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Abstract
For a tree decomposition T of a graph G, by µ(T ) we denote the size of a largest induced matching
in G all of whose edges intersect one bag of T . The induced matching treewidth of a graph G is the
minimum value of µ(T ) over all tree decompositions T of G. Yolov [SODA 2018] proved that for
graphs of bounded induced matching treewidth, tree decompositions with bounded µ(T ) can be
computed in polynomial time and Max Weight Independent Set can be solved in polynomial
time.

In this paper we explore what other problems are tractable in such classes of graphs. As our
main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We
also provide some positive results concerning packing induced subgraphs, which in particular imply
a PTAS for the problem of finding a largest induced subgraph of bounded treewidth.

These results suggest that in graphs of bounded induced matching treewidth, one could find
in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given
CMSO2 formula. We conjecture that such a result indeed holds and prove it for graphs of bounded
tree-independence number, which form a rich and important family of subclasses of graphs of
bounded induced matching treewidth.

We complement these algorithmic results with a number of complexity and structural results
concerning induced matching treewidth, including a linear relation to treewidth for graphs with
bounded degree.
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1 Introduction

Structured graph decompositions and the corresponding graph width parameters have become
one of the central tools for dealing with algorithmically hard graph problems. One of the
best known and well-studied graph width parameters is treewidth, which was introduced
independently by several groups of authors with various motivations [7, 13,36,55]. Roughly
speaking, treewidth measures how similar the graph is to a tree. A graph G with small
treewidth can be represented by a tree T whose every node holds a small subset (called
bag) of vertices of V (G), such that the connectivity properties of G are reflected in the local
structure of T (and the bags). A tree decomposition T consists of the tree T and a function
that assigns a bag to each node of T , and the width of T is the size of its largest bag minus 1
(this is by convention). The treewidth tw(G) is the minimum width of a tree decomposition
of G.

Having a tree decomposition of small width is excellent for algorithmic applications, as
we can mimic the standard bottom-up dynamic programming on trees. For example, in
order to solve Max Weight Independent Set (MWIS), the dynamic programming table
for each node of T should be indexed by all possible independent sets in the corresponding
bag. Consequently, if each bag is small, say, its size is bounded by a constant k, the running
time we obtain is 2k · (n+ |V (T )|)O(1) where n := |V (G)|. As |V (T )| can be assumed to be
linear in n, this yields a polynomial-time algorithm for MWIS when restricted to graphs of
bounded treewidth.

Such an approach has found numerous applications in solving classic NP-hard problems
on graphs with bounded treewidth; see the handbook by Cygan et al. [24, Section 7]. The
richness of the family of problems that can be solved by a dynamic programming over a tree
decomposition is witnessed by the celebrated meta-theorem by Courcelle [23]. It asserts that
each problem expressible in Counting Monadic Second Order Logic (CMSO2)1can be solved
in polynomial time (actually, in linear time) for graphs of bounded treewidth.

An astute reader might notice a caveat in the results mentioned above: they assume that
the input graph is given with a corresponding decomposition. This might be a serious obstacle,
as computing an optimal tree decomposition is NP-hard [7, 15]. However, if treewidth is
bounded by a constant, an optimal decomposition can be found in polynomial time [14, 41].
Actually, in the context discussed above even an approximation of an optimal decomposition is
sufficient. Luckily, such approximation algorithms are known not only for treewidth [16,40,56],
but also for other parameters discussed in the paper [28,60]. Thus, we will implicitly assume
that the instance graphs are always provided with a corresponding tree decomposition.

1 In this logic one can use vertex, edge, and (vertex or edge) set variables, check vertex-edge incidence,
quantify over variables, and apply counting predicates modulo fixed integers. For a formal introduction,
see the full version of the paper [44].



P. T. Lima, M. Milanič, P. Muršič, K. Okrasa, P. Rzążewski, and K. Štorgel 85:3

Let us go back to the MWIS problem, which serves as the starting point of our invest-
igations. Notice that in the argument sketched above we do not really need the fact that
the treewidth is bounded by a constant. Indeed, if the size of each bag is bounded by a
logarithmic function of n, then the number of all independent sets in a single bag is bounded
by 2O(log n) = nO(1), i.e., by a polynomial, which still yields a polynomial-time algorithm for
MWIS. This is one of the motivations to study classes of graphs with logarithmic treewidth,
which has been a very active topic in structural graph theory in recent years [3, 18].

However, the crux of the algorithm above is not really the size of the bag, but the number
of independent sets inside each bag. Consider, for example, the class of chordal graphs,
i.e., graphs that do not contain an induced cycle with at least four vertices. Equivalently,
these are graphs that admit a tree decomposition whose every bag is a clique. Even though
these cliques can be arbitrarily large, they still contain very few (that is, polynomially many)
independent sets and thus such a decomposition can be used to solve MWIS in polynomial
time.

This observation is heavily extended by the framework of potential maximal cliques
by Bouchitté and Todinca [19]. Essentially, there we work with an implicitly given tree
decomposition whose every bag is promised to contain only a constant number of vertices
from the optimal independent set. This approach allows us, for example, to solve MWIS and
many related problems for graph classes with polynomially many minimal separators [19, 32].
With some care, it can also be used for other graph classes, e.g., graphs that exclude a fixed
induced path [35,45] or long induced cycles [4].

Another, more direct way of generalizing bounded-treewidth graphs and chordal graphs
was suggested by Yolov [60] and later, independently, by Dallard, Milanič, and Štorgel [27].
We use the notation and terminology of Dallard et al. [27]. Given a tree decomposition T
of a graph G, by α(T ) we denote the size of a largest independent set contained in a bag
of T . The tree-independence number of G, denoted by tree-α(G), is the minimum value of
α(T ) over all tree decompositions T of G. Note that given a tree decomposition T of G with
α(T ) ⩽ k, we can solve MWIS on G in time nO(k), which is polynomial for constant k. Let
us remark that we always have tree-α(G) ⩽ tw(G) + 1 and if G is chordal, then tree-α(G) ⩽ 1
(actually, the reverse implication also holds [27]). Tree-independence number proved to be a
fruitful topic in recent years and attracted some attention, both with structural [1, 25] and
algorithmic [27,28] motivations.

In a recent work, Dallard, Fomin, Golovach, Korhonen, and Milanič [28] showed that
tree-independence number is in a sense the most general “natural” parameter of a tree
decomposition whose boundedness yields a polynomial-time algorithm for MWIS. More
precisely, let γ be any graph invariant satisfying γ(G− v) ⩽ γ(G) for any graph G and any
v ∈ V (G). For a tree decomposition T of a graph G, define γ(T ) as the maximum value of
γ(B) taken over all subgraphs B induced by a single bag of T . By γtw(G) we denote the
minimum value of γ(T ) over all tree decompositions T of G.2 Note that if γ(G) = |V (G)|−1,
then γtw is precisely the treewidth, and if γ(G) is the size of a largest independent set in G,
then γtw is the tree-independence number. Dallard et al. [28] showed that for every invariant
γ as above, either γtw(G) is upper-bounded by a function of tree-α(G) (i.e., boundedness of
γtw(G) implies boundedness of tree-α(G)), or MWIS remains NP-hard even for graphs G
with constant γtw(G).

2 While not immediately relevant for our paper, it may be worth mentioning that such tree decomposition
based parameters can also be defined and studied in the more general context of hypergraphs (see [5,47,
60]).
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Six years earlier, Yolov [60] (obviously unaware of the work of Dallard et al. [28]) had
defined another, more general parameter of a tree decomposition that can still be used to solve
MWIS. There is no contradiction here – Yolov’s parameter does not fall into the category of
“natural” parameters considered by Dallard et al. In the original paper of Yolov [60], the
parameter in question is called minor-matching hypertree width and is defined in a much
more general setting of hypergraphs. As such a general definition is not relevant to our work,
let us focus on the case of graphs; here we will call this parameter induced matching treewidth.
For a tree decomposition T of G, by µ(T ) let us denote the size of a largest induced matching
in G all of whose edges intersect a single bag of T (we say that such a matching touches this
bag). Now, the induced matching treewidth of G, denoted by tree-µ(G), is the minimum
value of µ(T ) over all tree decompositions T of G. Note that µ(T ) does not depend only
on subgraphs induced by single bags, as some edges of an induced matching defining µ(T )
might have one endpoint outside the bag.

It follows immediately from the definitions that for every graph it holds that tree-µ(G) ⩽
tree-α(G). On the other hand, boundedness of induced matching treewidth does not imply
boundedness of tree-independence number: for a biclique Kn,n with each part of size n we
have tree-µ(Kn,n) = 1 but, as observed by Dallard et al. [27], tree-α(Kn,n) = n. Thus indeed,
induced matching treewidth is a more general parameter.

It is also important to note that the families of graph classes with bounded induced
matching treewidth and classes of graphs with polynomially many minimal separators are
incomparable. For example, the class of all graphs Gk consisting of k internally disjoint paths
of length three with the same endpoints has bounded treewidth and hence bounded induced
matching treewidth, but graphs in the class have exponentially many minimal separators
(it is not difficult to see that the graph Gk has at least 2k minimal separators). On other
other hand, P4-free graphs have a polynomial number of minimal separators (see [50]) but
unbounded induced matching treewidth. This follows from a construction that we present in
the full version of the paper [44].

At first it is not clear why boundedness of induced matching treewidth is helpful in solving
MWIS. However, the following structural result by Yolov [60] is the key to understanding
the connection between these two notions.

▶ Lemma 1 (Yolov [60]). Let k be a fixed integer. For an n-vertex graph G, a tree decompos-
ition T of G with µ(T ) ⩽ k, and a node t of T , in time nO(k) we can enumerate a set It

with the following property: For every maximal independent set I, its intersection with the
bag associated with t is in It.

Since every maximum independent set is in particular maximal, this immediately implies
that the number of ways an optimal solution might intersect each bag of T is polynomial in
n, if k is a constant. Using also the fact that given a graph with induced matching treewidth
at most k, in polynomial time we can compute a tree decomposition such that µ(T ) = O(k)
(see Theorem 13), we obtain the following algorithmic result as a consequence.

▶ Theorem 2. For every fixed k, the MWIS problem on n-vertex graphs G with tree-µ(G) ⩽ k

can be solved in time nO(k).

The tools developed by Yolov [60] can also be used to solve other problems that boil down
to finding a constant number of (maximal) independent sets, like r-Coloring or finding a
homomorphism to a fixed target graph. Even though this was not stated explicitly in [60],
one can also obtain a polynomial-time algorithm for the problem of finding a largest induced
r-colorable subgraph. For r = 2 this problem is equivalent (by taking the complement of the
solution) to Min Odd Cycle Transversal.
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The main goal of this paper is to explore what other problems that do not fall into the
above category can be solved in polynomial time in classes of bounded induced matching
treewidth. Recall that for bounded-treewidth graphs, a rich family of tractable problems
is provided by the meta-theorem of Courcelle [23]. For graphs G with polynomially many
minimal separators, where the framework of potential maximal cliques can be applied, a
somewhat similar general result is provided by Fomin, Todinca, and Villanger [32]. For fixed
integer r and fixed CMSO2 formula ψ, by (r, ψ)-MWIS we denote the following computational
problem (here “MWIS” stands for Max Weight Induced Subgraph).

Input: A graph G equipped with a weight function w : V (G) → Q+.
Task: Find a set F ⊆ V (G), such that

G[F ] |= ψ,
tw(G[F ]) ⩽ r,
F is of maximum weight subject to the conditions above,

or conclude that no such set exists.

(r, ψ)-MWIS

Fomin, Todinca, and Villanger [32] proved that for each fixed r and ψ, the (r, ψ)-MWIS
problem can be solved in time polynomial in the size of the input graph G and the number
of minimal separators in G. Thus the running time is polynomial when restricted to classes
of graphs with polynomial number of minimal separators.

Algorithms for (r, ψ)-MWIS are also known for graphs excluding a fixed induced path,
or graphs excluding long induced cycles [4, 22,33]. We conjecture that (r, ψ)-MWIS can also
be solved in polynomial time for graphs of bounded induced matching treewidth.

▶ Conjecture 3. For every fixed k, r and a CMSO2 formula ψ, the (r, ψ)-MWIS problem
can be solved in polynomial time for graphs with induced matching treewidth at most k.

Even though we are not (yet) able to prove Conjecture 3, we provide some substantial
evidence by approaching it from three different directions.

2 Overview of our results

The paper contains three main algorithmic contributions, as well as an initial set of results
regarding induced matching treewidth, including computational results and bounds. We give
an overview of these four sets of results and their implications in the following subsections.
Due to space limits, all proofs of results listed above can be found in the full version of the
paper [44].

2.1 Solving Max Weight Induced Forest
As our first and main result, we show that in graphs of bounded induced matching treewidth,
one can in polynomial time find an induced forest of maximum possible weight.

▶ Theorem 4. For every fixed k, the Max Weight Induced Forest problem on n-vertex
graphs G with tree-µ(G) ⩽ k can be solved in time nO(k).

Note that Max Weight Induced Forest is equivalent to finding a maximum-weight
induced subgraph of treewidth at most 1, i.e., is a special case of (r, ψ)-MWIS for r = 1 and ψ
being any formula satisfied by all graphs. Furthermore, by complementation, Max Weight
Induced Forest is equivalent to the well-studied Min Weight Feedback Vertex Set
problem.

ESA 2024
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Before sketching the proof of Theorem 4, let us recall the textbook algorithm for Max
Weight Induced Forest for graphs of bounded treewidth (see [24]). Let T be a tree
decomposition of the instance graph, t be a node of T , and Xt be the bag corresponding
to t. For each set Z ⊆ Xt and each partition π of Z, we keep the maximum weight of an
induced forest F contained in the subgraph of G induced by the bags of the subtree of T
rooted at t, such that:

the intersection of V (F ) with Xt is exactly Z, and
the partition π corresponds to the connected components of F .

For any induced forest F in G, we call a pair (Z, π) as above the signature of F at t. Now,
processing T in a bottom-up fashion, we can find a maximum-weight induced forest in G

using the information stored for each node.
The key insight leading to the proof of Theorem 4 is the following structural lemma.

▶ Lemma 5. Let k be a fixed integer. For an n-vertex graph G, a tree decomposition T of G
with µ(T ) ⩽ k, and a node t of T , in time nO(k) we can enumerate a set Ft that contains
the signature at t of every maximal induced forest in G.

Recall that an analogous result for MWIS was shown by Yolov [60] (see Lemma 1):
for each bag Xt corresponding to a node t of a tree decomposition T of bounded µ(T ), in
polynomial time we can enumerate a family It that contains an intersection of each maximal
independent set in G with Xt.

As every maximum induced forest is in particular inclusion-wise maximal, Lemma 5
allows us to solve Max Weight Induced Forest by essentially mimicking the textbook
algorithm for bounded-treewidth graphs. We just need to find the set Ft for each node t of
T , and instead of indexing the dynamic programming table by all possible pairs (Z, π), we
use just the pairs that are in Ft. This yields the running time claimed in Theorem 4.

So let us sketch the proof of Lemma 5.

What lives in a forest. Let F be a maximal induced forest in G; we think of it as an
(unknown) optimal solution. Consider a node t of T and its corresponding bag Xt. The
difficulty that we need to face is that the intersection of F with Xt might be arbitrarily large;
for example, a component of F might be a large induced star contained in Xt. Thus we need
to find some compact way to encode such possible intersections.

Let (F ) be the skeleton of F , i.e., the set of vertices of degree at least two in F together
with an arbitrary but fixed vertex vC of each two-vertex component C of F . By L(F ) and
T (F ) we denote, respectively, the sets of vertices of degree 1 (leaves) and of degree 0 (trivial
vertices) of F , with the exception that for each two-vertex component C of F we include in
L(F ) exactly one vertex from C, namely the vertex of C different from vC . Clearly, the sets

(F ), L(F ), T (F ) form a partition of the vertex set of F .

Finding the skeleton. The first important observation is that for every node t of T , the set
S := (F ) ∩Xt cannot be too large in terms of k. Let us sketch the argument. Note that
S induces a forest in G. First, each vertex v of degree at most 1 in G[S], since it belongs
to (F ), must be adjacent to some vertex v′ in L(F ) (not necessarily inside Xt), and the
edges of the form vv′ induce a matching whose every edge intersects Xt. Thus there can
be at most k vertices of degree at most 1 in G[S]. Consequently, G[S] can have at most k
vertices of degree at least 3. Finally, G[S] cannot contain long induced paths, as again, an
induced path with 3k − 1 vertices contains an induced matching with k edges. Altogether
this allows us to bound the number of vertices of G[S] by a function of k. A more careful
analysis shows that |S| ⩽ 8k. Thus we can directly enumerate all candidates for (F ) ∩Xt.
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Finding the the remaining vertices and detecting impostors. So we are left with finding
an encoding of the set (L(F ) ∪ T (F )) ∩ Xt. Observe that

...
l(F ) := L(F ) ∪ T (F ) is an

independent set in G. However, this is not very useful, as L(F ) ∪ T (F ) does not have to be
maximal and we only have some information about the intersections of maximal independent
sets with Xt, namely, by Lemma 1, they have to be in It, which is of polynomial size. Let
I∗(F ) be some maximal independent set of G containing

...
l(F ); we know that its intersection

I with Xt can only be chosen in a polynomial number of ways. However, I contains some
vertices that are not in the solution (called impostors) and we should not consider their
weight when choosing an optimal solution. Why does a vertex v ∈ I not belong to

...
l(F )?

As F is a maximal forest, there are two possible reasons why v is an impostor:
v ∈ (F ), or
adding v to F would create a cycle.

Note that the vertices of the first type can be easily recognized as S = (F ) ∩Xt is directly
represented. On the other hand, each vertex v of the second type is adjacent to at least two
vertices from some connected component of F . Furthermore, we know that these two vertices
are in (F ), as

...
l(F ) ∪ {v} ⊆ I∗(F ) and I∗(F ) is independent. If these two neighbors of

v in (F ) are in Xt, we are done, as we can guess the set S = (F ) ∩ Xt. However, the
neighbors may lie outside the bag Xt.

Summing up, the type of a vertex v ∈ I \ S (which may or may not belong to
...
l(F )) is

determined by its neighborhood in Ŝ := (F ) ∩N [Xt], where by N [Xt] we denote the set
consisting of the vertices from Xt and their neighbors. If v has no neighbors in Ŝ, then v is
trivial, i.e., v ∈ T (F ). If v has one neighbor in Ŝ, then v is a leaf, i.e., v ∈ L(F ). Finally, if
v has at least two neighbors in Ŝ, then v is an impostor, i.e., v ∈ I \

...
l(F ). If we could store

the information about the set Ŝ explicitly, we could easily distinguish between these three
types of vertices. Unfortunately, the set Ŝ might still be arbitrarily large. So we need to
make one more step: we observe that an inclusion-wise minimal subset Q of Ŝ that still can
distinguish between the three types of vertices in I \ S is of size bounded by a function of k.
In particular, we show that |Q| ⩽ 4k. Thus we can guess every candidate for Q.

Enumerating possible signatures. From the argument above it follows that the triple
(S, I,Q) can be exhaustively guessed in a polynomial number of ways. Furthermore, thanks
to the properties of Q, we can uniquely extract L(F )∩Xt and T (F )∩Xt from I, distinguishing
vertices by their number of neigbors in Q. This way we can compute Z, i.e., the intersection
of F with Xt.

In order to obtain π, we can exhaustively guess the partition π̂ of S ∪Q that corresponds
to the components of F restricted to the subgraph of G induced by the bags in the subtree
rooted at t. Here we use the fact that the size of S ∪Q is bounded by a function of k, i.e., a
constant. From π̂ we can uniquely reconstruct π, as each vertex in L(F ) ∩Xt has a neighbor
in S ∪Q, and each vertex in T (F ) forms a separate component. This completes the sketch
of proof of Lemma 5.

2.2 Independent packings of connected subgraphs

Let H = {Hj}j∈J be a family of connected subgraphs of a graph G. By G◦[H] we denote
the graph with vertex set J , where two distinct vertices j, j′ ∈ J are adjacent if Hj and
Hj′ have a vertex in common or there is an edge with one endpoint in Hj and the other in

ESA 2024



85:8 Tree Decompositions Meet Induced Matchings

Hj′ .3 Such a construction was considered by Cameron and Hell in [21], who focused on the
particular case when H is the set of all subgraphs of G isomorphic to a member of a fixed
family F of connected graphs; they showed that if G is a chordal graph, then so is G◦[H].
Dallard et al. [27] generalized this result by showing that tree-α(G◦[H]) ⩽ tree-α(G). Other
graph classes closed under taking G◦[H] are classes of graphs excluding long induced paths
or long induced cycles; see Gartland et al. [34]. We show that an analogous statement holds
for graphs with bounded induced matching treewidth.

▶ Lemma 6. Let G be a graph and let H be a set of connected non-null subgraphs of G.
Then tree-µ(G◦[H]) ⩽ tree-µ(G).

In order to prove Lemma 6, we start with a tree decomposition T of G of small induced
matching treewidth. Now we modify T into a tree decomposition of G◦[H] as follows. The
shape of the tree is not altered, and for every node t of T , its associated bag becomes
{j ∈ J | V (Hj) ∩ Xt ̸= ∅}, where Xt is the bag assiociated with t in T . It is not hard to
verify that any induced matching touching a single bag of the modified tree decomposition
corresponds to an induced matching of the same size that touches the corresponding bag
of T . Let us remark that if every graph in H has at least two vertices, this even yields a
stronger result that tree-α(G◦[H]) ⩽ tree-µ(G).

Lemma 6 yields several algorithmic corollaries.

Independent packings of small connected subgraphs. First, notice that the MWIS problem
on G◦[H] (with some weight function defined on J) corresponds to the problem of packing
pairwise disjoint and nonadjacent graphs from H, called Max Weight Independent
Packing. Thus, combining Lemma 6 with Theorem 2, we show that Max Weight
Independent Packing in classes of bounded induced matching treewidth can be solved in
time polynomial in the size of G and H.

▶ Theorem 7. Let k be a fixed constant. Given a graph G of induced matching treewidth at
most k and a finite family H = {Hj}j∈J of connected non-null subgraphs of G, and a weight
function w : J → Q+, the Max Weight Independent Packing problem can be solved in
time polynomial in |V (G)| and |H|.

When H is the set of all subgraphs of G isomorphic to a member of a fixed family F of
connected graphs, then Max Weight Independent Packing coincides with the Max
Weight Independent F-Packing problem studied in Dallard et al. [27]. This latter
problem in turn generalizes several problems studied in the literature:

the MWIS problem, which corresponds to the case F = {K1},
the Max Weight Induced Matching problem (see, e.g., [6, 53]), which corresponds to
the case F = {K2},
the Dissociation Set problem (see, e.g., [51, 59, 61]), which corresponds to the case
when F = {K1,K2} and the weight function assigns to each subgraph Hj the weight
equal to |V (Hj)|,
the k-Separator problem (see, e.g., [9, 42,43]), which corresponds to the case when F
contains all connected graphs with at most k vertices, the graph G is equipped with a
vertex weight function w : V (G) → Q+, and the weight function on H assigns to each
subgraph Hj the weight equal to

∑
x∈V (Hj) w(x).

3 This extends the notation G◦ used in [33] for the graph G◦[H] in the particular case when H is the set
of all non-null connected subgraphs of G.
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Independent packings of sparse connected subgraphs. Observe that Max Weight
Induced Forest for a weighted graph G is equivalent to Max Weight Independent
Packing for an instance G, H (and w), where H consists of all induced subtrees of G (and
the weight of Hj is the total weight of the vertices in Hj). Despite that, we note that
Theorem 7 cannot be used to solve Max Weight Induced Forest in polynomial time.
Indeed, the size of H is not bounded by a polynomial function of |V (G)|.

However, Lemma 6 might still be of use in this context. As already observed by Gartland
et al. [34], we can sacrifice a small part of the optimal solution to break it into constant-size
parts, which can then be handled efficiently. Indeed, for each ϵ > 0 and any forest F we can
remove an ϵ-fraction of the vertices of F so that the remaining components are of constant
size (where this constant depends on ϵ but not on F ). This approach can be used to obtain
a PTAS for Max Induced Forest (the unweighted variant of Max Weight Induced
Forest).

Actually, this reasoning goes far beyond trees and can be used to pack large induced
subgraphs from any weakly hyperfinite class. A class C of graphs is weakly hyperfinite if for
every ϵ > 0 there is c(ϵ) ∈ N such that in every graph G ∈ C there is a subset X ⊆ V (G) of
at least (1 − ϵ)|V (G)| vertices such that every connected component of G[X] has at most
c(ϵ) vertices [49, Section 16.2]. It turns out that every class that is closed under vertex
and edge deletions and admits sublinear balanced separators is weakly hyperfinite. Many
well-known classes of sparse graphs are weakly hyperfinite, e.g., graphs of bounded treewidth,
planar graphs and, more generally, graphs of bounded genus. In fact, all proper minor-closed
classes are weakly hyperfinite. As graphs of treewidth bounded by a fixed constant form
a minor-closed class, we obtain the following result which provides further evidence for
Conjecture 3.

▶ Theorem 8. For every fixed k, r ∈ N and ϵ > 0, given a graph G with induced matching
treewidth at most k, in polynomial time we can find a set F ⊆ V (G) such that:
1. tw(G[F ]) ⩽ r,
2. the size of F is at least (1 − ϵ)OPT, where OPT is the size of a largest set satisfying the

first condition.
The idea behind the proof is as follows. Let F be an (unknown) optimum solution. Since

F belongs to a weakly hyperfinite class, for every ϵ > 0, there exists a subset X ⊆ F of
size at least (1 − ϵ)|F |, such that every component of G[X] is of constant size (where this
constant depends on ϵ). Thus we can enumerate all candidate for the components of G[X]
and proceed using Theorem 7.

Note that the problem addressed in Theorem 8 is a special case of (r, ψ)-MWIS obtained
by taking ψ to be any formula satisfied by all graphs and w to be a uniform weight function.

Packings of small connected subgraphs at fixed even distance. Next, we generalize
the polynomial-time solvability of the Max Weight Independent Packing problem for
graphs of bounded induced matching treewidth to Max Weight Distance-d Packing: the
problem of packing subgraphs at distance d, for all even positive integers d. The case d = 2 is
precisely Max Weight Independent Packing. We remark that unless P = NP, this result
cannot be generalized to odd values of d, since (as shown by Eto, Guo, and Miyano [31]),
the distance-3 variant of Max Independent Set problem is NP-hard for chordal graphs,
which have induced matching treewidth (and even tree-independence number) at most one.

This extension again follows from a structural observation that may be of independent
interest. Given a graph G and a positive integer d, we denote by Gd the d-th power of G,
that is, the graph obtained from the graph G by adding to it all edges between pairs of
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distinct vertices at distance at most d. Consequently, Max Weight Distance-d Packing
in a graph G is equivalent to Max Weight Independent Packing in Gd−1. We show the
following result.

▶ Lemma 9. Let G be a graph with at least one edge and d a positive integer. Then

tree-µ(Gd+2) ⩽ tree-α(Gd+2) ⩽ tree-µ(Gd) ⩽ tree-α(Gd) .

This is a significant generalization of a result of Duchet [30], who proved an analogous
result for graphs with tree-independence number at most one: if Gd is chordal, then so is
Gd+2. As a consequence, we obtain that for every positive integer d, the class of graphs
with induced matching treewidth (resp. tree-independence number) at most d is closed under
taking odd powers.

▶ Lemma 10. Let G be a graph and d be a positive odd integer. Then tree-α(Gd) ⩽ tree-α(G)
and tree-µ(Gd) ⩽ tree-µ(G).

Lemma 10 generalizes a result due to Balakrishnan and Paulraja [8] stating that the class
of chordal graphs is closed under taking odd powers.

Combining Lemma 10 with Theorem 7 yields the following algorithmic corollary.

▶ Theorem 11. For every positive integer k and even positive integer d, given a graph G of
induced matching treewidth at most k, a finite family H = {Hj}j∈J of connected non-null
subgraphs of G, and a weight function w : J → Q+ on the subgraphs in H, the Max Weight
Distance-d Packing problem is solvable in time polynomial in |V (G)| and |H|.

We complement these results by observing that the class of even powers of chordal graphs
(for any fixed power) is not contained in any nontrivial hereditary graph class. This implies
in particular that any such class has unbounded tree-independence number and induced
matching treewidth.

2.3 Solving (r, ψ)-MWIS for bounded tree-independence number
Finally, we show that (r, ψ)-MWIS can be solved in polynomial time for graphs of bounded
tree-independence number. As shown by Dallard et al. [25], many natural graph classes fall
into this category. Furthermore, they all have bounded induced matching treewidth.

Actually, we show tractability of a more general problem, where instead of asking for a
subgraph of bounded treewidth, we ask for a subgraph of clique number bounded by r; let
us call this variant (ω ⩽ r, ψ)-MWIS. We remark that (ω ⩽ r, ψ)-MWIS is a generalization
of (r − 1, ψ)-MWIS, as every graph of treewidth at most r − 1 has clique number at most r
and the property of being of bounded treewidth can be expressed in CMSO2 [34, Lemma
10]. On the other hand, there are natural classes of graphs of bounded clique number and
unbounded treewidth, e.g., bipartite graphs or planar graphs. However, one can observe
that for graphs of bounded tree-independence number, treewidth is upper-bounded by a
function of the clique number (see [27]); this phenomenon is called (tw, ω)-boundedness in
the literature (see, e.g., [26]). Thus we conclude that in classes of bounded tree-independence
number, both (ω ⩽ r, ψ)-MWIS and (r, ψ)-MWIS formalisms describe the same family of
problems.

▶ Theorem 12. For every fixed k, r and a CMSO2 formula ψ, the (ω ⩽ r, ψ)-MWIS for
graphs with tree-independence number at most k can be solved in polynomial time.
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Some examples of problems that can be solved in polynomial time with this approach
include:

finding a largest induced planar subgraph (which is equivalent to Planarization [38,54]),
finding a largest induced odd cactus (which is equivalent to Even Cycle Trans-
versal [10, 48,52]),
finding a largest set of vertices inducing a subgraph of maximum degree at most k (see,
e.g., [37]), and
finding the maximum number of pairwise disjoint and non-adjacent cycles (for this
problem we need a slightly stronger variant of Theorem 12 that we also prove).

In particular, these results solve an open problem regarding the complexity of finding a
largest set of vertices inducing a subgraph of maximum degree at most k on interval graphs
(see [37, Table 2]).

We point out that the bound on the clique number of the sought-for subgraph must be
constant. Indeed, the property of being a clique is easily expressible in CMSO2, but Max
Clique is NP-hard for graphs with tree-independence number 2.

2.4 Computational and structural aspects of induced matching
treewidth

As already announced in the introduction, given a graph of bounded induced matching
treewidth, in polynomial time we can compute its tree decomposition of bounded induced
matching treewidth (however, the bound here can be larger). Formally speaking, we have
the following result (it can be seen as a constant-factor XP-time approximation algorithm for
induced matching treewidth).
▶ Theorem 13. Let k be a positive integer and let G be an n-vertex graph satisfying
tree-µ(G) ⩽ k. Then, in time nO(k) we can obtain a tree decomposition T of G such that
µ(T ) ⩽ 8k.

This result follows by combining an analogous result of Dallard et al. [28] for tree-
independence number with known structural observations concerning relationships between
tree-independence number and induced matching treewidth [60].

It is a natural question whether this algorithm can be significantly improved, in particular:
1. Can induced matching treewidth be computed exactly in XP-time?
2. Can induced matching treewidth be approximated in FPT-time?

It turns out that, again, known relations between the induced matching treewidth the tree-
independence number [60] together with known results on tree-independence number [27, 28]
and independence number [62] imply negative answers to these (and similar) questions. We
summarize them below.

▶ Theorem 14. The following lower bounds hold.
1. For every constant k ⩾ 4, it is NP-complete to decide whether tree-µ(G) ⩽ k for a

graph G.
2. For every ε > 0, there is no polynomial-time algorithm for approximating induced matching

treewidth of an n-vertex graph to within a factor of n1−ε unless P = NP.
3. There is no constant-factor FPT-approximation algorithm for induced matching treewidth,

unless FPT = W[1].
4. For any computable functions f, g, there is no g(k)-approximation algorithm for computing

induced matching treewidth in time f(k) · no(k), unless the Gap-ETH fails.4

4 Gap-ETH states that for some constant ϵ > 0, distinguishing between a satisfiable 3-SAT formula and
one that is not even (1 − ϵ)-satisfiable requires exponential time (see [29,46]).
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While the complexity of recognizing graphs with induced matching treewidth k for
k ∈ {2, 3} remains open, we show that the problem is solvable in polynomial time for k = 1.
To this end, we first prove that induced matching treewidth is monotone under induced
minors, that is, it cannot decrease upon deleting a vertex or contracting an edge. Then, we
use a characterization of graphs G such that the square of the line graph of G is chordal
(see [57]) to characterize the class of graphs with induced matching treewidth at most 1
in terms of a finite family of forbidden induced minors. This characterization implies that
the family of forbidden induced subgraphs for this class is very restricted, containing only
finitely many graphs except for cycles of length at least 6, which immediately leads to a
polynomial-time recognition algorithm.

We then consider the behavior of induced matching treewidth for graphs with bounded
degree, in particular, its relation to tree-independence number and treewidth. While any
graph class with unbounded induced matching treewidth is necessary of unbounded tree-
independence number and hence of unbounded treewidth, it is known that the converse
implications hold in the absence of a fixed complete bipartite graph as a subgraph (see the full
version of the paper for details). In particular, for any class of graphs with bounded maximum
degree, all the aforementioned parameters (induced matching treewidth, tree-independence
number, and treewidth) are all equivalent to each other, in the sense that they are either
all bounded or all unbounded. We strengthen this result by showing that for any class of
graphs with bounded maximum degree, the three parameters are in fact linearly related to
each other.

▶ Theorem 15. For every graph G with at least one edge, it holds that
1. tree-α(G) ⩽ 2tree-µ(G) · ∆(G)2, and
2. tw(G) ⩽ 2tree-µ(G) · ∆(G)2(∆(G) + 1).

Finally, we consider two families of graphs with unbounded maximum degree. We give a
lower bound on the induced matching treewidth of hypercube graphs and identify a family
of P4-free graphs with unbounded induced matching treewidth.

3 Further research directions

The obvious direction for further research is to show Conjecture 3. A somewhat easier, but
still very interesting problem, would be to show the following result, which significantly
strengthens both Theorem 4 and Theorem 8.

▶ Conjecture 16. Let k, r ∈ N be fixed. Let G be a graph with induced matching treewidth at
most k, equipped with a weight function w : V (G) → Q+. In polynomial time we can find a
maximum-weight induced subgraph of G with treewidth at most r.

We believe that the right way of approaching Conjecture 16 is to prove an analogue
of Lemmas 1 and 5: for each node of a tree decomposition of bounded induced matching
treewidth, there is only a polynomial number of states of the natural dynamic programming
algorithm (developed for bounded-treewidth graphs [17]) that represent an inclusion-maximal
induced subgraph of treewidth at most r.

Another interesting question is to try to find a “better parameter” than induced matching
width. Recently, Bergougnoux et al. [12] introduced one-sided mim-width (or o-mim-width),
which can be seen as a unification of tree-independence number and mim-width, another well-
established graph width parameter useful in solving MWIS and many other problems [11].
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Just like the definition of induced matching treewidth, the definitions of mim-width and
one-sided mim-width are also based on the size of a maximum induced matching in certain
subgraphs of the graph (however, instead of tree decompositions they are based on branch
decompositions). While induced matching treewidth lower-bounds the tree-independence
number, it is incomparable with one-sided mim-width (and mim-width). Bergougnoux et
al. [12] proved a result analogous to Theorem 4 for graphs given with a decomposition with
bounded one-sided mim-width.

An interesting parameter that is also based on induced matchings and that in fact
captures all these notions (o-mim-width, mim-width, tree-independence number, and induced
matching treewidth) is sim-width, a graph parameter introduced in 2017 by Kang, Kwon,
Strømme, and Telle (see [39]). One of the main open problems related to sim-width, first
asked in [39], is whether MWIS is solvable in polynomial time for graphs with bounded
sim-width.

The relationships between all these parameters and some others are summarized in
Figure 1.

bounded tree-independence number

bounded treewidth

bounded clique-width

bounded mim-width

bounded sim-width

bounded o-mim-widthbounded induced matching treewidth

Figure 1 Relations between graph width parameters discussed in the paper.

Recall that classes of bounded tree-independence number are (tw, ω)-bounded, i.e.,
treewidth is bounded by a function of the clique number [26]. Combining some known
results [12,20] one can show that this is also the case for classes of bounded induced matching
treewidth that additionally exclude some fixed biclique as an induced subgraph. Furthermore,
excluding bicliques is necessary, as tw(Kn,n) = n and tree-µ(Kn,n) = 1. We believe that the
following result could also hold.
▶ Conjecture 17. For any two integers k, t ∈ N there exists an integer r such that each
graph with induced matching treewidth at most k and no induced subgraph isomorphic to Kt,t

has tree-independence number at most r.
The notion of (tw, ω)-boundedness can be seen as a variant of the extensively studied

χ-boundedness, where we ask for which classes the chromatic number is upper-bounded by a
function of the clique number [58]. We believe that graphs of bounded induced matching
treewidth are χ-bounded.
▶ Conjecture 18. For any two integers k, c ∈ N there exists an integer r such that each
graph with induced matching treewidth at most k and clique number at most c has chromatic
number at most r.
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Finally, we believe that it would be interesting to explore for what natural classes of
graphs induced matching treewidth is bounded. We remark that such results are known for
the closely related tree-independence number [1, 25].

Note. After the submission of the paper, Conjectures 17 and 18 were proved by Abrishami
et al. [2].
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