kρ-DP-PC can add unnecessary shortcuts.
Although, this is a clear limitation for our heuristics, a large value of ρ and a small value of
k is crucially needed to obtain sharper bounds for stepping based PSSSP algorithms [13].
Hence, the parameter regimes investigated are at least of theoretical relevance and further
experiments could uncover their practical importance as well7.

8 Conclusion

We showed new results regarding the complexity of kρ-MSP and provided important
theoretical insights into the lower bounds of the approximation factor of existing heuristics.
These results allowed us to derive a new heuristic built upon the work of Blelloch et al. [7].
Experimentally, our heuristic showed good performance on random graph models as well as
a wide variety of real world graphs. As such, our contributions in this work are two-pronged:
We contributed novel theoretical insights on (k, ρ)-shortcutting algorithms, as well as a
practical contribution which empirically showed the value of our developed heuristic on
simulated and real-world data.

7 Hub-Labeling (k = 2, ρ = n − 1) also led to a practical class of algorithms which are among the fastest
ones for this kind of problems [1, 11].

ESA 2024

84:16 Insights into (k, ρ)-Shortcutting Algorithms

References
1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hierarchical

hub labelings for shortest paths. In Algorithms – ESA 2012, pages 24–35, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

2 Haris Angelidakis, Yury Makarychev, and Vsevolod Oparin. Algorithmic and hardness results
for the hub labeling problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pages 1442–1461, USA, 2017. Society for
Industrial and Applied Mathematics.

3 Maxim Babenko, Andrew V. Goldberg, Haim Kaplan, Ruslan Savchenko, and Mathias Weller.
On the complexity of hub labeling (extended abstract). In Mathematical Foundations of
Computer Science 2015, pages 62–74, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

4 Albert-László Barabási. Network science book. Network Science, 625, 2014.
5 Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

URL: http://www.jstor.org/stable/43634538.
6 Shankar Bhamidi, Remco Van der Hofstad, and Gerard Hooghiemstra. First passage percolation

on the erdős–rényi random graph. Combinatorics, Probability and Computing, 20(5):683–707,
2011.

7 Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. Parallel Shortest Paths Using
Radius Stepping. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’16, pages 443–454, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2935764.2935765.

8 Andrei Z. Broder. On the Resemblance and Containment of Documents. In Proceedings of
the Compression and Complexity of Sequences 1997, SEQUENCES ’97, page 21, USA, 1997.
IEEE Computer Society.

9 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003. doi:10.1137/
S0097539702403098.

10 Manuel Costanzo, Enzo Rucci, Marcelo Naiouf, and Armando De Giusti. Performance vs
Programming Effort between Rust and C on Multicore Architectures: Case Study in N-
Body. In 2021 XLVII Latin American Computing Conference (CLEI), pages 1–10, 2021.
doi:10.1109/CLEI53233.2021.9640225.

11 Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko, and Renato F. Werneck. Hub labels:
Theory and practice. In Proceedings of the 13th International Symposium on Experimental
Algorithms - Volume 8504, pages 259–270, Berlin, Heidelberg, 2014. Springer-Verlag. doi:
10.1007/978-3-319-07959-2_22.

12 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

13 Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. Efficient stepping algorithms and
implementations for parallel shortest paths. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures, pages 184–197, 2021.

14 Tobias Friedrich and Anton Krohmer. On the diameter of hyperbolic random graphs. SIAM
Journal on Discrete Mathematics, 32(2):1314–1334, 2018. doi:10.1137/17M1123961.

15 Edgar N. Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30:1141–1144,
1959. URL: http://www.jstor.org/stable/2237458.

16 Christos Gkantsidis, Milena Mihail, and Ellen W. Zegura. The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. In Proceedings of the Fifth
Workshop on Algorithm Engineering and Experiments, Baltimore, MD, USA, January 11,
2003, pages 16–25. SIAM, 2003.

17 Siddharth Gupta, Adrian Kosowski, and Laurent Viennot. Exploiting Hopsets: Improved
Distance Oracles for Graphs of Constant Highway Dimension and Beyond. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages

http://www.jstor.org/stable/43634538
https://doi.org/10.1145/2935764.2935765
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1109/CLEI53233.2021.9640225
https://doi.org/10.1007/978-3-319-07959-2_22
https://doi.org/10.1007/978-3-319-07959-2_22
https://doi.org/10.1137/17M1123961
http://www.jstor.org/stable/2237458

A. Leonhardt, U. Meyer, and M. Penschuck 84:17

143:1–143:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2019.143.

18 Lester R. Ford Jr. Network Flow Theory. RAND Corporation, Santa Monica, CA, 1956.
19 Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer

Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

20 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, September 2010.
doi:10.1103/PhysRevE.82.036106.

21 Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck. K-Rho-Shortcutting Heuristics.
Software, swhId: swh:1:dir:8965d090c1d32ea024b1bb4b111329990a156b37 (visited on 2024-
08-09). URL: https://github.com/alleonhardt/k-rho-shortcutting.

22 Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck. Insights into (k, ρ)-shortcutting
algorithms, 2024. arXiv:2402.07771.

23 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

24 Ulrich Meyer and Peter Sanders. ∆-Stepping: A Parallel Single Source Shortest Path Algorithm.
In Algorithms — ESA’ 98, pages 393–404, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

25 Mathew Penrose. Random Geometric Graphs. Oxford University Press, May 2003. doi:
10.1093/acprof:oso/9780198506263.001.0001.

26 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. URL: http://networkrepository.com.

ESA 2024

https://doi.org/10.4230/LIPIcs.ICALP.2019.143
https://doi.org/10.1103/PhysRevE.82.036106
https://archive.softwareheritage.org/swh:1:dir:8965d090c1d32ea024b1bb4b111329990a156b37;origin=https://github.com/alleonhardt/k-rho-shortcutting;visit=swh:1:snp:8185b97dfef89ed4f4b0e5ae16a2b7baf76ea267;anchor=swh:1:rev:54e9d8b70fe67eb89761792fc4081482c6f11c9d
https://github.com/alleonhardt/k-rho-shortcutting
https://arxiv.org/abs/2402.07771
http://snap.stanford.edu/data
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
http://networkrepository.com

	1 Introduction
	2 Preliminaries
	3 Complexity of kρ-MSP
	3.1 Transforming Vertex Cover to kρ-MSP
	3.2 Solving Vertex Cover

	4 A lower bound on the approximation ratio of kρ-DP
	5 The kρ-DP-* family of heuristics
	5.1 Pair shortCutting: kρ-DP-PC
	5.2 Set Alignment: kρ-DP-SA
	5.3 MinHash

	6 Optimal algorithm
	7 Experiments
	7.1 Experimental evaluation
	7.2 Measuring solution quality and speedup
	7.3 Performance on real world graphs
	7.4 Discussion

	8 Conclusion

