
Parameterized Dynamic Data Structure for Split
Completion
Konrad Majewski #

Institute of Informatics, University of Warsaw, Poland

Michał Pilipczuk #

Institute of Informatics, University of Warsaw, Poland

Anna Zych-Pawlewicz #

Institute of Informatics, University of Warsaw, Poland

Abstract
We design a randomized data structure that, for a fully dynamic graph G updated by edge
insertions and deletions and integers k, d fixed upon initialization, maintains the answer to the Split
Completion problem: whether one can add k edges to G to obtain a split graph. The data structure
can be initialized on an edgeless n-vertex graph in time n · (kd · log n)O(1), and the amortized time
complexity of an update is 5k · (kd · log n)O(1). The answer provided by the data structure is correct
with probability 1 − O(n−d).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Data structures design and analysis

Keywords and phrases parameterized complexity, dynamic data structures, split graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.87

Related Version Full Version: https://arxiv.org/abs/2402.08816 [29]

Funding This work is a part of project BOBR that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 948057).

1 Introduction

In the field of parameterized algorithms, one measures resources used by an algorithm not
only in terms of the total size of the considered instance, but also in terms of auxiliary
quantitative measures associated with the instance, called parameters. Recently there is
a growing interest in applying this principle to the area of dynamic data structures. In
this context, we typically consider an instance I of a fixed problem of interest, with an
associated parameter k. The instance is dynamic, in the sense that it is updated over time by
problem-specific update operations, while for simplicity we assume that the parameter stays
intact. The goal is to design a data structure that would maintain whether I is a yes-instance
of the problem under the updates to I. Here we allow the update time to depend in any
computable way on the parameter and sublinearly on the instance size; for instance, we
are insterested in (possibly amortized) update times of the form f(k), f(k) · (log n)O(1), or
f(k) · no(1), where f is some computable function and n is the size of I. Note that we allow
f to be superpolynomial, so this framework may be applied even to NP-hard problems, as
long as their static parameterized variants are fixed-parameter tractable.

Parameterized dynamic data structures were first systematically investigated by Iwata
and Oka [23], followed by Alman et al. [1]. These works provided data structures with update
times f(k) or f(k) ·(log n)O(1) for several classic problems such as Vertex Cover, Cluster
Vertex Deletion, Hitting Set, Feedback Vertex Set, or Longest Path. Other
recent advances include data structures for maintaining various graph decompositions together

© Konrad Majewski, Michał Pilipczuk, and Anna Zych-Pawlewicz;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 87; pp. 87:1–87:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.majewski@mimuw.edu.pl
https://orcid.org/0000-0002-3922-7953
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
mailto:anka@mimuw.edu.pl
https://orcid.org/0000-0002-5361-8969
https://doi.org/10.4230/LIPIcs.ESA.2024.87
https://arxiv.org/abs/2402.08816
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

87:2 Parameterized Dynamic Data Structure for Split Completion

with runs of dynamic programming procedures [8, 13,14,26, 28], treatment of parameterized
string problems from the dynamic perspective [33], and even an application of the framework
in the context of timed automata [19].

A topic within parameterized algorithms that could be particularly productive from the
point of view of dynamic data structures is that of graph modification problems. In this
context, we fix a graph class C and a set of graph operations Π (e.g. vertex deletion, edge
deletion, edge insertion), and consider the following parameterized problem: given a graph
G and a parameter k, decide whether one can apply at most k operations from Π to G

in order to obtain a graph belonging to C. By instantiating different graph classes C and
sets of operations Π, we obtain a wealth of parameterized problems with vastly different
complexities, highly dependent on the combinatorics of the class C in question. The most
widely studied are vertex deletion problems (only vertex deletions are allowed), edge deletion
and completion problems (only edge deletions, respectively insertions, are allowed), and
editing problems (both edge deletions and edge insertions are allowed).

Note that Vertex Cover, Feedback Vertex Set, and Cluster Vertex Deletion
can be understood as vertex deletion problems, for the classes of edgeless, acyclic, and cluster
graphs, respectively. Thus, the results of Iwata and Oka [23] and of Alman et al. [1] already
give parameterized dynamic data structures for some basic graph modification problems, but
the impressive volume of work on static parameterized algorithms for such problems suggests
that there is much more to be explored.

In this work we focus on the case of split graphs; recall that a graph G is a split graph if the
vertices of G can be partitioned into sets C and I so that C is a clique and I is an independent
set. As proved by Földes and Hammer [17], split graphs are exactly graphs that exclude
2K2, C4, and C5 as induced subgraphs. Hence, a standard branching strategy solves Split
Vertex Deletion in time 5k · nO(1) and Split Completion in time 5k · nO(1) (note that
Split Edge Deletion is equivalent to Split Completion in the complement of the given
graph). In fact, faster algorithms are known: Split Vertex Deletion can be solved in time
1.2738k · kO(log k) + nO(1) [10], while Split Completion can be solved in subexponential
parameterized time, more precisely in time kO(

√
k) · nO(1), and admits a kernel with O(k2)

vertices [18]. Somewhat surprisingly, Split Editing is polynomial-time solvable [20], while
both Split Vertex Deletion and Split Completion remain NP-hard [27, 32]. This
makes graph modification problems related to split graphs very well understood in the static
setting, and of remarkably low complexity, which suggests that they may serve as a suitable
testbed for considerations from the point of view of dynamic data structures.

In fact, split graphs have already been considered in the dynamic setting. Ibarra [22] gave
a dynamic data structure with constant update time for the membership problem: the data
structure maintains whether the graph in question is a split graph. This can be understood
as the treatment of (any) modification problem for parameter k equal to 0. Further aspects
of dynamic maintenance of split graphs were investigated by Heggernes and Mancini [21].

Our contribution. In this work we propose a randomized dynamic data structure for the
Split Completion problem whose amortized update time depends polylogarithmically on
the size of the graph. Formally, we prove the following result.
▶ Theorem 1. There is a randomized data structure that for a fully dynamic graph G,
updated by edge deletions and edge insertions, and a parameter k fixed upon initialization,
maintains the answer to the following query: can one add at most k edges to G to obtain
a split graph. The data structure can be initialized on an edgeless n-vertex graph and an
accuracy parameter d ∈ N in time kO(1) ·d2 ·n · (log n)O(1), and the amortized time complexity
of updates is 5k ·kO(1) ·d2 · (log n)O(1). At all times, the answer provided by the data structure
is correct with probability at least 1 − O(n−d).

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:3

Note that the data structure Theorem 1 offers no query methods, because the answer to
the query – whether one can add k edges to G to obtain a split graph – is a single bit that is
always stored explicitly in the data structure and can be retrieved in time O(1). We remark
that by a tiny modification of the algorithm, we can also provide an analogous data structure
for the dynamic Split Edge Deletion problem, with same complexity guarantees.

Theorem 1 fits within a wider context of dynamic data structures for graph modification
problems. There are multiple open questions that can be asked in this area; we discuss some
of them in Section 6.

Overview. Let us now discuss the main ideas behind the proof of Theorem 1. The basic
approach is to try to dynamize the standard 5k ·nO(1)-time branching algorithm, which works
as follows: recursively find an obstruction – an induced subgraph belonging to {2K2, C4, C5}
– and branch into at most 5 different ways on how to destroy this obstruction by adding an
edge. To implement this strategy in the dynamic setting, we need to have an efficient way
of finding an obstruction in the current graph, or concluding that it is split. Indeed, if we
get such a localization procedure, then the branching algorithm can be implemented using
data structure’s own methods for inserting and removing edges. A detailed description is
presented in the full version of the paper [29].

The next observation is that if (G, k) is a Yes-instance of the Split Completion
problem, then in particular it is also a Yes-instance of the Split Editing problem: one
can obtain a split graph from G by adding or removing at most k edges. This is equivalent
to the following statement: there is a partition (A, B) of the vertex set of G such that the
number of edges with both endpoints in B plus the number of non-edges with both endpoints
in A is at most k. For a partition (A, B), this number is called the splittance of (A, B). As
observed by Hammer and Simeone [20], a partition with optimal splittance can be computed
in polynomial time using a simple greedy argument. Ibarra [22] dynamized this observation
and showed that a partition (A, B) with optimum splittance can be maintained with Õ(1)
worst-case update time. Moreover, upon every edge update, the data structure of Ibarra
moves only O(1) vertices between the parts A and B.

Therefore, thanks to the result of Ibarra we may assume that a partition (A, B) with
optimum splittance is available to us; this gives us a basic structural understanding of G. If
the splittance of (A, B) is larger than k, then we are certain that (G, k) is a No-instance
of Split Completion. Hence, from now on we will work in the promise model, where we
assume that the maintained partition (A, B) has splittance bounded by k at all times (we
refer to this property as the promise). Lifting the result from the promise model to the general
setting is handled by a wrapper data structure that works as follows: while the splittance
is larger than k, the new updates are put on a queue instead of directly implemented, and
when the splittance becomes at most k again, all the enqued updates are implemented in one
large batch. We remark that this is the only source of amortization in our data structure: in
the promise model, the claimed running time guarantees are worst-case. The wrapper data
structure, presented in Section 4, is solely responsible for veryfing the promise, collecting
the updates on the queue when the promise ceases to hold, and applying the updates when
the promise is satisfied again. We note that together with the partition (A, B), the wrapper
data structure also maintains sets nonEdgesA and edgesB consisting of non-edges with both
endpoints in A and edges with both endpoints in B, with a guarantee that they are correct
whenever the splittance of (A, B) is at most k. Note that then |nonEdgesA| + |edgesB| ⩽ k.

The wrapper data structure relies on two promise data structures, whose correct per-
formance is only guaranteed when the promise is satisfied. The promise data structures are
described in Section 3. Their main functionality is to implement efficient access to edges and

ESA 2024

87:4 Parameterized Dynamic Data Structure for Split Completion

non-edges crossing the partition (A, B). More precisely, in Õ(kO(1))-time, given ℓ ∈ O(k),
they are able to list:

for a given a ∈ A, any set of ℓ neighbors of a in B; and
for a given b ∈ B, any set of ℓ non-neighbors of b in A.

If a has fewer than ℓ neighbors in B, then the query should list all of them; similarly for b.
As the second query is symmetric to the first one, we focus on the latter. First, consider
the case when a has exactly one neighbor in B. Then to quickly recover this neighbor, we
can maintain in the data structure the following information:

the sum sA of the identifiers of all the vertices in A; and
for every vertex u, the sum su of the identifiers of all the neighbors of u.

Then given a, the identifier of the sole neighbor of a in B can be obtained by taking sa − sA

and adding the identifiers of all non-neighbors of a in A, which can be listed in time Õ(k) using
the set nonEdgesA. This trick can be lifted to listing all neighbors of a in B assuming that
that their number is O(k) using the technique of color coding of Alon, Yuster, and Zwick [2].
Finally, to allow listing ℓ = O(k) neighbors from possibly much larger neighborhoods, we
sample in advance a polylogarithmically-sized family S of vertex subsets of varying sizes so
that for any possible neighborhood N , with high probability among the sampled sets there
will be some S ∈ S such that ℓ ⩽ |N ∩ S| ⩽ O(ℓ). Then we apply the ideas presented above
to list the members of N ∩ S, whose number is already suitably bounded. We remark that
this final trick is the only element of the reasoning that we do not know how to derandomize.

Once the promise data structures and the wrapper data structure are at hand, the last
step is to implement the procedure for finding an obstruction. Here, the main idea is that
every obstruction present in G must contain a non-edge with both endpoints in A or an edge
with both endpoints in B; for otherwise it would be a split graph. For these (non-)edges, we
have at most k candidates contained in the lists nonEdgesA and edgesB. Therefore, while
searching for an obstruction, we can immediately “anchor” two of its vertices by guessing a
member of nonEdgesA ∪ edgesB that is contained in the obstruction. Localizing the other
two or three vertices of the obstruction requires a skillful juggle of the functionality specified
above, in particular the methods for enumeration of (non-)neighbors across the partition
(A, B). This part of the argument can be found in Section 5.

2 Preliminaries

For a positive real number x, we define [x] = {1, 2, . . . , ⌈x⌉}. For two sets A and B, we
denote their symmetric difference by A△B = (A \ B) ∪ (B \ A). Given any sets A, B, C

we write C = A ⊎ B if C = A ∪ B, and A ∩ B = ∅. For a boolean condition b, we use its
indicator function 1b, defined as 1b = 1 if b is true, and 1b = 0 otherwise. We use the Õ(·)
notation to hide polylogarithmic factors; that is, Õ(f(n)) is the class of all functions g(n)
that are upper-bounded by c · f(n) · (log n)c for some constant c.

All graphs considered in this paper are undirected and simple. For a graph G, we denote
the sets of vertices and of edges of G by V (G) and E(G), respectively. For convenience our
data structures assume that V (G) = [n] for some natural number n. We refer to an edge
{u, v} ∈ E(G) as uv, for every pair of vertices u and v. For a vertex v ∈ V (G), we denote
the degree of v by dG(v) and the set of all neighbors of v by NG(v) (we may skip index G if
it is clear from the context). Additionally, we define NG(v) as the set of non-neighbors of
v, that is, NG(v) = V (G) \ (NG(v) ∪ {v}). For a subset A ⊆ V (G), we denote by G[A] the
subgraph of G induced by A. For a graph F , we say that G is F -free if it does not contain
an induced subgraph isomorphic to F . Similarly, for a family of graphs F , a graph G is
F-free if it is F -free for every F ∈ F .

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:5

We say that G is split if its vertices can be partitioned into two sets A and B such that
G[A] is a clique, and G[B] is an independent set. For any partition (A, B) of V (G), we
denote

splittanceG(A, B) :=
(

|A|
2

)
− |E(G[A])| + |E(G[B])|,

that is, splittanceG(A, B) counts the number of non-edges of G within A and edges of G

within B. For the whole graph G, we write

splittance(G) := min
(A,B) : V (G)=A⊎B

splittanceG(A, B).

One can observe that splittance(G) counts the minimal number of edge updates (insertions
or deletions) that need to be done on G in order to make G split. In particular, G is split if
and only if splittance(G) = 0. A partition with optimum splittance can be computed greedily
by taking a prefix of the vertex set ordered by decreasing degrees, as stated by Hammer and
Simeone [20].

▶ Fact 2 ([20]). Let G be a graph on n vertices, and let d1 ⩾ d2 ⩾ . . . ⩾ dn be a sorted
sequence of the vertex degrees of G. Define m := max{i ∈ [n] | di ⩾ i − 1}. Then,

splittance(G) = m(m − 1) −
m∑

i=1
di +

n∑
i=m+1

di,

and a certifying partition (A, B) of V (G) can be obtained by taking the vertices of G corres-
ponding to the degrees (d1, . . . , dm) and (dm+1, . . . , dn), respectively.

Ibarra [22] gives a dynamic data structure that maintains whether a dynamic graph G is
split. Lemma 3 describes a slight adaptation of the data structure of Ibarra.

▶ Lemma 3. There exists a data structure DSplit[n] that runs on a dynamic graph G = (V, E)
on n vertices, and maintains a partition (A, B) of its vertices satisfying splittanceG(A, B) =
splittance(G). The data structure supports the following operations:

initialize(n): fixes the set of vertices V := [n] for the entire run, sets the initial graph
G to an edgeless graph G := (V, ∅) and sets the initial partition (A, B) to (A, B) := (∅, V).
Runs in time Õ(n).
update(uv): inserts edge uv if uv ̸∈ E(G) or removes edge uv if uv ∈ E(G). Let
G′ := (V, E(G)△{uv}) be the updated graph and (A′, B′) be the updated partition for G′.
The method returns a set V moved ⊆ V of size |V moved| ⩽ O(1) such that

(A′, B′) = (A△V moved, B△V moved).

The running time is Õ(1).
splittance(): returns the current value of splittanceG(A, B) = splittance(G) in
time O(1).

Other than by splittance, we can also characterize split graphs via forbidden subgraphs.

▶ Fact 4 ([17]). A graph G is split if and only if G is F-free, where F = {2K2, C4, C5}.

ESA 2024

87:6 Parameterized Dynamic Data Structure for Split Completion

Computation. We assume the standard word RAM model of computation with machine
words of length O(log n). We use sets and dictionaries assuming standard implementa-
tions using self-balancing binary search trees, which offer all operations in worst-case time
O(log n) ⊆ Õ(1). In particular, graphs are represented as dictionaries mapping vertices to
the sets of their neighbors. Most of our data structures are randomized. We stress that the
random choices happen only during the initialization, and therefore the events of incorrectness
of further queries are not independent – they all depend on the initial randomness.

3 Listing (non-)edges across the partition

Let G = (A ⊎ B, E) be a dynamic graph whose vertices are partitioned into two sets A and
B which might change over time. In this section, we devise two auxiliary data structures
that are responsible for listing all neighbors of a given a ∈ A in the set B, provided this
neighborhood is small, or sampling a sufficient number of neighbors of a in B. Symmetric
queries can be also given for non-neighborhoods in A of vertices b ∈ B.

Both data structures work under the promise that splittanceG(A, B) ⩽ k. This promise
will be lifted in the next section, where we design a wrapper data structure that works
also when splittanceG(A, B) > k. To facilitate the design of this wrapper data structure,
both data structures presented in this section need to be able to process updates in batches:
instead of being given only single edge updates, they will be given sets of edge modifications
such that after applying all of them the condition splittanceG(A, B) ⩽ k is preserved.

Also, both data structures are assumed to have access to sets nonEdgesA, edgesB consisting
of non-edges with both endpoints in A and edges with both endpoints in B, respectively.
This access will be provided by the wrapper data structure. We start by providing the first
data structure, called PromiseNL (standing for neighbors listing).

▶ Lemma 5. There is a data structure PromiseNL[n, k, ℓ, d, S], parametrized by integers
k, ℓ, d ∈ N and a subset S ⊆ V (G), that runs on a dynamic graph G = (V, E) with V = [n],
and maintains a partition (A, B) of vertices of G by supporting the following operations:

initialize(n, k, ℓ, d, S): sets V := [n], fixes the values of k, ℓ, d and S for the entire
run, initializes G := (V, ∅) and (A, B) := (∅, V). Runs in time Õ(ℓd · n).
update(V moved, Emod, nonEdgesA, edgesB): modifies the edge set of the underlying graph
to E′ := E△Emod and modifes the partition to (A′, B′) := (A△V moved, B△V moved),
provided that after the update splittanceG′(A′, B′) ⩽ k for the modified graph G′ = (V, E′).
Requires two lists of edges nonEdgesA, edgesB ⊆

(
V
2
)

storing the sets of all non-edges of
G′[A′] and all edges of G′[B′], respectively. Note that both sets are of size at most k since
splittanceG′(A′, B′) ⩽ k. The running time is Õ(k + ℓd · (|V moved| + |Emod|)).

Moreover, the data structure can answer the following queries:
listNeighborsBS(a): given a vertex a ∈ A, either returns the set

N := NG(a) ∩ B ∩ S

provided |N | ⩽ ℓ, or reports TooMany if |N | > ℓ.
listNonNeighborsAS(b): given a vertex b ∈ B, either returns the set

N := NG(b) ∩ A ∩ S

provided |N | ⩽ ℓ, or reports TooMany if |N | > ℓ.
Both queries run in time Õ(kℓd) and return correct answers with probability 1 − O(n−d).

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:7

Proof. Let γ be some large enough constant whose value will be set later. We assume that
ℓ ⩽ n, for otherwise we might set ℓ := n, and this would not affect answers to the queries.
We also denote the sum of the vertex indices in a set X ⊆ V as sum(X) =

∑
v∈X v. The

data structure PromiseNL[n, k, ℓ, d, S] stores:
the adjacency list representation of G and representation of A and B as sets;
the integer values of k, ℓ, d and S ⊆ V (G) represented as a set;
the sets of edges nonEdgesA, edgesB ⊆

(
V (G)

2
)

provided in the updates, as lists;
for every i ∈ [γd log n], a vertex ℓ-coloring χi : V (G) → [ℓ]. Define Si,c := S ∩ χ−1

i (c), for
every i ∈ [γd log n] and c ∈ [ℓ]; these sets are also stored in the data structure;
the following integer values:
countS(v) = |NG(v) ∩ S| for every v ∈ V (G);
countAS = |A ∩ S|; countBS = |B ∩ S|;
idSumSi,c(v) = sum(NG(v) ∩ Si,c) for every i ∈ [γd log n], c ∈ [ℓ] and v ∈ V (G);
idSumASi,c = sum(A ∩ Si,c) for every i ∈ [γd log n] and c ∈ [ℓ];
idSumBSi,c = sum(B ∩ Si,c) for every i ∈ [γd log n] and c ∈ [ℓ].

Before proceeding, let us give a rough idea on how these variables are used. Consider a
vertex a ∈ A. Using the variables count- and the set nonEdgesA, one can obtain the number
of neighbors of a in the set B ∩ S by applying a simple inclusion-exclusion formula. If this
neighborhood N is of size at most ℓ, we need to list all the vertices of N . We use the vertex
colorings χi and the corresponding variables idSum-. Each coloring χi is initialized randomly.
Therefore, with high probability, for every vertex v ∈ N , there is a coloring χi such that
under χi, v has a different color than all the other vertices of N \ {v}. By applying a similar
inclusion-exclusion principle on the variables idSum- we can retrieve an identifier of v.

Initialization.
We initialize the adjacency representation of G to store an edgless graph on vertices [n].
We initialize A = ∅ and B = V . Also, we set the lists nonEdgesA, edgesB to be empty.
We store the values of k, ℓ, d and S as a set.
All colorings χi are initialized randomly, that is, for every i ∈ [γd log n] and v ∈ V (G),
we choose a color for χi(v) uniformly at random from the set [ℓ]. The colorings are fixed
for the entire run as well, and so are sets Si,c.
Since the initial graph is empty, all the values count- and idSum- can be computed
according to their definitions in total time Õ(ℓd · n).

Update. Consider an update update(V moved, Emod, nonEdgesA, edgesB). First, we save the
new values of nonEdgesA and edgesB. Observe that the functions countS(·) and idSumSi,c(·)
need to be changed only for the endpoints of the edges of Emod, and the remaining Õ(ℓd)
stored variables are affected only by vertices moved between A and B. Therefore, the entire
update takes Õ(k + ℓd · (|V moved| + |Emod|)) time.

Queries. We show how to answer the query listNeighborsBS(a, nonEdgesA) for a vertex
a ∈ A. Recall that since splittanceG(A, B) ⩽ k, there are at most k non-edges within A, i.e.,
|nonEdgesA| ⩽ k. Let N := NG(a) ∩ B ∩ S. We start with the following observation.

▷ Claim 6. One can compute the value of |N | in time Õ(k).

Proof. The following equalities hold:

|N | = |NG(a) ∩ B ∩ S| = |NG(a) ∩ S| − |NG(a) ∩ A ∩ S| = countS(a) − |NG(a) ∩ A ∩ S|

= countS(a) − (|A ∩ S| − 1a∈S − |NG(a) ∩ A ∩ S|)

= countS(a) − (countAS − 1a∈S − |NG(a) ∩ A ∩ S|).

ESA 2024

87:8 Parameterized Dynamic Data Structure for Split Completion

* Observe that NG(a) ∩ A ∩ S ⊆ NG(a) ∩ A, and we can obtain all the non-neighborhood of
a in A by iterating over the given set nonEdgesA of size at most k. Thus, we can compute
the value of |NG(a) ∩ A ∩ S| in time Õ(k). ◁

Now, as a first step to answer listNeighborsBS(a, nonEdgesA) query, we compute |N |.
If |N | > ℓ, we report TooMany. So assume that |N | ⩽ ℓ. For a vertex b ∈ N and a coloring
χi, let us say that b is exposed by the coloring χi if χi(b) ̸= χi(b′) for every b′ ∈ N \{b}. First,
we note that every member of N is exposed with high probability. (Proofs of statements
marked with (♠) can be found in the full version of the paper [29].)

▷ Claim 7 (♠). With probability at least 1 − n−d, the following event holds: For every
b ∈ N , there is an index i ∈ [γd log n] such that b is exposed by χi.

Next, we note that once a vertex of N is exposed, its identifier can be easily computed
using a similar inclusion-exclusion principle as in the proof of Claim 6.

▷ Claim 8 (♠). Let i ∈ [γd log n] be an index and c ∈ [ℓ] be a color such that there is
a vertex b exposed by χi with color χi(b) = c. Then, given c and i, one can retrieve the
identifier of b in time Õ(k).

We already have all the tools to finish the implementation of the query
listNeighborsBS(a). To list all the elements of N , it is enough to iterate over all in-
dices i ∈ [γd log n] and colors c ∈ [ℓ], and for each pair (i, c) retrieve the value that is
described in Claim 8 and check whether the returned value is a vertex that belongs to N .
By Claim 7, this procedure will retrieve the entire set N with probability at least 1 − n−d

and the total running time is bounded by Õ(kℓd).
To answer the queries listNonNeighborsAS(b, edgesB) for b ∈ B we proceed analogously.

To this end, we need additionally the values of:
|NG(b) ∩ S| which can be obtained from the values of |NG(b) ∩ S| and |S|; and
sum(NG(b) ∩ Si,c) which we can obtain from sum(NG(b) ∩ Si,c) and sum(Si,c), where the
latter sums can be precomputed during the initialization. ◀

The application of color coding presented in Claim 7 and Claim 8 can be derandomized
in a standard way, see e.g. [9, Section 5.6]. So far, we can list ℓ neighbors of a vertex a ∈ A

in the set B ∩ S only under an assumption that this neighborhood N is small. However, this
condition does not need to hold in general, and in the next sections we will also need to find
several neighbors of a in B (more precisely, a subset of N of size Θ(k)) in the case when the
set N is large. This is the responsibility of our next data structure, PromiseNS (standing for
neighbors sampling). Roughly speaking, this data structure will store a set of layers of the
vertex set, where the ith layer contains roughly n/2i random vertices of G. Then, provided
|N | > ℓ, with high probability one of the layers will contain Θ(ℓ) vertices of N . By running
an instance of PromiseNL on each layer, we will be able to retrieve those vertices.

▶ Lemma 9. There exists a data structure PromiseNS[n, k, ℓ, d], parametrized by integers
k, ℓ, d ∈ N, that runs on a dynamic graph G = (V, E) with V = [n], and maintains a dynamic
partition (A, B) of vertices of G by supporting the following operations:

initialize(n, k, ℓ, d): sets V := [n], fixes the values of k, ℓ and d for the entire run,
initializes G := (V, ∅) and (A, B) := (∅, V). Runs in time Õ(ℓd2 · n).
update(V moved, Emod, nonEdgesA, edgesB): modifies the edge set of the underlying graph
to E′ := E△Emod and modifes the partition to (A′, B′) := (A△V moved, B△V moved),
provided that after the update splittanceG′(A′, B′) ⩽ k for the modified graph G′ = (V, E′).

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:9

Requires two lists of edges nonEdgesA, edgesB ⊆
(

V
2
)

storing the sets of all non-edges of
G′[A′] and all edges of G′[B′], respectively. Note that both sets are of size at most k since
splittanceG′(A′, B′) ⩽ k. The running time is Õ(kd + ℓd2 · (|V moved| + |Emod|)).

Moreover, the data structure can answer the following queries:
sampleEdges(a): given a vertex a ∈ A, returns a subset

N sample
B (a) ⊆ NG(a) ∩ B

of size min(ℓ, |NG(a) ∩ B|);
sampleNonEdges(b): given a vertex b ∈ B, returns a subset

N
sample
A (b) ⊆ NG(b) ∩ A

of size min(ℓ, |NG(b) ∩ A|).
Both queries run in time Õ(kℓd2) and return correct answers with probability 1 − O(n−d).

Proof. The data structure PromiseNS[n, k, ℓ, d] stores:
the adjacency lists representation of G and representation of A and B as sets;
the values of the parameters k, ℓ, and d;
the sets nonEdgesA, edgesB ⊆

(
V (G)

2
)

given in the updates, as lists;
a single instance PromiseNL[n, k, ℓ′, d, S] of the data structure from Lemma 5 running on
the same dynamic graph G, where ℓ′ := 72ℓ and S := V (G);
for every i ∈ [log n] and j ∈ [d log n], a subset of vertices Vi,j ⊆ V (G), fixed upon
initialization and not modified later on; and
for every i ∈ [log n] and j ∈ [d log n], an instance PromiseNLi,j [n, k, ℓ′, d, Si,j] of the data
structure from Lemma 5 running on the same dynamic graph G, where Si,j := Vi,j .

Initialization. Intuitively, we want the set Vi,j to be a random subset containing roughly
n/2i vertices of G. To achieve this, for every i ∈ [log n] and j ∈ [d log n], and every vertex
v ∈ V (G), we put v into the set Vi,j with probability 2−i, independently. Then, we initialize
all the data structures PromiseNL and PromiseNLi,j . The total running time is bounded by:

log n · d log n · Õ(ℓ′d · n) ⊆ Õ(ℓd2 · n).

Update and Sampling. Due to space limitations, the detailed description of updates and
sampling is presented in the full version of the paper [29]. As for sampling, the idea is to
query all the data structures PromiseNLi,j and argue, using Chernoff’s inequality, that at least
one of those data structures returns at least ℓ (non-)neighbors of the vertex in question. ◀

4 Lifting the promise

In the previous section we presented data structures that work under the promise that
splittanceG(A, B) ⩽ k. Now, we focus on the general case when no such condition is
guaranteed to hold. The main responsibility of our next data structure, Wrapper[n, k, d], is
to implement the same functionality as data structures PromiseNL and PromiseNS, but to
work without the assumption that splittanceG(A, B) ⩽ k and, additionally, to offer methods
for listing non-edges with both endpoints in A and edges with both endpoints in B (these
were needed for queries in the data structures PromiseNL and PromiseNS). All those methods
are required to give correct outputs only when the inequality splittanceG(A, B) ⩽ k holds,
but the data structure should persist also when splittanceG(A, B) > k, and return to giving
correct answers again once the splittance decreases to at most k.

ESA 2024

87:10 Parameterized Dynamic Data Structure for Split Completion

▶ Lemma 10. There exists a data structure Wrapper[n, k, d] parametrized by integers k, d ∈ N
that runs on a dynamic graph G = (V, E) with V = [n] and maintains a partition (A, B) of
V satisfying splittanceG(A, B) = splittance(G) by supporting the following operations:

initialize(n, k, d): sets V := [n], fixes the values of k and d for the entire run, initalizes
G := (V, ∅) and (A, B) := (∅, V). Runs in time Õ(kd2 · n).
update(uv): inserts edge uv if uv ̸∈ E(G) or removes edge uv if uv ∈ E(G). Runs in
Õ(kd(k + d)) amortized time.
splittance(): returns splittance(G) in time O(1).

Moreover, if splittance(G) ⩽ k, the data structure answers the following queries:
listNonEdgesA(): returns the list of all non-edges of G with both endpoints in A;
listEdgesB(): returns the list of all edges of G with both endpoints in B;
sampleEdges(a): given a vertex a ∈ A, returns a subset

N sample
B (a) ⊆ NG(a) ∩ B

of size min(10k, |NG(a) ∩ B|);
sampleNonEdges(b): given a vertex b ∈ B, returns a subset

N
sample
A (b) ⊆ NG(b) ∩ A

of size min(10k, |NG(b) ∩ A|).
The queries listNonEdgesA and listEdgesB run in time Õ(k), and the queries sampleEdges
and sampleNonEdges run in time Õ(k2d2). The data structure is randomized and returns
correct answers with probability 1 − O(n−d).

Proof. The data structure Wrapper[n, k, d] stores:
the adjacency list representation of G and representation of A and B as sets;
the values of k and d;
an instance DSplit[n] of the data structure from Lemma 3 running on G;
an instance PromiseNL[n, k, ℓ, d′, S] of the data structure from Lemma 5, where ℓ = k,
d′ = d + 3 and S = V (G);
an instance PromiseNS[n, k, ℓ′, d] of the data structure from Lemma 9, where ℓ′ = 10k;
a set verticesUpd ⊆ V (G) and sets edgesUpd, edgesB, nonEdgesA ⊆

(
V (G)

2
)

described
in the next paragraph.

Let G0, G1, . . . , Gt be a sequence of consecutive graphs maintained by our data structure,
that is, for every i = 0, 1, . . . , t − 1, Gi+1 is obtained from Gi by adding or removing a
single edge. Moreover, let (Ai, Bi) be the corresponding partition of V (Gi) maintained
by the data structure, and let Ei be the set of edges of Gi, for i = 0, . . . , t − 1. Define
s := max {0 ⩽ i ⩽ t | splittance(Gi) ⩽ k}. Note that s is well-defined as the initial graph G0
is a split graph. Then, sets verticesUpd, edgesUpd, edgesB, nonEdgesA are defined by the
following invariants that must be satisfied at all times:

(edges) edgesB is the set of all edges of the graph Gs[Bs], and nonEdgesA is the set of all
non-edges of the graph Gs[As], both with probability 1 − O(n−d);
(updates) verticesUpd = As△At = Bs△Bt, and edgesUpd = Es△Et;
(promise) the data structures PromiseNL and PromiseNS store the graph Gs with the
partition (As, Bs) of its vertices.

In other words, sets edgesB and nonEdgesA store the answers to the queries listEdgesB()
and listNonEdgesA() that were correct at the last time step when the splittance was bounded
by k. Sets verticesUpd and edgesUpd store all the updates that got accumulated since

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:11

this time step. Also, note that the data structures PromiseNL and PromiseNS run on the
graph Gs = (As ⊎ Bs, Es), not Gt, as they require that the stored graph G and its partition
(A, B) satisfy splittanceG(A, B) ⩽ k. Let us observe at this point that one can assume
that the inequality s ⩽ n2 holds. This comes from the fact that after n2 updates, we can
recompute the correct values of edgesB and nonEdgesA for Gs (and renumber G0 := Gs)
which amortizes to Õ(1) cost per update. The initialization and query procedures of Wrapper
are straightforward, we refer the reader to the full version of the paper [29] for details.

Update. Consider an operation update(uv), where uv is an edge to be inserted or deleted.
First, we pass the same update to the inner structure DSplit which returns a subset of vertices
V moved of size O(1) which need to be moved between A and B. Then, we can update the
sets A and B, accordingly. Next, we update sets verticesUpd and edgesUpd as follows:

verticesUpd′ = verticesUpd△V moved and edgesUpd′ = edgesUpd△{e}.

Let Gs, Gs+1, . . . , Gt = G be the suffix of the sequence of consecutive graphs given to the
data structure, where s is the previous moment our dynamic graph G was of splittance at
most k. If splittance(Gt) > k, we can finish the update as all the invariants (edges), (updates)
and (promise) hold. The running time is Õ(1).

Now, assume that splittance(Gt) ⩽ k. Then max {0 ⩽ i ⩽ t | splittance(Gi) ⩽ k} = t,
and we need to perform additional modifications so that the invariants (edges), (updates) and
(promise) hold. Let r := t − s be the number of updates that were applied since the last time
our graph was of splittance at most k. Our goal now is to recompute the sets edgesB and
nonEdgesA, so that the invariant (edges) holds, in time proportional to r. Note the following.

▷ Claim 11 (♠). It holds that |As ∩ Bt| ⩽ O(
√

r + k) and |At ∩ Bs| ⩽ O(
√

r + k).

Now, let us focus on updating the set edgesB, so that after the update it reflects time
step t instead of s (the set nonEdgesA is handled analogously). In other words, we need
to locate all the edges of Gt with both endpoints in Bt. Denote this new set by edgesB′.
All such edges can be classified into the following three types (see Figure 1 for illustration).
In the following, we use variables edgesB and nonEdgesA as they are in the data structure
before updating, i.e., their content refers to the time step s.
Type (1): Edges b1b2, where b1, b2 ∈ Bs ∩ Bt.

Observe that every edge in Gt of this form is either
an edge of Gs[Bs], but there were at most k such ones as splittance(Gs) ⩽ k; or
an edge inserted during an update after time step s, but there are at most r such ones.

So using the sets edgesB and edgesUpd we can enumerate all such edges in time Õ(k + r).
Type (2): Edges a1a2, where a1, a2 ∈ As ∩ Bt.

We can list the set As ∩ Bt ⊆ verticesUpd in time Õ(r), and by Claim 11 we can check
all the pairs of vertices of As ∩ Bt in time Õ(r + k).
Type (3): Edges a1b1, where a1 ∈ As ∩ Bt and b1 ∈ Bs ∩ Bt.

To list all such edges we start with applying on PromiseNL a temporary modification by
calling

update(∅, Emod, nonEdgesA, edgesB),

where Emod = Emod
1 ∪ Emod

2 consists of:
Emod

1 : all edges of edgesUpd of the form ab, where a ∈ As ∩ Bt and b ∈ Bs ∩ Bt; there
are at most r such edges.

ESA 2024

87:12 Parameterized Dynamic Data Structure for Split Completion

Emod
2 : all edges of the graph Gs of the form ab, where a ∈ As ∩ Bt and b ∈ Bs ∩ At; we

can list these edges brutally in time Õ(r + k) by Claim 11.
That is, structure PromiseNL works now on the graph Gtmp = (As ⊎ Bs, Etmp) such that

the graphs Gtmp[As] and Gtmp[Bs] are isomorphic Gs[As] and Gs[Bs], respectively,
there are no edges between As ∩ Bt and At ∩ Bs, and
the edges between As ∩ Bt and Bs ∩ Bt coincide in the graphs Gtmp and Gt.

The cost of this temporary update is Õ(k + ℓd′(k + r)) = Õ(kd(k + r)). Observe that edgesB
and nonEdgesA store currently respectively the edges within Bs and non-edges within As in
Gtmp, and thus splittanceGtmp(As, Bs) ⩽ k, as required by the PromiseNL data structure.

Now, we iterate over all vertices a ∈ As ∩ Bt; recall that their number is bounded by r as
they are all contained in verticesUpd. Recall that splittanceGt

(At, Bt) ⩽ k, hence a has at
most k neighbors in Bs ∩ Bt, and we would like to list them all. However, this can be done
precisely by calling listNeighborsBS(a) on PromiseNL. The total cost of such queries for
all a1 ∈ As ∩ Bt is

Õ(|As ∩ Bt| · kℓd′) ⩽ Õ(rk2d).

Finally, we revert PromiseNL to the state before the temporary update, by calling

update(∅, Emod, nonEdgesA, edgesB).

Summing up, the amortized cost of computing the set edgesB′ (and nonEdgesA′) is upper-
bounded by

Õ(k + r) + Õ(r + k) + Õ(kd(k + r)) + Õ(rk2d)
r

⊆ Õ(k2d).

Now, we bound the probability of incorrectly computing the sets edgesB′ and nonEdgesA′.
In the process of recomputation we do at most O(n) queries to PromiseNL, each having
an error probability O(n−d′) = O(n−(d+3)). Hence, with probabilty 1 − O(nd+2) all these
queries return correct answers. Furthermore, we rely on the fact that the sets edgesB and
nonEdgesA were computed correctly for the graph Gs. Recall that we can assume s ⩽ n2,
and thus by the union bound these sets were computed correctly for all the graphs G0, . . . , Gt

with probability at least

1 − n2 · O(n−(d+2)) = 1 − O(n−d).

Next, we update PromiseNL and PromiseNS so that their inner states correspond to the graph
Gt. We run on both structures

update(verticesUpd, edgesUpd, nonEdgesA′, edgesB′).

Then, (promise) holds, and the amortized cost of these updates is

Õ(k + rℓd′) + Õ(kd + rℓ′d2)
r

⊆ Õ(kd2).

Finally, we set verticesUpd′ := ∅ and edgesUpd′ := ∅, so that invariant (updates) holds.
◀

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:13

BtAt

As

Bs

a1 a2
(2)

b1 b2

(1)

a1

b1

(3)
Emod

1
Emod

2

Figure 1 Edge types needed for recomputing edgesB in the proof of Lemma 10.

5 Localizing the obstructions

Let us recall that the graph is split if and only if it is F-free, where F = {2K2, C4, C5}.
We call the members of F simply obstructions. In this section, using the interface of the
data structure Wrapper[n, k, d] from Lemma 10, we show how to extend this data structure
with a method that is able to either conclude that G is split, or report an obstruction in G

witnessing that it is not split. The following statement encapsulates this result.

▶ Lemma 12. The data structure Wrapper[n, k, d] of Lemma 10 can be extended by a method
findObstruction() which returns Split if splittance(G) = 0; or a subset of vertices
U ⊆ V (G) such that the induced subgraph G[U] is isomorphic to one of the graphs of
F = {2K2, C4, C5} if 0 < splittance(G) ⩽ k.

The query runs in time Õ(kO(1) · d2) and is correct with probability 1 − O(nc−d) for some
constant c whenever splittance(G) ⩽ k; without this assumption, there are no guarantees on
the correctness.

Proof. We assume that splittance(G) = splittanceG(A, B) ⩽ k, otherwise we can provide any
answer. In what follows, we use extensively the following two observations.

▷ Claim 13 (♠). Suppose a1, a2 ∈ A and a1a2 ̸∈ E(G). Then one of the following holds:
there is a subset U ⊆ V (G) such that {a1, a2} ⊆ U and G[U] is isomorphic to 2K2 or C4;
at least one of the vertices a1, a2 has at most 3

√
k neighbors in B.

Moreover, in time Õ(k2d2) we can find out which of the above two cases holds, and return
either a set U in the first case, or the neighborhood of a1 or a2 in B in the second case. The
answer is correct with probability at least 1 − O(n−d).

The second observation is symmetric to the first one. We include the statement for clarity.

▷ Claim 14. Let b1, b2 ∈ B be such that b1b2 ∈ E(G). Then at least one of the following holds:
there is a subset U ⊆ V (G) such that {b1, b2} ⊆ U and G[U] is isomorphic to 2K2 or C4;
at least one of the vertices b1, b2 has at most 3

√
k non-neighbors in A.

Moreover, in time Õ(k2d2) we can return a case that holds, together with a witnessing set U

for the first case, or the non-neighborhood of b1 or b2 in A for the second case. The answer
is correct with probability at least 1 − O(n−d).

We proceed with the description of the findObstruction(·) query. Suppose that there
is a set U ⊆ V (G) such that G[U] is an obstruction. We examine all three cases for
G[U] ∈ {2K2, C4, C5}, and in each case we provide a procedure that, assuming the existence

ESA 2024

87:14 Parameterized Dynamic Data Structure for Split Completion

of U as above, detects some set U ′ (possibly different from U) that induces an obstruction.
If no case yields an obstruction, we conclude that G is split. Recall that by running
listNonEdgesA() and listEdgesB(), we have access to the sets nonEdgesA containing all
non-edges within A and edgesB containing all edges within B, and each of these sets has
cardinality at most k. For brevity, a set is small if its size is at most 3

√
k. Due to space

limit, we focus here on the case G[U] = 2K2, and present the remaining cases in the full
version of the paper [29]. So suppose that G[U] = G[{x, y, z, t}] is isomorphic to 2K2, where
xy, zt ∈ E(G). We consider all possible alignments of vertices x, y, z, t with respect to the
partition (A, B). We split the analysis into five cases reflecting the intersection U ∩ A (see
Figure 2).

(a) |U ∩ A| = 4. Then, in particular, xt and yz are two non-edges within A. Hence, U can be
detected by exhaustive search through all the pairs of non-edges in the set nonEdgesA.

(b) |U ∩ A| = 3. Without loss of generality assume that U ∩ A = {x, y, z}. Since xz and
yz are two non-edges with both endpoints in A we can list all O(k2) candidates for
(x, y, z) by inspecting all the pairs of non-edges in nonEdgesA. Having (x, y, z) fixed, it
remains to locate (any) vertex t′ ∈ B that is a neighbor of z and a non-neighbor of x

and y (the original vertex t ∈ U witnesses that such t′ exists). We call sampleEdges(z)
on Wrapper to obtain a set N sample

B (z) consisting of up to 10k neighbors of z in B. If
|N sample

B (z)| < 10k, then N sample
B (z) contains all neighbors of z in B, and we can test

all of them for a vertex t′. So assume now that |N sample
B (z)| = 10k. Then, we run the

subroutine from Claim 13 for pairs (x, z) and (y, z). If any of these calls detects and
returns an obstruction, we are done. Otherwise, since z has more than 3

√
k neighbors in

B, both x and y must have at most 3
√

k neighbors in B and the subroutine returns the
corresponding sets. Denote them by NB(x) and NB(y). Since

|N sample
B (z)| = 10k > 3

√
k + 3

√
k ⩾ |NB(x)| + |NB(y)|,

there exists a vertex t′ ∈ N sample
B (z) \ (NB(x) ∪ NB(y)). Then x, y, z, t′ induce a 2K2.

(c) |U ∩ A| = 2 and the vertices of U ∩ A are adjacent in G. Without loss of generality
assume that U ∩ A = {x, y} and U ∩ B = {z, t}. Then zt is an edge with both endpoints
in B, hence using the set edgesB we can list O(k) candidates for (z, t) and thus fix (z, t).
Next, we run the subroutine from Claim 14 for (z, t), and assume that it did not detect
an obstruction (for otherwise we are done). Then, the subroutine discovers that one of z

or t (say z) has small non-neighborhood NA(z) in A. Since x, y ∈ NA(z), it is enough
to check at most

(3
√

k
2

)
= O(k) candidates for (x, y).

Due to the space constraints, we present the remaining cases in the full version of the
paper [29].

This finishes the case study. Let us analyze the running time of findObstruction()
query. It issues single calls listNonEdgesA() and listEdgesB(), kO(1) calls sampleEdges(·)
and sampleNonEdges(·) (either directly, or via the calls to the subroutines from Claim 13
and Claim 14), and spends Õ(kO(1)) time on internal computation. Therefore, the total
running time of findObstruction() is bounded by

kO(1) · Õ(k2d2) + Õ(kO(1)) ⊆ Õ(kO(1) · d2).

Further, as we may assume that k ⩽ n2, the probability of incorrectly answering the query is:

O
(
n−d

)
+ O(kO(1)) · O

(
n−d

)
= O

(
nO(1) · n−d

)
⊆ O

(
nc−d

)
for some fixed constant c. ◀

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:15

A B
x y

z t

(a)

A B

x

y

z

t

(b)

A B

x

y

z

t

(c)

A B

x y

z t

(d)

A B

x

y

z

t

(e)

A B

w

x
y

z
t

(a)

A B

w

x
y

z
t

(b)

A B

w
x

y

z
t

(c)

A B

x
w

y

t
z

(d)

Figure 2 Non-symmetric cases in 2K2 (top row) and C5 (bottom row) localization. Edges and
non-edges (dashed) marked in red are present on the lists edgesB and nonEdgesA, respectively, hence
they can be selected among O(k) candidates and fixed.

With Lemma 12 established, the proof of Theorem 1 follows: Assuming access to Wrapper
extended as in Lemma 12, upon each query one simply executes the standard branching
algorithm for Split Completion, using method findObstruction() for finding consecutive
obstructions and update(·) for modifying the graph on the fly during backtracking. Details
can be found in the full version of the paper [29].

6 Conclusions

In this work we gave a dynamic data structure for the Split Completion problem with
amortized update time 2O(k) · (d log n)O(1), where the error probability is bounded by
1 − O(n−d). Our result together with the previous work of Iwata and Oka [23] and of
Alman et al. [1] suggest that investigating parameterized dynamic data structures for graph
modification problems might turn out to be a particularly fruitful direction. Concrete
problems that we suspect to be amenable to dynamization are Planarization [24, 31] and
various graph modification problems connected to chordal graphs and their subclasses such as
interval, proper interval, trivially perfect, or threshold graphs; these were studied extensively,
see e.g. [3–7,11,12,15,16,25,30,34,35].

References

1 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized
problems and algorithms. ACM Trans. Algorithms, 16(4):45:1–45:46, 2020. doi:10.1145/
3395037.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michał Pilipczuk. A subexponential
parameterized algorithm for Proper Interval Completion. SIAM J. Discret. Math., 29(4):1961–
1987, 2015. doi:10.1137/140988565.

4 Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michał Pilipczuk. Subexponential
parameterized algorithm for Interval Completion. ACM Trans. Algorithms, 14(3):35:1–35:62,
2018. doi:10.1145/3186896.

ESA 2024

https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037
https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/140988565
https://doi.org/10.1145/3186896

87:16 Parameterized Dynamic Data Structure for Split Completion

5 Yixin Cao. Linear recognition of almost interval graphs. In 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, pages 1096–1115. SIAM, 2016. doi:
10.1137/1.9781611974331.ch77.

6 Yixin Cao. Unit interval editing is fixed-parameter tractable. Inf. Comput., 253:109–126, 2017.
doi:10.1016/j.ic.2017.01.008.

7 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/s00453-015-0014-x.

8 Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 796–809. SIAM, 2021. doi:10.1137/1.9781611976465.50.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan and Marcin Pilipczuk. Split Vertex Deletion meets Vertex Cover: New fixed-
parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182, 2013.
doi:10.1016/j.ipl.2013.01.001.

11 Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring the
subexponential complexity of completion problems. ACM Trans. Comput. Theory, 7(4):14:1–
14:38, 2015. doi:10.1145/2799640.

12 Pål Grønås Drange and Michal Pilipczuk. A polynomial kernel for Trivially Perfect Editing.
Algorithmica, 80(12):3481–3524, 2018. doi:10.1007/s00453-017-0401-6.

13 Zdenek Dvořák, Martin Kupec, and Vojtech Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In 22th Annual European Symposium on
Algorithms, ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 334–345.
Springer, 2014. doi:10.1007/978-3-662-44777-2_28.

14 Zdenek Dvořák and Vojtech Tůma. A dynamic data structure for counting subgraphs in
sparse graphs. In 13th International Symposium on Algorithms and Data Structures, WADS
2013, volume 8037 of Lecture Notes in Computer Science, pages 304–315. Springer, 2013.
doi:10.1007/978-3-642-40104-6_27.

15 Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for Proper Interval
Vertex Deletion. SIAM J. Discret. Math., 27(4):1964–1976, 2013. doi:10.1137/12089051X.

16 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for Minimum
Fill-in. SIAM J. Comput., 42(6):2197–2216, 2013. doi:10.1137/11085390X.

17 Stéphane Földes and Peter L. Hammer. Split graphs. In Eighth Southeastern Conference on
Combinatorics, Graph Theory and Computing, volume XIX of Congressus Numerantium, pages
311–315, 1977.

18 Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh
Rai, and M. S. Ramanujan. Faster parameterized algorithms for deletion to split graphs.
Algorithmica, 71(4):989–1006, 2015. doi:10.1007/s00453-013-9837-5.

19 Alejandro Grez, Filip Mazowiecki, Michał Pilipczuk, Gabriele Puppis, and Cristian Riveros.
Dynamic data structures for timed automata acceptance. Algorithmica, 84(11):3223–3245,
2022. doi:10.1007/s00453-022-01025-8.

20 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1:275–284,
1981.

21 Pinar Heggernes and Federico Mancini. Dynamically maintaining split graphs. Discret. Appl.
Math., 157(9):2057–2069, 2009. doi:10.1016/J.DAM.2008.06.028.

22 Louis Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans.
Algorithms, 4(4):40:1–40:20, 2008. doi:10.1145/1383369.1383371.

23 Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems.
In 14th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, volume

https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1016/j.ic.2017.01.008
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.1137/1.9781611976465.50
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ipl.2013.01.001
https://doi.org/10.1145/2799640
https://doi.org/10.1007/s00453-017-0401-6
https://doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1007/978-3-642-40104-6_27
https://doi.org/10.1137/12089051X
https://doi.org/10.1137/11085390X
https://doi.org/10.1007/s00453-013-9837-5
https://doi.org/10.1007/s00453-022-01025-8
https://doi.org/10.1016/J.DAM.2008.06.028
https://doi.org/10.1145/1383369.1383371

K. Majewski, M. Pilipczuk, and A. Zych-Pawlewicz 87:17

8503 of Lecture Notes in Computer Science, pages 241–252. Springer, 2014. doi:10.1007/
978-3-319-08404-6_21.

24 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

25 Yuping Ke, Yixin Cao, Xiating Ouyang, Wenjun Li, and Jianxin Wang. Unit interval
vertex deletion: Fewer vertices are relevant. J. Comput. Syst. Sci., 95:109–121, 2018. doi:
10.1016/j.jcss.2018.01.001.

26 Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek
Sokołowski. Dynamic treewidth. CoRR, abs/2304.01744, 2023. To appear in the proceedings
of FOCS 2023. doi:10.48550/arXiv.2304.01744.

27 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

28 Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining CMSO2 properties
on dynamic structures with bounded feedback vertex number. In 40th International Symposium
on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs, pages 46:1–
46:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.
2023.46.

29 Konrad Majewski, Michal Pilipczuk, and Anna Zych-Pawlewicz. Parameterized dynamic
data structure for Split Completion. CoRR, abs/2402.08816, 2024. arXiv:2402.08816,
doi:10.48550/arXiv.2402.08816.

30 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.
doi:10.1007/s00453-008-9233-8.

31 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

32 Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modi-
fication problems. Discret. Appl. Math., 113(1):109–128, 2001. doi:10.1016/S0166-218X(00)
00391-7.

33 Jędrzęj Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-
Pawlewicz. Dynamic data structures for parameterized string problems. In 40th International
Symposium on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs,
pages 50:1–50:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPIcs.STACS.2023.50.

34 Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–
867, 2013. doi:10.1007/s00453-012-9661-3.

35 Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval Completion is
fixed parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2009. doi:10.1137/070710913.

ESA 2024

https://doi.org/10.1007/978-3-319-08404-6_21
https://doi.org/10.1007/978-3-319-08404-6_21
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1016/j.jcss.2018.01.001
https://doi.org/10.1016/j.jcss.2018.01.001
https://doi.org/10.48550/arXiv.2304.01744
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://arxiv.org/abs/2402.08816
https://doi.org/10.48550/arXiv.2402.08816
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.4230/LIPIcs.STACS.2023.50
https://doi.org/10.4230/LIPIcs.STACS.2023.50
https://doi.org/10.1007/s00453-012-9661-3
https://doi.org/10.1137/070710913

	1 Introduction
	2 Preliminaries
	3 Listing (non-)edges across the partition
	4 Lifting the promise
	5 Localizing the obstructions
	6 Conclusions

