
A Textbook Solution for Dynamic Strings
Zsuzsanna Lipták #

Dipartimento di Informatica, University of Verona, Italy

Francesco Masillo #

Dipartimento di Informatica, University of Verona, Italy

Gonzalo Navarro #

Center for Biotechnology and Bioengineering (CeBiB), Department of Computer Science,
University of Chile, Chile

Abstract
We consider the problem of maintaining a collection of strings while efficiently supporting splits and
concatenations on them, as well as comparing two substrings, and computing the longest common
prefix between two suffixes. This problem can be solved in optimal time O(log N) whp for the
updates and O(1) worst-case time for the queries, where N is the total collection size [Gawrychowski
et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay
trees (FeST), where both the updates and the substring comparison take O(log n) amortized time,
n being the lengths of the strings involved. The longest common prefix of length ℓ is computed in
O(log n + log2 ℓ) amortized time. Our query results are correct whp. Our simpler solution enables
other more general updates in O(log n) amortized time, such as reversing a substring and/or mapping
its symbols. We can also regard substrings as circular or as their omega extension.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases dynamic strings, splay trees, dynamic data structures, LCP, circular strings

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.86

Related Version Full Version: https://arxiv.org/abs/2403.13162

Funding Zsuzsanna Lipták: Partially funded by the MUR PRIN project Nr. 2022YRB97K ’PINC’
(Pangenome INformatiCs. From Theory to Applications) and by the INdAM-GNCS Project
CUP_E53C23001670001 (Compressione, indicizzazione, analisi e confronto di dati biologici).
Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant 1-230755,
Chile.

1 Introduction

Consider the problem in which we have to maintain a collection of dynamic strings, that
is, strings we want to modify over time. The modifications may be edit operations such
as insertion, deletion, or substitution of a single character; inserting or deleting an entire
substring (possibly creating a new string from the deleted substring); adding a fresh string
to the collection; etc. In terms of queries, we may want to retrieve a symbol or substring of a
dynamic string, determine whether two substrings from anywhere in the collection are equal,
or even determine the longest prefix shared by two suffixes in the collection (LCP). The
collection must be maintained in such a way that both updates and queries have little cost.

This setup is known in general as the dynamic strings problem. A partial and fairly
straightforward solution are the so-called ropes, or cords [4]. These are binary trees1 where
the leaves store short substrings, whose left-to-right concatenation forms the string. Ropes

1 The authors [4] actually state that they are DAGs and referring to them as binary trees is just a
simplification. The reason is that the nodes can have more than one parent, so subtrees may be shared.

© Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 86; pp. 86:1–86:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zsuzsanna.liptak@univr.it
https://orcid.org/0000-0002-3233-0691
mailto:francesco.masillo@univr.it
https://orcid.org/0000-0002-2078-6835
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0002-2286-741X
https://doi.org/10.4230/LIPIcs.ESA.2024.86
https://arxiv.org/abs/2403.13162
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

86:2 A Textbook Solution for Dynamic Strings

were introduced for the Cedar programming language to speed up handling very long
strings; a C implementation (termed cords) was also given in the same paper [4]. As the
motivating application of ropes/cords was that of implementing a text editor, they support
edit operations and extraction/insertion of substrings to enable fast typing and cut&paste, as
well as retrieving substrings, but do not support queries like substring equality or LCPs. The
trees must be periodically rebalanced to maintain logarithmic times. Recently, a modified
version of ropes was implemented for the Ruby language as a basic data type [29]. This
variant supports the same updates but does not give any theoretical guarantee.

The first solution we know of that enables equality tests, by Sundar and Tarjan [36],
supports splitting and concatenating whole sequences, and whole-string equality in constant
time, with updates taking O(

√
N log m + log m) amortized time, where N is the total length

of all the strings in the collection and m is the number of updates so far. It is easy to
see that these three primitives encompass all the operations and queries above, except for
LCP (substring retrieval is often implicit). The update complexity was soon improved by
Mehlhorn et al. [28] to O(log2 N) expected time with a randomized data structure, and
O(log N(log m log∗ m + log N)) worst-case time with a deterministic one. The deterministic
time complexity was later improved by Alstrup et al. [1] to O(log N log∗ N) (which holds
with high probability, whp), also computing LCPs in O(log N) worst-case time. Recently,
Gawrychowski et al. [17, 18] obtained O(log N) update time whp, retaining constant time
to compare substrings, and also decreasing the LCP time to constant, among many other
results. They also showed that the problem is essentially closed because just updates
and substring equality require Ω(log N) time even if allowing amortization. Nishimoto
et al. [31, 32] showed how to compute LCPs in worst-case time O(log N + log ℓ log∗ N),
where ℓ is the LCP length, while inserting/deleting substrings of length ℓ in worst-case time
O((ℓ + log N log∗ N) (log log N)2

log log log N).
All these results build on the idea of parsing a string hierarchically by consistently cutting

it into blocks, giving unique names to the blocks, and passing the sequence of names to the
next level of parsing. The string is then represented by a parse tree of logarithmic height,
whose root consists of a single name, which can be compared to the name at the root of
another substring to determine string equality. While there is a general consensus on the
fact that those solutions are overly complicated, Gawrychowski et al. [18] mention that

“We note that it is very simple to achieve O(log n) update time [...], if we allow the
equality queries to give an incorrect result with polynomially small probability. We represent
every string by a balanced search tree with characters in the leaves and every node storing
a fingerprint of the sequence represented by its descendant leaves. However, it is not clear
how to make the answers always correct in this approach [...]. Furthermore, it seems that
both computing the longest common prefix of two strings of length n and comparing them
lexicographically requires Ω(log2 n) time in this approach.”

This suggestion, indeed, connects to the original idea of ropes [4]. Cardinal and Iacono
[9] built on the suggestion to develop a kind of tree dubbed “Data Dependent Tree (DDT)”,
which enables updates and LCP computation in O(log N) expected amortized time, yet
with no errors. DDTs eliminate the chance of errors by ensuring that the fingerprints have
no collisions – they simply rebuild all DDTs for all strings in the collection, using a new
hash function, when this low-probability event occurs – and reduce the LCP complexity to
O(log N) by ensuring that subtrees representing the same string have the same shape (so
one can descend in the subtrees of both strings synchronously).

In this paper we build on the same suggestion [18], but explore the use of another kind of
tree – an enhanced splay tree – which yields a beautifully simple yet powerful data structure
for maintaining dynamic string collections. We obtain logarithmic amortized update times for

Zs. Lipták, F. Masillo, and G. Navarro 86:3

most operations (our cost to compute LCPs lies between logarithmic and squared-logarithmic,
see later) and our queries return correct answers whp. The ease of implementation of splay
trees makes our solution attractive to be included in a textbook for undergraduate students.

An important consequence of using simpler data structures is that our space usage is
O(N), whereas the solutions based on parsings require in addition O(log N) space per update
performed, as each one adds a new path to the parse tree. Since the previous parse tree
is still available, those structures are persistent: one can access any previous version. Our
solution is not persistent in principle, but we can make it persistent using O(log n) extra
space per update or query made so far (we cannot make direct use of the techniques of
Driscoll et al. [14]). This adds only O(1) amortized time to the operations.

It would not be hard to obtain worst-case times instead of amortized ones, by choosing
AVL, α-balanced, or other trees that guarantee logarithmic height. One can indeed find the
use of such binary trees for representing strings in the literature [34, 12, 16]. Our solution
using splay trees has the key advantage of being very simple and easy to understand. The
basic operations of splitting and concatenating strings, using worst-case balanced trees, imply
attaching and detaching many subtrees, plus careful rebalancing, which is a nightmare to
explain and implement.2 Knuth, for example, considered them too complicated to include in
his book [26, p. 473] “Deletion, concatenation, etc. It is possible to do many other things
to balanced trees and maintain the balance, but the algorithms are sufficiently lengthly that
the details are beyond the scope of this book.” Instead, he says [26, p. 478] “A much simpler
self-adjusting data structure called a splay tree was developed subsequently [...] Splay trees, like
the other kinds of balanced trees already mentioned, support the operations of concatenation
and splitting as well as insertion and deletion, and in a particularly simple way.”

Our contribution. We use a splay tree [35], enhanced with additional information, to
represent each string in the collection, where all the nodes contain string symbols and
Karp-Rabin-like fingerprints [24, 30] of the symbols in their subtree. We refer to our data
structure as a forest of enhanced splay trees, or FeST. As we will see, we can create new
strings in O(n) time, extract substrings of length ℓ in O(ℓ + log n) time, perform updates
and (correctly whp) compare substrings in O(log n) time, where n is the length of the strings
involved – as opposed to the total length N of all the strings – and the times are amortized
(the linear terms are also worst-case). Further, we can compute LCPs correctly whp in
amortized time O(log n + log2 ℓ), where ℓ is the length of the returned LCP.

While our LCP time is O(log2 n) for long enough ℓ, LCPs are usually much shorter than
the suffixes. For example, in considerably general probabilistic models [37], the maximum
LCP value between any distinct suffixes of two strings of length n is almost surely O(log n),
in which case our algorithm runs in O(log n) amortized time.

The versatility of our FeST data structure allows us to easily support other kinds of
operations, such as reversing or complementing substrings, or both. We can thus implement
the reverse complementation of a substring in a DNA or RNA sequence, whereby the substring
is reversed and each character is replaced by its Watson-Crick complement. Substring reversal
alone is used in classic problems on genome rearrangements where genomes are represented
as sequences of genes, and have to be sorted by reversals (see, e.g., [38, 3, 7, 8, 33, 10], to
cite just a few). Note that chromosomes can be viewed either as permutations or as strings,
when gene duplication is taken into account, see Fertin et al. [15]; our FeST data structure

2 As an example, an efficient implementation [25] of Rytter’s AVL grammar [34] has over 10,000 lines of
C++ code considering only their “basic” variant.

ESA 2024

86:4 A Textbook Solution for Dynamic Strings

accommodates both. We can also implement signed reversals [22, 21], another model of
evolutionary operation used in genome rearrangements. In general, we can combine reversals
with any involution on the alphabet, of which signed or Watson-Crick complementation are
only examples. In order to support these operations in O(log n) amortized time, we only need
to add new constant-space annotations, further enhancing our splay trees while retaining the
running times for the other operations. The obvious solution of maintaining modified copies
of the strings (e.g., reversed, complemented, etc.) is less attractive in practice due to the
extra space and time needed to store and update all the copies.

Operations supported. We maintain a collection of strings of total length N in O(N) space,
and support the following operations, where we distinguish the basic string data type from
dynamic strings (all times are amortized). We have not chosen a minimal set of primitives
because reducing to primitives entails considerable performance overheads in practice, even
if the asymptotic time complexities are not altered.

make-string(w) creates a dynamic string s from a basic string w, in O(|s|) time.
access(s, i) returns the symbol s[i] in O(log |s|) time.
retrieve(s, i, j) returns the basic string w[1..j − i + 1] = s[i..j], in O(|w| + log |s|) time.
substitute(s, i, c), insert(s, i, c), and delete(s, i) perform the basic edit operations on
s: substituting s[i] by character c, inserting c at s[i], and deleting s[i], respectively, all in
O(log |s|) time. For appending c at the end of s one can use insert(s, |s| + 1, c).
introduce(s1, i, s2) inserts s2 at position i of s1 (for 1 ≤ i ≤ |s1| + 1), converting s1 to
s1[..i − 1] · s2 · s1[i..] and destroying s2, in O(log |s1s2|) time.
extract(s, i, j) creates dynamic string s′ = s[i..j], removing it from s, in O(log |s|) time.
equal(s1, i1, s2, i2, ℓ) determines the equality of substrings s1[i1..i1 + ℓ − 1] and s2[i2..i2 +
ℓ − 1] in O(log |s1s2|) time, correctly whp.
lcp(s1, i1, s2, i2) computes the length ℓ of the longest common prefix between suffixes
s1[i1..] and s2[i2..], in O(log |s1s2| + log2 ℓ) time, correctly whp, and also tells which suffix
is lexicographically smaller.
reverse(s, i, j) reverses the substring s[i..j] of s, in O(log |s|) time.
map(s, i, j) applies a fixed involution (a symbol mapping that is its own inverse) to all
the symbols of s[i..j], in O(log |s|) time.

Our data structure also enables easy implementation of other features, such as handling
circular strings. This is an important and emerging topic [2, 11, 19, 20, 23], as many current
sequence collections, in particular in computational biology, consist of circular rather than
linear strings. Recent data structures built for circular strings [5, 6], based on the extended
Burrows-Wheeler Transform (eBWT) [27], avoid the detour via the linearization and handle
the circular input strings directly. Finally, FeST also allows queries on the omega extensions
of strings, that is, on the infinite concatenation sω = s · s · s · · · . These occur, for example,
in the context of the eBWT, which is based on the so-called omega-order. In Section 5 we
will sketch how to handle circular strings and the omega extension of strings; a detailed
description will be given in the full version of the paper.

2 Basic concepts

Strings. We use array-based notation for strings, indexing from 1, so a string s is a finite
sequence over a finite ordered alphabet Σ, written s = s[1..n] = s[1]s[2] · · · s[n], for some
n ≥ 0. We assume that the alphabet Σ is integer. The length of s is denoted |s|, and

Zs. Lipták, F. Masillo, and G. Navarro 86:5

ε denotes the empty string, the unique string of length 0. For 1 ≤ i, j ≤ |s|, we write
s[i..j] = s[i]s[i + 1] · · · s[j] for the substring from i to j, where s[i..j] = ε if i > j. We
write prefixes as s[..i] = s[1..i] and suffixes as s[i..] = s[i..|s|]. Given two strings s, t, their
concatenation is written s · t or simply st, and sk denotes the k-fold concatenation of s, with
s0 = ε. A substring (prefix, suffix) of s is called proper if it does not equal s.

The longest common prefix (LCP) of two strings s and t is defined as the longest string
u that is both a prefix of s and t, and lcp(s, t) = |u| as its length. One can define the
lexicographic order based on the lcp: s <lex t if either s is a proper prefix of t, or otherwise
if s[ℓ + 1] < t[ℓ + 1], where ℓ = lcp(s, t).

Splay trees. The splay tree [35] is a binary search tree that guarantees that a sequence of
insertions, deletions, and node accesses costs O(log n) amortized time per operation on a
tree of n nodes that starts initially empty. In addition, splay trees support splitting and
joining trees, both in O(log n) amortized time, where n is the total number of nodes involved
in the operation.

The basic operation of the splay tree is called splay(x), which moves a tree node x to
the root by a sequence of primitive rotations called zig, zig-zig, zig-zag, and their symmetric
versions. Let x(A, B) denote a tree rooted at x with left and right subtrees A and B, then
the rotation zig-zig converts z(y(x(A, B), C), D) into x(A, y(B, z(C, D)), while the rotation
zig-zag converts z(y(A, x(B, C)), D) into x(y(A, B), z(C, D)). Whether zig-zig or zig-zag (or
their symmetric variant) is applied to x depends on its relative position w.r.t. its grandparent.
Note that both of these operations are composed by two edge rotations. Finally, operation
zig, which is only applied if x is a child of the root, converts y(x(A, B), C) into x(A, y(B, C)).

Every access or update on the tree is followed by a splay on the deepest reached node. In
particular, after finding a node x in a downward traversal, we do splay(x) to make x the tree
root. The goal is that the costs of all the operations are proportional to the cost of all the
related splay operations performed, so we can focus on analyzing only the splays. Many of
the splay tree properties can be derived from a general “access lemma” [35, Lem. 1].

▶ Lemma 1 (Access Lemma [35]). Let us assign any positive weight w(x) to the nodes x of a
splay tree T , and define sw(x) as the sum of the weights of all the nodes in the subtree rooted
at x. Then, the amortized time to splay x is O(log(W/sw(x))) ⊆ O(log(W/w(x))), where
W =

∑
x∈T w(x).

The result is obtained by defining r(x) = log sw(x) (all our logarithms are in base 2) and
Φ(T) =

∑
x∈T r(x) as the potential function for the splay tree T . If we choose w(x) = 1 for

all x, then W = n on a splay tree of n nodes, and thus we obtain O(log n) amortized cost for
each operation. By choosing other functions w(x), one can prove other properties of splay
trees like static optimality, the static finger property, and the working set property [35].

The update operations supported by splay trees include inserting new nodes, deleting
nodes, joining two trees (where all the nodes in the second tree go to the right of the nodes
in the first tree), and splitting a tree into two at some node (where all the nodes to its right
become a second tree). The times of those operations are ruled by the “balance theorem
with updates” [35, Thm. 6].

▶ Lemma 2 (Balance Theorem with Updates [35]). Any sequence of access, insert, delete,
join and split operations on a collection of initially empty splay trees has an amortized cost
of O(log n) per operation, where n is the size of the tree(s) where the operation is carried out.

This theorem is proved with the potential function that assigns w(x) = 1 to every node
x. Note the theorem considers a forest of splay trees, whose potential function is the sum of
the functions Φ(T) over the trees T in the forest. For details, see the original paper [35].

ESA 2024

86:6 A Textbook Solution for Dynamic Strings

Karp-Rabin fingerprinting. Our queries will be correct “with high probability” (whp),
meaning a probability of at least 1 − 1/N c for an arbitrarily large constant c, where N is
the total size of the collection. This will come from the use of a variant of the original
Karp-Rabin fingerprint [24] (cf. [30]) defined as follows. Let [1..a] be the alphabet of our
strings and p ≥ a a prime number. We choose a random base b uniformly from [1..p − 1].
The fingerprint κ of string s[1..n] is defined as κ(s) =

(∑n−1
i=0 s[n − i] · bi

)
mod p. We say

that two strings s ̸= s′ of the same length n collide through κ if κ(s) = κ(s′), that is,
κ(s′′) = 0 where s′′ = s − s′ is the string defined by s′′[i] = (s[i] − s′[i]) mod p. Since κ(s′′)
is a polynomial, in the variable b, of degree at most n − 1 over the field Zp, it has at most
n − 1 roots. The probability of a collision between two strings of length n is then bounded
by (n − 1)/(p − 1) because b is uniformly chosen in [1..p − 1]. By choosing p ∈ Θ(N c+1)
for any desired constant c, we obtain that κ is collision-free on any s ̸= s′ whp. We will
actually choose p ∈ Θ(N c+2) because some of our operations perform O(polylog N) string
comparisons, not just one. Since N varies over time, we can use instead a fixed upper bound,
like the total amount of main memory. We use the RAM machine model where logical and
arithmetic operations on Θ(log N) machine words take constant time.

Two fingerprints κ(s) and κ(s′) can then be composed in constant time to form κ(s′ · s) =
(κ(s′) · b|s| + κ(s)) mod p. To avoid the O(log |s|) time for modular exponentiation, we
will maintain the value b|s| mod p together with κ(s). The corresponding value for s′ · s is
(b|s′| · b|s|) mod p, so we can maintain those powers in constant time upon concatenations.

3 Our data structure and standard operations

In this section we describe our data structure called FeST (for Forest of enhanced Splay
Trees), composed of a collection of (enhanced) splay trees, and then show how the traditional
operations on dynamic strings are carried out on it.

3.1 The data structure
We will use a FeST for maintaining the collection of strings, one splay tree per string. A
dynamic string s[1..n] is encoded in a splay tree with n nodes such that s[k] is stored in
the node x with in-order k (the in-order of a node is the position in which it is listed if we
recursively traverse first the left subtree, then the node, and finally the right subtree). We
will say that node x represents the substring s[i..j], where [i..j] is the range of the in-orders
of all the nodes in the subtree rooted at x. Let T be the splay tree representing string s,
then for 1 ≤ i ≤ |s|, we call node(i) the node with in-order i, and for a node x of T , we call
pos(x) the in-order of node x. The root of T is denoted root(T).

For the amortized analysis of our FeST, our potential function Φ will be the sum of the
potential functions Φ(T) over all the splay trees T representing our string collection. The
collection starts initially empty, with Φ = 0. New strings are added to the collection with
make-string; then edited with substitute, insert, and delete, and redistributed with
introduce and extract.

Information stored at nodes. A node x of the splay tree representing s[i..j] will contain
pointers to its left and right children, called x.left and x.right, its symbol x.char = s[pos(x)],
its subtree size x.size = j − i + 1, its fingerprint x.fp = κ(s[i..j]), and the value x.power =
bj−i+1 mod p. These fields are recomputed in constant time whenever a node x acquires new
children x.left and/or x.right (e.g., during the splay rotations) with the following formulas:

Zs. Lipták, F. Masillo, and G. Navarro 86:7

(1) x.size = x.left.size + 1 + x.right.size, (2) x.fp = ((x.left.fp · b + x.char) · x.right.power +
x.right.fp) mod p, and (3) x.power = (x.left.power · b · x.right.power) mod p, as explained in
Section 2. For the formula to be complete when the left and/or right child is null, we assume
null.size = 0, null.fp = 0, and null.power = 1. We will later incorporate other fields.

Subtree sizes allow us identify node(i) given i, in the splay tree T representing string s, in
O(log |s|) amortized time. This means we can answer access(s, i) in O(log |s|) amortized time,
since s[i] = node(i).char. Finding node(i) is done in the usual way, with the recursive function
find(i) = find(root(T), i) that returns the ith smallest element in the subtree rooted at the
given node. More precisely, find(x, i) = x if i = x.left.size + 1, find(x, i) = find(x.left, i)
if i < x.left.size + 1, and find(x, i) = find(x.right, i − (x.left.size + 1)) if i > x.left.size + 1.
To obtain logarithmic amortized time, find splays the node it returns, thus pos(root(T)) = i

holds after calling find(root(T), i).

Isolating substrings. We will make use of another primitive we call isolate(i, j), for
1 ≤ i, j ≤ |s| and i ≤ j + 1, on a tree T representing string s. This operation rearranges T in
such a way that s[i..j] becomes represented by one subtree, and returns this subtree’s root y.

If i = 1 and j = n, then y = root(T) and we are done. If i = 1 and j < n, then we find
(and splay) node(j + 1) using find(j + 1); this will move node(j + 1) to the root, and s[i..j]
will be represented by the left subtree of the root, so y = root(T).left. Similarly, if 1 < i

and j = n, then we perform find(i − 1), so node(i − 1) is splayed to the root and s[i..j] is
represented by the right subtree of the root, thus y = root(T).right.

Finally, if 1 < i, j < n, then splaying first node(j + 1) and then node(i − 1) will typically
result in node(i − 1) being the root and node(j + 1) its right child, thus the left subtree of
node(j + 1) contains s[i..j], that is, y = root(T).right.left. The only exception arises if the
last splay operation on node(i − 1) is a zig-zig, as in this case node(j + 1) would become
a grandchild, not a child, of the root. Therefore, in this case, we modify the last splay
operation: if node(i − 1) is a grandchild of the root and a zig-zig must be applied, we perform
instead two consecutive zig operations on node(i − 1) in a bottom-up manner, that is, we first
rotate the edge between node(i − 1) and its parent, and then the edge between node(i − 1)
and its new parent (former grandparent), see Fig. 1.

We now consider the effect of the modified zig-zig operation on the potential. In the proof
of Lemma 1 [35, Lem. 1], Sleator and Tarjan show that the zig-zig and the zig-zag cases
contribute 3(r′(x)−r(x)) to the amortized cost, where r′(x) is the new value of r(x) after the
operation. The sum then telescopes to 3(r(t) − r(x)) = 3 log(sw(t)/sw(x)) along an upward
path towards a root node t. The zig rotation, instead, contributes 1 + r′(x) − r(x), where
the 1 would be problematic if it was not applied only once in the path. Our new zig-zig may,
at most one time in the path, cost like two zig’s, 2 + 2(r′(x) − r(x)), which raises the cost
bound of the whole splay operation from 1 + 3 log(sw(t)/sw(x)) to 2 + 3 log(sw(t)/sw(x)).
This retains the amortized complexity, that is, the amortized time for isolate is O(log |s|).

3.2 Creating a new dynamic string
Given a basic string w[1..n], operation make-string(w) creates a new dynamic string s[1..n]
with the same content as w, which is added to the FeST. While this can be accomplished in
O(n log n) amortized time via successive insert operations on an initially empty string, we
describe a “bulk-loading” technique that achieves linear worst-case (and amortized) time.

The idea is to create, in O(n) time, a perfectly balanced splay tree using the standard
recursive procedure. As we show in the next lemma, this shape of the tree adds only O(n)
to the potential function, and therefore the amortized time of this procedure is also O(n).

ESA 2024

86:8 A Textbook Solution for Dynamic Strings

j

splay
node(j + 1)

i

splay
node(i − 1)

i − 1

j + 1

i j

i

j + 1

(a) General sequence of operations for isolate(i, j).
j + 1

p

i − 1
A

D

B C

rotate
(node(i − 1),p)

i − 1

A B

j + 1

C

D

p
rotate
(node(i − 1),
node(j + 1))

i − 1

BA

j + 1

C D

p

i j

i j i j

(b) Case of zig-zag as the last splaying operation for isolate(i, j).

j + 1

y

i − 1

A

D

C

B

rotate
(node(i − 1),y)

i − 1

A

B

j + 1

C

D

y
rotate
(node(i − 1),
node(j + 1))

i − 1

A

B

j + 1

C

D
y

i

j

i j i j

(c) Case of the modified zig-zig as the last splaying operation for isolate(i, j).

Figure 1 Scheme of the isolate(i, j) operation applied on a splay tree. Subfigures 1b and 1c
show two cases of the last splay operation of isolate(i, j), yielding a single (shaded) subtree that
represents the substring s[i..j].

▶ Lemma 3. The potential Φ(T) of a perfectly balanced splay tree T with n nodes is at most
2n + O(log2 n) ⊆ O(n).

Proof. Let d be the depth of the deepest leaves in a perfectly balanced binary tree, and
call l = d − d′ + 1 the level of any node of depth d′. It is easy to see that there are at
most 1 + n/2l subtrees of level l. Those subtrees have at most 2l − 1 nodes. Separating the
sum Φ(T) =

∑
x∈T r(x) by levels l and using the bound sw(x) < 2l if x is of level l, we get

Φ(T) <
∑log n

l=1
(
1 + n

2l

)
log 2l = 2n + O(log2 n). ◀

Zs. Lipták, F. Masillo, and G. Navarro 86:9

Once the tree is created and the fields x.char are assigned in in-order, we perform a
post-order traversal to compute the other fields. This is done in constant time per node
using the formulas given in Section 3.1.

3.3 Retrieving a substring
Given a string s in the FeST and two indices 1 ≤ i ≤ j ≤ |s|, operation retrieve(s, i, j)
extracts the substring s[i..j] and returns it as a basic string. The special case i = j is given
by access(s, i), which finds node(i), splays it, and returns root(T).char, recall Section 3.1. If
i < j, we perform y = isolate(i, j) and then we return s[i..j] with an in-order traversal of
the subtree rooted at y. Overall, the operation retrieve(s, i, j) takes O(log |s|) amortized
time for isolate, and then O(j − i + 1) worst case time for the traversal of the subtree.

3.4 Edit operations
Let s be a string in the FeST, i an index of s, and c a character. The simplest edit operation,
substitute(s, i, c) writes c at s[i], that is, s becomes s′ = s[..i − 1] · c · s[i + 1..]. It is
implemented by doing find(i) in the splay tree T of s, in O(log |s|) amortized time. After the
operation, node(i) is the root, so we set root(T).char = c and recompute (only) its fingerprint
as explained in Section 3.1.

Now consider operation insert(s, i, c), which converts s into s′ = s[..i − 1] · c · s[i..]. This
corresponds to the standard insertion of a node in the splay tree, at in-order position i. We
first use find(i) in order to make x = node(i) the tree root, and then create a new root node
y, with y.left = x.left and y.right = x. We then set x.left = null and recompute the other
fields of x as shown in Section 3.1. Finally, we set y.char = c and also compute its other
fields. By Lemma 2, the amortized cost for an insertion is O(log |s|).

Finally, the operation delete(s, i) converts s into s′ = s[..i−1]·s[i+1..]. This corresponds
to standard deletion in the splay tree: we first do find(i) in the tree T of s, so that x = node(i)
becomes the root, and then join the splay trees of x.left and x.right, isolating the root node
x and freeing it. The joined tree now represents s′; the amortized cost is O(log |s|).

3.5 Introducing and extracting substrings
Given two strings s1 and s2 represented by trees T1 and T2 in the FeST, and an insertion
position i in s1, operation introduce(s1, i, s2) generates a new string s = s1[..i−1] ·s2 ·s1[i..]
(the original strings are not anymore available). We implement this operation by first doing
y = isolate(i, i − 1) on the tree T1. Note that in this case y will be a null node, whose
in-order position is between i − 1 and i. We then replace this null node by (the root of) the
tree T2. As shown in Section 3.1, the node y that we replace has at most two ancestors in
T1, say x1 (the root) and x2. We must then recompute the fields of x2 and then of x1.

Apart from the O(log |s1|) amortized time for isolate, the other operations take constant
time. We must consider the change in the potential introduced by connecting T2 to T1. In
the potential Φ, the summands log sw(x1) and log sw(x2) will increase to log(sw(x1) + |s2|)
and log(sw(x2) + |s2|), thus the increase is O(log |s2|). The total amortized time is thus
O(log |s1| + log |s2|) = O(log |s1s2|).

Let s be a string represented by tree T in the FeST and i ≤ j indices in s. Function
extract(s, i, j) removes s[i..j] from s and creates a new dynamic string s′ from it. This can
be carried out by first doing y = isolate(i, j) on T , then detaching y from its parent in T

ESA 2024

86:10 A Textbook Solution for Dynamic Strings

to make it the root of the tree that will represent s′, and finally recomputing the fields of
the (former) ancestors x2 and x1 of y. The change in potential is negative, as log sw(x1) and
log sw(x2) decrease by up to O(log(j − i + 1)). The total amortized time is then O(log |s|).

3.6 Substring equality
Let s1[i1..i1 + ℓ − 1] and s2[i2..i2 + ℓ − 1] be two substrings, where possibly s1 = s2. Per
Section 2, we can compute equal whp by comparing κ(s1[i1..i1+ℓ−1]) and κ(s2[i2..i2+ℓ−1]).
We compute y1 = isolate(i1, i1 + ℓ − 1) on the tree of s1 and y2 = isolate(i2, i2 + ℓ − 1)
on the tree of s2. Once node y1 represents s1[i1..i1 + ℓ − 1] and y2 represents s2[i2..i2 + ℓ − 1],
we compare y1.fp = κ(s1[i1..i1 + ℓ − 1]) with y2.fp = κ(s2[i2..i2 + ℓ − 1]).

The splay operations take O(log |s1s2|) amortized time, while the comparison of the
fingerprints takes constant time and returns the correct answer whp. Note this is a one-sided
error; if the method answers negatively, the strings are distinct.

4 Extended operations

In this section we consider less standard operations of dynamic strings, including the
computation of LCPs and others we have not seen addressed before.

4.1 Longest common prefixes
Operation lcp(s1, i1, s2, i2) computes lcp(s1[i1..], s2[i2..]) correctly whp, by exponentially
searching for the maximum value ℓ such that s1[i1..i1 + ℓ − 1] = s2[i2..i2 + ℓ − 1]. The
exponential search requires O(log ℓ) equality tests, which are done using equal operations.
The amortized cost of this basic solution is then O(log |s1s2| log ℓ); we now improve it.

We note that all the accesses the exponential search performs in s1 and s2 are at distance
O(ℓ) from s1[i1] and s2[i2]. We could then use the dynamic finger property [13] to show,
with some care, that the amortized time is O(log |s1s2| + log2 ℓ). This property, however,
uses a different mechanism of potential functions where trees cannot be joined or split.3 We
then use an alternative approach. The main idea is that, if we could bound ℓ beforehand,
we could isolate those areas so that the accesses inside them would cost O(log ℓ) and then
we could reach the desired amortized time. Bounding ℓ in less than O(log ℓ) accesses (i.e.,
O(log |s1s2| log ℓ) time) is challenging, however. Assuming for now that s1 ̸= s2 (we later
handle the case s1 = s2), our plan is as follows (see Fig. 2):
1. Find a (crude) upper bound ℓ′ ≥ ℓ.
2. Extract substrings s′

1 = s1[i1..i1 + ℓ′ − 1] and s′
2 = s2[i2..s2 + ℓ′ − 1].

3. Run the basic exponential search for ℓ between s′
1[1..] and s′

2[1..].
4. Reinsert substrings s′

1 and s′
2 into s1 and s2.

Steps 2 and 4 are carried out in O(log |s1s2|) amortized time using the operations extract
and introduce, respectively. Step 3 will still require O(log ℓ) substring comparisons, but
since they will be carried out on the shorter substrings s′

1 and s′
2, they will take O(log ℓ log ℓ′)

amortized time. The main challenge is to balance the cost to find ℓ′ in Step 1 with the
quality of the approximation of ℓ′ so that log ℓ′ is not much larger than log ℓ.

3 The static finger property cannot be used either, because we need new fingers every time an LCP is
computed. Extending the “unified theorem” [35, Thm. 5] to m fingers (to support m LCP operations in
the sequence) introduces an O(log m) additive amortized time in the operations, since now W = Θ(m).

Zs. Lipták, F. Masillo, and G. Navarro 86:11

ℓ′

extract(s1, i1, i1+ℓ′−1)

ℓ′

exponential search

ℓ′

ℓi1

re-introduce

Figure 2 Scheme of operations for lcp shown on one of the two strings.

Consider the following strategy for Step 1. Let n = |s1s2| and n′ = min(|s1| − i1 +
1, |s2| − i2 + 1). We first check a few border cases that we handle in O(log n) amortized
time: if s1[i1..i1 + n′ − 1] = s2[i2..i2 + n′ − 1] we finish with the answer ℓ = n′, or else if
s1[i1..i1 + 1] ̸= s2[i2..i2 + 1] we finish with the answer ℓ = 0 or ℓ = 1. Otherwise, we define
the sequence ℓ0 = 2 and ℓi = min(n′, ℓ 2

i−1) and try out the values ℓi for i = 1, 2, . . ., until we
obtain s1[i1..i1 + ℓi − 1] ̸= s2[i2..i2 + ℓi − 1]. This implies that ℓi−1 ≤ ℓ < ℓi, so we can use
ℓ′ = ℓi ≤ ℓ2. This yields O(log ℓ log ℓ′) = O(log2 ℓ) amortized time for Step 3. On the other
hand, since ℓ ≥ ℓi−1 = 22i−1 , it holds i ≤ 1 + log log ℓ. Since each of the i values is tried out
in O(log n) time with equal, the amortized cost of Step 1 is O(log n log log ℓ) and the total
cost to compute lcp is O(log n log log ℓ + log2 ℓ). In particular, this is O(log2 ℓ) when ℓ is
large enough, log ℓ = Ω(

√
log n log log n).

Hitting twice. To obtain our desired time O(log n + log2 ℓ) for every value of log ℓ, we will
apply our general strategy twice. First, we will set ℓ′′ = 2log2/3 n and determine whether
s1[i1..i1 + ℓ′′ − 1] = s2[i2..i2 + ℓ′′ − 1]. If they are equal, then log ℓ = Ω(log2/3 n) and we can
apply the strategy of the previous paragraph verbatim, obtaining amortized time O(log2 ℓ).
If they are not equal, then we know that ℓ′′ > ℓ, so we extract s′′

1 = s1[i1..i1 + ℓ′′ − 1] and
s′′

2 = s2[i2..i2+ℓ′′−1] to complete the search for ℓ′ inside those (note we are still in Step 1). We
use the same sequence ℓi of the previous paragraph, with the only difference that the accesses
are done on trees of size ℓ′′ and not n; therefore each step costs O(log ℓ′′) = O(log2/3 n)
instead of O(log n). After finally finding ℓ′, we introduce back s′′

1 and s′′
2 into s1 and s2.

Step 1 then completes in amortized time O(log n + log2/3 n log log ℓ) = O(log n). Having
found ℓ′ ≤ ℓ2, we proceed with Step 2 onwards as above, taking O(log2 ℓ) additional time.

When the strings are the same. In the case s1 = s2, assume w.l.o.g. i1 < i2. We can still
carry out Step 1 and, if i1 + ℓ′ ≤ i2, proceed with the plan in the same way, extracting s′

1
and s′

2 from the same string and later reintroducing them. In case i1 + ℓ′ > i2, however, both
substrings overlap. In this case we extract just one substring, s′ = s1[i1..i2 + ℓ′ − 1], which is
of length at most 2ℓ′, and run the basic exponential search between s′[1..] and s′[i2 − i1 + 1..]
still in amortized time O(log ℓ log ℓ′). We finally reintroduce s′ in s1. The same is done if
we need to extract s′′

1 and s′′
2 : if both come from the same string and i1 + ℓ′′ > i2, then we

extract just one single string s′′ = s[i1..i2 + ℓ′′ − 1] and obtain the same asymptotic times.

Lexicographic comparisons. Once we know that (whp) the LCP of the suffixes is of length
ℓ, we can determine which is smaller by accessing (using access) the symbols at positions
s1[i1 + ℓ] and s2[i2 + ℓ] and comparing them, in O(log |s1s2|) additional amortized time.

ESA 2024

86:12 A Textbook Solution for Dynamic Strings

4.2 Substring reversals
Operation reverse(s, i, j) changes s to s[..i − 1]s[j]s[j − 1] · · · s[i + 1]s[i]s[j + 1..]. Reflecting
it directly in our current structure requires Ω(j − i + 1) time, which is potentially Ω(|s|).
Our strategy, instead, is to just “mark” the subtrees where the reversal should be carried
out, and de-amortize its cost across future operations, materializing it progressively as we
traverse the marked subtrees. To this end, we extend our FeST data structure with a new
Boolean field x.rev in each node x, which indicates that its whole subtree should be regarded
as reversed, that is, its descending nodes should be read right-to-left, but that this update
has not yet been carried out. This field is set to false on newly created nodes. We also add
a field x.fprev, so that if x represents s[i..j], then x.fprev = κ(s[j]s[j − 1] · · · s[i + 1]s[i]) is
the fingerprint of the reversed string. When x.rev is true, the fields of x (including x.fp and
x.fprev) still do not reflect the reversal.

The fields x.fprev must be maintained in the same way as the fields x.fp. Concretely, upon
every update where the children of node x change, we not only recompute x.fp as shown in
Section 3.1, but also x.fprev = ((x.right.fprev · b + x.char) · x.left.power + x.left.fprev) mod p.

In order to apply the described reversal to a substring s[i..j], we first compute y =
isolate(i, j) on the tree of s, and then toggle the Boolean value y.rev = ¬ y.rev (note
that, if y had already an unprocessed reversal, this is undone without ever materializing
it). The operation reverse then takes O(log |s|) amortized time, dominated by the cost of
isolate(i, j). We must, however, handle potentially reversed nodes.

Fixing marked nodes. Every time we access a tree node, if it is marked as reversed, we fix
it, after which it can be treated as a regular node because its fields will already reflect the
reversal of its represented string (though some descendant nodes may still need fixing).

Fixing a node involves exchanging its left and right children, toggling their reverse marks,
and updating the node fingerprint. More precisely, we define the primitive fix(x) as follows:
if x.rev is true, then (i) set x.rev = false, x.left.rev = ¬ x.left.rev, x.right.rev = ¬ x.right.rev,
(ii) swap x.left with x.right, and (iii) swap x.fp with x.fprev. See Fig. 3 for an example. It is
easy to see that fix maintains the invariants about the meaning of the reverse fields.

Because all the operations in splay trees, including the splay, are done along paths that
are first traversed downwards from the root, it suffices that we run fix(x) on every node
x we find as we descend from the root (for example, on every node x where we perform
find(x, i)), before taking any other action on the node. This ensures that all the accesses
and structural changes to the splay tree are performed over fixed nodes, and therefore no
algorithm needs further changes. For example, when we perform splay(x), all the ancestors of
x are already fixed. As another example, if we run equal as in Section 3.6, the nodes y1 and
y2 will already be fixed by the time we read their fingerprint fields. As a third example, if
we run retrieve(s, i, j) as in Section 3.3 and the subtree of y has reversed nodes inside, we
will progressively fix all those nodes as we traverse the subtree, therefore correctly retrieving
s[i..j] within O(j − i + 1) time.

Note that fix takes constant time per node and does not change the potential function
Φ, so no time complexities change due to our adjustments. The new fields also enable other
queries, for example to decide whether a string is a palindrome.

4.3 Involutions
We support the operation map(s, i, j) analogously to substring reversals, that is, isolating
s[i..j] in a node y = isolate(i, j) and then marking that the substring covered by node y is
mapped using a new Boolean field y.map, which is set to true. This will indicate that every

Zs. Lipták, F. Masillo, and G. Navarro 86:13

x

A B

x.rev = true

toggle rev

x

A B

root(A).rev =
¬root(A).rev

swap left-right
and x.fp with x.fprev

x

B A

x.rev = false

root(B).rev =
¬root(B).rev

x.fp ↔ x.fprev

Figure 3 Scheme of the fix operation on node x.

symbol s[k], for i ≤ k ≤ j, must be interpreted as f(s[k]), but that the change has not yet
been materialized. Similarly to reverse, this information will be propagated downwards
as we descend into a subtree, otherwise it is maintained in the subtree’s root only. The
operation will then take O(log |s|) amortized time.

To manage the mapping and deamortize its linear cost across subsequent operations, we
will also store fields x.mfp = κ(f(s[i])f(s[i + 1]) · · · f(s[j])) and x.mfprev = κ(f(s[j])f(s[j −
1]) · · · f(s[i])), which maintain the fingerprint of the mapped string, and its reverse, represented
by x. Those are maintained analogously as the previous fingerprints: (1) x.mfp = ((x.left.mfp·
b + f(x.char)) · x.right.power + x.right.mfp) mod p, and (2) x.mfprev = ((x.right.mfprev · b +
f(x.char)) · x.left.power + x.left.mfprev) mod p.

As for string reversals, every time we access a tree node, if it is marked as mapped,
we unmark it and toggle the mapped mark of its children, before proceeding with any
other action. Precisely, we define the primitive fixm(x) as follows: if x.map is true, then
(i) set x.map = false, x.left.map = ¬ x.left.map, x.right.map = ¬ x.right.map, (ii) set
x.char = f(x.char), and (iii) swap x.fp with x.mfp, and x.fprev with x.mfprev. We note
that, in addition, the fix operation defined in Section 4.2 must also exchange x.mfp with
x.mfprev if we also support involutions. Note how, as for reversals, two applications of f

cancel each other, which is correct because f is an involution. Operation fixm is applied in
the same way as fix along tree traversals.

Reverse complementation. By combining string reversals and involutions, we can for
example support the application of reverse complementation of substrings in DNA sequences,
where a substring s[i..j] is reversed and in addition its symbols are replaced by their Watson-
Crick complement, applying the involution f(A) = T, f(T) = A, f(C) = G, and f(G) = C. In
case we only want to perform reverse complementation (and not reversals and involutions
independently), we can simplify our fields and maintain only a Boolean field x.rc and the
fingerprint x.mfprev in addition to x.fp. Fixing a node consists of: if x.rc is true, then (i)
set x.rc = false, x.left.rc = ¬ x.left.rc, x.right.rc = ¬ x.right.rc, (ii) set x.char = f(x.char),
(iii) swap x.left with x.right, (iv) swap x.fp with x.mfprev.

5 Circular strings and omega extension

Our data structure can be easily extended to handle circular strings. We do this by introducing
a new routine, called rotate, which allows us linearize the circular string starting at any
of its indices. By carefully using this primitive, along with a slight modification for the
computation of fingerprints, we can support every operation that we presented on linear
strings with the same time bounds, as well as signed reversals, in O(log |ŝ|) amortized time.

ESA 2024

86:14 A Textbook Solution for Dynamic Strings

By supporting operations on circular strings, we can also handle the omega extension of
strings, which is the infinite concatenation of a string: sω = s · s · · · . Again, we are able to
meet the same time bounds on every operation on linear strings. We also define two ways to
implement the equality between omega-extended substrings. Full details will be contained in
the full version of the paper.

6 Conclusion

We presented a new data structure, a forest of enhanced splay trees (FeST), to handle
collections of dynamic strings. Our solution is much simpler than those offering the best
theoretical results, while still offering logarithmic amortized times for most update and query
operations. We answer queries correctly whp, and updates are always correct.

To build our data structure, we employ an approach that differs from theoretical solutions:
we use a splay tree for representing each string, enhancing it with additional annotations.
The use of binary trees to represent dynamic strings is not new, but exploiting the simplicity
of splay trees for attaching and detaching subtrees is. As our FeST is easy to understand,
explain, and implement, we believe that it offers the opportunity of wide usability and can
become a textbook implementation of dynamic strings. Further, we have found nontrivial
– yet perfectly implementable – solutions to relevant queries, like computing the length ℓ

of the longest common prefix of two suffixes in time O(log n + log2 ℓ) instead of the trivial
O(log2 n). The simplicity of our solution enables new features, like the possibility of reversing
a substring, or reverse-complementing it, to be easily implemented in logarithmic amortized
time. Our data structure also allows handling circular strings, as well as omega-extensions of
strings – features competing solutions have not explored.

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic

texts. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
819–828, 2000.

2 Lorraine A.K. Ayad and Solon P. Pissis. MARS: Improving multiple circular sequence alignment
using refined sequences. BMC Genomics, 18(1):1–10, 2017.

3 Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sorting by reversals. In Proc.
34th Annual Symposium on Foundations of Computer Science (FOCS), pages 148–157, 1993.

4 Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alternative to
strings. Software Practice and Experience, 25(12):1315–1330, 1995.

5 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. Computing the original eBWT faster, simpler, and with less memory. In Proc.
28th International Symposium on String Processing and Information Retrieval (SPIRE), pages
129–142, 2021.

6 Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano Rossi, and Marinella
Sciortino. r-indexing the eBWT. Information and Computation, 298:105155, 2024. doi:
10.1016/j.ic.2024.105155.

7 Alberto Caprara. Sorting by reversals is difficult. In Proc. 1st Annual International Conference
on Research in Computational Molecular Biology (RECOMB), pages 75–83, 1997.

8 Alberto Caprara and Romeo Rizzi. Improved approximation for breakpoint graph decom-
position and sorting by reversals. Journal of Combinatorial Optimization, 6(2):157–182,
2002.

9 Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets. In
Proc. 4th Symposium on Simplicity in Algorithms (SOSA), pages 45–56. SIAM, 2021.

https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155

Zs. Lipták, F. Masillo, and G. Navarro 86:15

10 Giulio Cerbai and Luca S. Ferrari. Permutation patterns in genome rearrangement problems:
The reversal model. Discrete Applied Mathematics, 279:34–48, 2020.

11 Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis,
Wojciech Rytter, Tomasz Walen, and Wiktor Zuba. Approximate circular pattern matching.
In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 35:1–35:19, 2022.

12 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576,
2005.

13 Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM
Journal on Computing, 30(1):44–85, 2000.

14 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In Proc. 18th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–121, 1986.

15 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette. Com-
binatorics of Genome Rearrangements. MIT Press, 2009.

16 Pawel Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple,
and deterministic. In Proc. 19th Annual European Symposium on Algorithms (ESA), pages
421–432, 2011.

17 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
Sankowski. Optimal dynamic strings. CoRR, abs/1511.02612, 2015.

18 Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
Sankowski. Optimal dynamic strings. In Proc. 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1509–1528, 2018.

19 Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-Kin Sung, and Wiktor
Zuba. Finding the cyclic covers of a string. In Proc. 17th International Conference and
Workshops on Algorithms and Computation (WALCOM), pages 139–150, 2023.

20 Roberto Grossi, Costas S Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P Pissis, Ahmad
Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.
Algorithms for Molecular Biology, 11(1):1–14, 2016.

21 Yijie Han. Improving the efficiency of sorting by reversals. In Proc. International Conference
on Bioinformatics & Computational Biology (BIOCOMP), pages 406–409, 2006.

22 Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. In Proc. 27th Annual ACM Symposium
on Theory of Computing (STOC), pages 178–189, 1995.

23 Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Walen,
and Wiktor Zuba. Linear-time computation of cyclic roots and cyclic covers of a string. In
Proc. 34th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 15:1–15:15,
2023.

24 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

25 Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars
from the LZ77 parsing. CoRR, 2105.11052, 2021.

26 D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-
Wesley, 2nd edition, 1998.

27 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the Burrows-Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.

28 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences
under equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

29 Kevin Menard, Chris Seaton, and Benoit Daloze. Specializing ropes for ruby. In Proc. 15th
International Conference on Managed Languages & Runtimes (ManLang), pages 10:1–10:7,
2018.

ESA 2024

86:16 A Textbook Solution for Dynamic Strings

30 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer
Science, 762:41–50, 2019.

31 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In Proc. 41st International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 72:1–72:14,
2016.

32 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. Discrete Applied Mathematics,
274:116–129, 2020.

33 Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. On the sorting by reversals and
transpositions problem. Journal of Universal Computer Science, 23(9):868–906, 2017.

34 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

35 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM, 32(3):652–686, 1985.

36 Rajamani Sundar and Robert E. Tarjan. Unique binary-search-tree representations and
equality testing of sets and sequences. SIAM Journal on Computing, 23(1):24–44, 1994.

37 Wojciech Szpankowski. A generalized suffix tree and its (un)expected asymptotic behaviors.
SIAM Journal on Computing, 22(6):1176–1198, 1993.

38 G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem.
Journal of Theoretical Biology, 99:1–7, 1982.

	1 Introduction
	2 Basic concepts
	3 Our data structure and standard operations
	3.1 The data structure
	3.2 Creating a new dynamic string
	3.3 Retrieving a substring
	3.4 Edit operations
	3.5 Introducing and extracting substrings
	3.6 Substring equality

	4 Extended operations
	4.1 Longest common prefixes
	4.2 Substring reversals
	4.3 Involutions

	5 Circular strings and omega extension
	6 Conclusion

