
Improved Space-Efficient Approximate Nearest
Neighbor Search Using Function Inversion
Samuel McCauley #

Williams College Computer Science, Williamstown, MA, USA

Abstract
Approximate nearest neighbor search (ANN) data structures have widespread applications in machine
learning, computational biology, and text processing. The goal of ANN is to preprocess a set S

so that, given a query q, we can find a point y whose distance from q approximates the smallest
distance from q to any point in S. For most distance functions, the best-known ANN bounds for
high-dimensional point sets are obtained using techniques based on locality-sensitive hashing (LSH).

Unfortunately, space efficiency is a major challenge for LSH-based data structures. Classic LSH
techniques require a very large amount of space, oftentimes polynomial in |S|. A long line of work
has developed intricate techniques to reduce this space usage, but these techniques suffer from
downsides: they must be hand tailored to each specific LSH, are often complicated, and their space
reduction comes at the cost of significantly increased query times.

In this paper we explore a new way to improve the space efficiency of LSH using function
inversion techniques, originally developed in (Fiat and Naor 2000).

We begin by describing how function inversion can be used to improve LSH data structures.
This gives a fairly simple, black box method to reduce LSH space usage.

Then, we give a data structure that leverages function inversion to improve the query time of
the best known near-linear space data structure for approximate nearest neighbor search under
Euclidean distance: the ALRW data structure of (Andoni, Laarhoven, Razenshteyn, and Waingarten
2017). ALRW was previously shown to be optimal among “list-of-points” data structures for both
Euclidean and Manhattan ANN; thus, in addition to giving improved bounds, our results imply that
list-of-points data structures are not optimal for Euclidean or Manhattan ANN.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Theory of
computation → Data compression

Keywords and phrases similarity search, locality-sensitive hashing, randomized algorithms, data
structures, space efficiency, function inversion

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.88

Related Version Full Version: https://arxiv.org/abs/2407.02468

Funding This work was funded in part by NSF CCF 2103813.

Acknowledgements I would like to thank Rasmus Pagh and Martin Aumüller for helpful discussions,
and the anonymous reviewers for their comments and suggestions.

1 Introduction

Modern data science relies increasingly on sophisticated ways to query datasets. A funda-
mental class of these queries is similarity search: given a query q, find the item in the dataset
that is most “similar” to q. Similarity search was originally introduced by Minsky and Papert
in their seminal textbook [48]. Similarity search problems have applications in wide-ranging
areas, including clustering [20, 34], pattern recognition [27], data management [52], and
compression [40].

Unfortunately, for many types of similarity search queries, all known approaches require
space or query time exponential in the dimension of the data [35]. This is often called
the curse of dimensionality. For datasets with high – say Ω(log n log log n) – dimensions,

© Samuel McCauley;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 88; pp. 88:1–88:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srm2@williams.edu
https://orcid.org/0000-0001-8196-9662
https://doi.org/10.4230/LIPIcs.ESA.2024.88
https://arxiv.org/abs/2407.02468
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

88:2 Improved Space-Efficient ANN Using Function Inversion

this cost quickly becomes infeasible. Fine-grained complexity results reinforce this barrier:
sublinear-time algorithms for many similarity search problems would imply that the Strong
Exponential Time Hypothesis is false [4, 51, 54].

Therefore, to obtain good theoretical guarantees, a long line of research has focused
on approximate similarity search [38, 35]. Rather than giving the most similar point, an
approximate similarity search data structure simply guarantees a point whose similarity
approximates the similarity of the most similar point.

Specifically, in this work we focus on Approximate Nearest Neighbor search (ANN). In
ANN, the data structure preprocesses a set S (a subset of a universe U) of n d-dimensional
points for a distance function d(·, ·), a radius r, and an approximation factor c > 1. On a
query q ∈ U , the data structure gives the following guarantee: if there exists a point x ∈ S

with d(q, x) ≤ r, then with probability at least .9, the data structure returns a point y ∈ S

with d(q, y) ≤ cr. The goal is to obtain solutions parameterized by the approximation ratio
c, obtaining polynomial performance in n and d for any constant c > 1.

Classic results show that the definition of ANN given above can be generalized without
significantly increasing the cost. The correctness guarantee of .9 is arbitrary; creating
independent copies of the structure can drive the success probability arbitrarily close to 1.
Past results allow S to change dynamically or to work without knowing the value of r up
front [38], and to obtain all near neighbors (rather than just one) [1, 37]. Moreover, the
approximation guarantee of ANN can be viewed as a beyond-worst-case guarantee: if the
dataset is well-spaced so that there is a single point within distance cr of the query, ANN
guarantees that it will be returned (this was generalized further in [28]). This may explain
in part why ANN solutions are effective at finding exact nearest neighbors in practice, as
was seen in [28, 8].

ANN Distance Functions. The most widely investigated ANN problems are Euclidean and
Manhattan ANN. Euclidean and Manhattan ANN have U = Rd; Euclidean ANN uses the
standard ℓ2 distance function for d(·, ·), while Manhattan ANN uses ℓ1 for d(·, ·).

There are several motivations for studying Euclidean ANN in particular. Euclidean
distance is a natural and well-known metric. It is particularly useful for real-world similarity
search problems [8]. Furthermore, Euclidean ANN can be used to solve other problems. For
example, Manhattan ANN can be solved using a Euclidean ANN data structure using a
classic embedding [11, 44]. In fact, this embedding gives the state-of-the-art Manhattan
ANN bounds [11]. Euclidean ANN is similarly used in the state-of-the-art method for finding
the closest point under cosine similarity [8].

Locality-Sensitive Hashing for ANN. Many theoretical results for ANN are based on
locality-sensitive hashing, originally developed in [38, 35]. An LSH is a hash function where
points at distance r hash to the same value with probability at least p1, while points at
distance more than cr hash to the same value with probability at most p2. Such a hash
immediately implies an ANN data structure with query time Θ(nρ) and space Θ(n1+ρ),
where ρ is defined as ρ = log p1/ log p2 – see Section 2 for a full exposition.

Locality-sensitive hashes have been developed for many distance functions, including
Jaccard similarity [22, 25], Edit Distance [46, 45], Frechet distance [29], and χ2 distance [33],
among many others.

Space-Efficient ANN Data Structures. Despite its popularity and applicability, one down-
side of LSH stands out: an LSH-based data structure requires Ω(n1+ρ) space. This space
usage quickly becomes prohibitive. For example, for ℓ1, the classic LSH of Sar-Peled, Indyk,
and Motwani [38, 35] obtains ρ = 1/c, so if c = 2 the data structure requires Ω(n3/2) space.

S. McCauley 88:3

A long line of research has investigated ways to improve the space usage for LSH; much
of this work focused on the Euclidean distance [50, 5, 39, 24, 11, 53, 18, 17]. Of particular
interest is the near-linear-space regime, where the space required by the data structure is
close to O(nd).

Space-efficient LSH approaches are difficult to design. This is because, at a high level,
space-efficient ANN methods usually store points based on a space partition much like in
an LSH; the data structure saves space by storing the points in fewer locations. The data
structure then must probe more locations on each query to ensure correctness. Designing a
correct approach along these lines – ensuring that the query probes in the correct locations
to guarantee correctness – is technically challenging, and each approach must be carefully
tailored to the specific space partition being used (see the discussion of techniques and related
work in [39] for example). Perhaps for this reason, many ANN problems have no known
space-efficient solutions with theoretical query guarantees.

Best Known Bounds. Andoni et al. [11] obtain the current state-of-the-art bounds for
space-efficient Euclidean ANN and Manhattan ANN. Their results include a smooth tradeoff
between the space usage and query time of the data structure, achieving state-of-the-art
bounds along the entire curve.

Interestingly, there is a matching conditional lower bound given in [11]. They define a
type of data structure, a list-of-points data structure, to encompass “LSH-like” approaches.
In short, a list of points data structure explicitly stores lists of points; each query must
choose a subset of lists to look through for a point at distance ≤ cr. Most high-dimensional
ANN data structures are list-of-points data structures, and Andoni et al. conjecture that
their lower bound can be generalized to handle the few exceptions [12].

The data structures presented in this paper are not list-of-points data structures, as
they do not store lists of points explicitly. Instead, our data structures implicitly store lists
of points while retaining good query time using a sublinear-space function inversion data
structure (defined below). This will allow us to improve their query time, breaking the list of
points lower bound.

Function Inversion. Our results work by applying function inversion to LSH. Function
inversion data structures were initially proposed by Hellman [36], and later analyzed by
Fiat and Naor [30]. In short, these data structures allow us to preprocess a function
f : {1, . . . , N} → {1, . . . , N} using o(N) space so that for a given y ∈ {1, . . . , N}, we can
find an x with f(x) = y in o(N) time (see Lemma 6 for specifics).

A recent, exciting line of work has looked at how these function inversion data structures
can be applied to achieve space- and time-efficient solutions to classic data structure problems.
Function inversion can be applied to an online 3SUM variant to give new time-space
tradeoffs [41, 31]. Aronov et al. [15] gave results for the closely-related problem of collinearity
testing. Bille et al. [21] use the 3SUM method as a black box to give improve string indexing
methods. Finally, Aronov et al. [14] recently gave a toolbox for using function inversion for
implicit set representations, with a number of applications.

We show that ANN data structures interface particularly well with function inversion.
Specifically, in Section 3, we take advantage of the repeated functions of LSH: since we want
to invert many functions, we can store extra metadata (to be shared by all functions) to
help queries. Meanwhile, in Section 4, we will show how to combine the data structure of
Andoni et al. [11], with function inversion to achieve improved Euclidean and Manhattan
ANN performance.

ESA 2024

88:4 Improved Space-Efficient ANN Using Function Inversion

1.1 Results
Two of the most significant questions remaining in the area of space-efficient ANN are:
1. Is it possible to obtain a black-box method to improve the space usage of an LSH-based

ANN data structure?
2. Is it possible to improve the query time for space-efficient Euclidean ANN beyond the

lower bound for list-of-points data structures?
Our results give positive answers to these two questions.

First, we show how to use function inversion to improve the space efficiency of any
locality-sensitive hashing method.

▶ Theorem 1. For any locality-sensitive hash family L (where L has ρ = log p1/ log p2 and
evaluation time T , and storing a given ℓ ∈ L requires O(n1−ρ) space), approximation ratio
c, and space-saving parameter s < ρ, there exists an ANN data structure with preprocessing
time O(n1+ρ), expected space Õ(n1+ρ−s) and expected query time Õ(Tnρ+3s).

This black box method is the first space-efficient method for many ANN problems.
Even for the well-studied Euclidean ANN problem, our simple black-box method can be
combined with the classic LSH of Andoni and Indyk [6] to give a linear-space data structure
with n4/c2+o(1) query time; this is competitive with, or even improves upon, some previous
algorithms (see Section 1.3).

Second, we show how to use function inversion to obtain a data structure that gives
improved state-of-the-art query times for near-linear-space Euclidean ANN and Manhattan
ANN.

▶ Theorem 2. There exists a Euclidean ANN data structure requiring n1+o(1) space and at
most n1.013+o(1) preprocessing time that can answer queries in nα(c)+o(1) expected time with

α(c) = 2c2 − 1
c4

(
1− (c2 − 1)2

4c4 + (c2 − 1)2

)
.

In short, the idea of our data structure is to take the data structure of Andoni et al. [11]
(which we refer to as ALRW), and replace the lists of points with a function-inversion data
structure. Unfortunately, ALRW itself – even without the lists – requires far too much
space. Thus, achieving our bounds requires trimming the ALRW data structure and carefully
running function inversion on the result.

1.2 Comparing Results
In this section we compare our results to past work, focusing our comparison specifically
on how our query time improves on the state of the art for Euclidean ANN. The previous
state of the art query time by Andoni et al. [11]; we refer to it as nALRW (c)+o(1), with
ALRW (c) = (2c2 − 1)/c4. In Theorem 2 we achieve query time nα(c)+o(1) with α(c) =
2c2−1

c4

(
1− (c2−1)2

4c4+(c2−1)2

)
.

Since (c− 1)2 and 4c2 are positive, we immediately have α(c) < ALRW (c). Furthermore,
as c gets large, (c2 − 1)2/(4c4 + (c2 − 1)2) approaches 1/5; more concretely, one can verify
that if c > 2.6 we have α(c) < .85ALRW (c).

For a more complete picture, we compare the bounds obtained by each in Figure 1 and
Table 1. Specifically, this gives a sense of how much improvement is obtained for various
values of c. We see that for values of c close to 2 we obtain a query time improvement of
roughly n.04. In Table 1, we also give the exact exponent of the preprocessing time; for large

S. McCauley 88:5

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

Comparing Theorem 2 and ALRW (c)

Approximation factor c

Q
ue

ry
tim

e
ex

po
ne

nt α(c)
ALRW (c)

Figure 1 A figure comparing α(c) from The-
orem 2 to ALRW (c). The y-axis represents the
exponent of the query time: our results obtain
a linear-space data structure with query time
nα(c)+o(1), compared to the state of the art in [11]
with query time nALRW (c)+o(1).

Table 1 A table comparing the exponent of
the query time of our linear-space approach vs
that of [11]. All values are rounded to the third
decimal place. In the final column, we give the
exponent of the preprocessing time.

c α(c) ALRW (c) preproc.
1.05 .989 .991 1.001
1.5 .641 .691 1.011
1.79 .471 .527 1.012

2 .383 .438 1.012
3 .175 .210 1.007
10 .016 .020 1.001

or small c this is noticeably better than the n1.013 upper bound from Theorem 2. While
our improved query time comes at a cost of increased preprocessing time (ALRW requires
n1+o(1) preprocessing time), this increase is fairly mild. We include an entry at c = 1.79 as it
maximizes ALRW (c)− α(c).

1.3 Related Work
ANN. We briefly describe past work on ANN. See the survey by Andoni and Indyk [7] for
a more thorough exposition.

As mentioned above, theoretical bounds for ANN without exponential dependance on d

usually rely on locality-sensitive hashing. LSH-based methods (including data-dependent
results) have seen extensive work on Euclidean ANN in particular [35, 28, 6, 9, 13, 11, 2].
Further work has applied LSH to many other metrics [25, 46, 45, 29, 33, 3]; this includes the
well-known (and widely used) Bit Sampling LSH (for Hamming distance) [35] and MinHash
(for Jaccard similarity) [22].

In terms of practical performance, LSH-based methods are competitive, though they can
be outperformed by heuristic methods on structured data (for a full comparison see e.g. the
benchmark of Aumüller et al. [16]). There has been work on giving worst-case bounds for
the performance of these heuristics on certain types of datasets [47, 43, 8, 1].

Space-Efficient ANN. Theoretical bounds in the low-space regime have focused largely
on Euclidean ANN. Panigrahy gave a data structure for Euclidean ANN using Õ(n) space,
and achieving query time at most Õ(n2.09/c) (this bound can be improved for small c; e.g. if
c = 2 the query time is roughly n.69) [50]. Andoni and Indyk gave Õ(n)-space data structure
with an improved query time of nO(1/c2), where the constant in the exponent of n is not
specified [6]; this is discussed further in Andoni’s thesis [5]. Kapralov gave the first data
structure that can trade off smoothly between space and time [39]. Setting the parameters to
O(dn) space, this data structure requires n4/(c2+1)+o(1) query time. A sequence of followup
papers [42, 24, 10] (see also [18]) culminated in Andoni et al. [11] giving a data structure
achieving smooth tradeoffs between time and space for Euclidean and Manhattan distances,
along with a matching lower bound for “list-of-points” data structures. Setting the space to
be n1+o(1), they achieve query time n(2c2−1)/c4+o(1).

ESA 2024

88:6 Improved Space-Efficient ANN Using Function Inversion

Function Inversion. The problem of giving smooth time-space tradeoffs for inverting a
black-box function was initiated by Hellman [36]. This idea was generalized and improved
by Fiat and Naor [30], and recently improved further by Golovnev et al. [32]. There are
known lower bounds as well: Hellman’s original result is nearly optimal for inverting random
functions when limited to a restricted class of algorithms [19], and there are tight upper and
lower bounds for inverting permutations [55].

As mentioned earlier, function inversion has recently been applied to data structures,
achieving improved tradeoffs for 3SUM [41, 31], as well as the related problems of collinearity
testing [15] and string indexing [21]. The results in this paper extend this line of work,
applying function inversion to ANN.

2 Preliminaries

Locality-Sensitive Hashing. We begin by formally defining a locality-sensitive hash family.

▶ Definition 3. A hash family H is (p1, p2, r, cr)-sensitive for a distance function d(·, ·) if
for any points x, y with d(x, y) ≤ r, Prh∈H[h(x) = h(y)] ≥ p1, and for any points x′, y′ with
d(x′, y′) ≥ cr, Prh∈L[h(x′) = h(y′)] ≤ p2.

We describe how a locality-sensitive hash can be used for ANN search as was originally
described by Indyk and Motwani [38, 35].

To begin, we select a sequence of hash functions. The first step is to create a new
LSH by concatenating ⌈log1/p2 n⌉ independently-chosen functions from H; let L be the
family of possible hash functions resulting from this concatenation. Thus, if d(x′, y′) ≥ cr,
Prℓ∈L[ℓ(x′) = ℓ(y′)] ≤ 1/n. These parameters are set so that there is one expected point z

with d(z, q) ≥ cr and ℓ(z) = ℓ(q).
ANN performance is generally given in terms of ρ = log p1/ log p2. We have for x, y with

d(x, y) ≤ r, Prℓ[ℓ(x) = ℓ(y)] ≥ p1/nρ. Thus, we repeat the above steps R = Θ(nρ/p1) times
to obtain R hash functions ℓ1, . . . , ℓR, each sampled independently from L.

Now, preprocessing. To preprocess, create a reverse lookup table for ℓi for all i ∈ {1, . . . , R}.
A reverse lookup table is a key-value store (for example, we can implement it using a hash
table). For each y such that there exists an x with ℓi(x) = y, the reverse lookup table stores
y as the key, and {x | ℓ(x) = y} as the value. Thus, each reverse lookup table takes Θ(n)
space (giving Θ(n1+ρ/p1) space in total), and using these tables we can find ℓ−1

j (q) for a
given q and i in O(1 + |ℓ−1

i (q)|) expected time.
To perform a query q, we look up ℓ−1

i (q) for all i ∈ {1, . . . , R}, using the reverse lookup
table for each hash function. We call all points found this way candidate points; there are
O(nρ/p1) candidate points with distance more than cr from q in expectation. (If we find
a point at distance less than cr we return it, so such points only increase the number of
candidate points by an additive O(1).)

If x has d(x, q) ≤ r, then the query fails only if x is not in the candidate points. This occurs
with probability (1− p1/nρ)R; this is at most .1 if the constant when setting R = Θ(nρ/p1)
is sufficiently large.

The space usage of the data structure is O(nR) = O(n1+ρ/p1) for the reverse lookup
tables, plus the space to store ℓ1, . . . , ℓR. (Usually a particular function ℓi can be stored in
no(1) space, so this is a lower-order term.) A query takes O(1) expected time for each reverse
hash table lookup if ℓi can be evaluated in constant time, for O(R) = O(nρ/p1) time overall;
the query time increases linearly if an ℓi sampled from L is slower to evaluate in expectation.

S. McCauley 88:7

Data-dependent ANN Solutions. Locality-sensitive hashing as defined above is data-
independent: we choose the hashes independent of S.

Interestingly, it is possible to obtain improved ANN bounds using data-dependent tech-
niques [9]: the point set is partitioned into lists much like LSH, but these partitions are chosen
using, in part, properties of the data itself. Thus, generating the data structure requires
making random choices that depend not only on n, r, and c, but also properties of the
point set S itself. The state of the art ANN bounds for Euclidean space use data-dependent
techniques [11].

Definitions. Throughout the paper, we assume the dataset S is in some arbitrary order; i.e.
S = x1, x2, . . . , xn. We assume without loss of generality that n is a power of 2.

We use Õ(f(n)) to represent O(f(n)polylogn). Many of our bounds have an no(1) term;
since polylogn = no(1), we generally drop O notation when this term is present. We say that
a data structure is near-linear-space if it requires space n1+o(1) for a dataset of size n.

We use ◦ to denote concatenation, and [N] to represent {1, . . . , N}. For any list A, we
use A[i] to denote the ith element of A (0-indexed).

For any function f : X → Y , we call X the domain and Y the codomain of f . We define
f−1(y) = {x ∈ X | f(x) = y}.

We say that an event occurs with high probability if, for any C, it occurs with probability
bounded below by 1−1/nC . (Generally, the event is parameterized by a constant C2, usually
hidden in O notation; adjusting C2 according to the desired C can achieve the probability
bound – see Corollary 5 for example.)

If an event occurs with high probability then we assume it occurs. (If any with high
probability event does not occur, we revert to a trivial data structure that scans S for each
query; this increases the expected query cost by o(1).)

Formulas. We use the following well-known formulas. First,
(

x
y

)
≤ (ex/y)y. Furthermore,

(1 + 1/n)n ≤ e, and (1− 1/n)n ≤ 1/e.
We use Chernoff bounds throughout the proofs; we reiterate them here for completeness.

▶ Lemma 4 ([23, 49]). Let X = X1 + X2 + . . . be the sum of identical independent 0/1
random variables. Then for any δ ≥ 0, Pr[X ≥ (1 + δ)] ≤ e−δ2 E[X]/(2+δ), and for any
1 ≥ δ ≥ 0, Pr[X ≤ (1− δ)] ≤ e−δ2 E[X]/2.

The following parameter setting is particularly useful.

▶ Corollary 5. Let X = X1 + X2 + . . . be the sum of identical independent 0/1 random
variables with E[X] = Ω(log n). Then X = Θ(E[X]) with high probability.

We refer to the following bound as the union bound (sometimes called Boole’s inequality):
for any k events E1, . . . , Ek, we have Pr[E1 or . . . or Ek] ≤ Pr[E1] + . . . + Pr[Ek].

Most of the proofs in this paper have been removed for space.

3 Function Inversion for LSH

In this section we give our basic function inversion data structure and apply it to LSH.

ESA 2024

88:8 Improved Space-Efficient ANN Using Function Inversion

3.1 Function Inversion
The basic building block of this paper is the function inversion data structure of Fiat and
Naor [30], which gave theoretical bounds for time-space tradeoffs to invert any function
f : [N]→ [N].

▶ Lemma 6 ([30]). For any function f : [N]→ [N] that can be evaluated in T (f) time, and
any σ > 0, there exists a data structure that requires Õ(N/σ) space that can, for any q, find
an x such that f(x) = q with constant probability in Õ(T (f)σ3) time.

This result was recently generalized by Golovnev, Guo, Peters, and Stephens-Davidowitz to
give improved bounds for large σ, namely, query time Õ(T (f) min{σ3, σ

√
N}) [32]. However,

their model allows either access to a large random string that does not count toward the
space bound, or a large fixed advice string for each N . In contrast, Lemma 6 in [30] uses
explicit hash functions. It is plausible that the results of [32] would work in such a setting as
well; this would immediately improve Theorems 1 and 7 for large σ.

Obstacles to Applying Function Inversion to LSH. Function inversion has immediate
potential to improve LSH performance: rather than storing a reverse lookup table to find
ℓ−1

i (q), we can use function inversion to find ℓ−1
i (q) instead. We obtain the same candidate

points, so correctness is guaranteed, but we improve the space usage by a factor Θ̃(σ). (We
describe this strategy in more detail in Section 3.2 below.)

However, Lemma 6 cannot be immediately applied to LSH. The first issue is that the
codomain D of an LSH is unlikely to be [N]. This can be handled (in short) by hashing the
output using a hash function h : D → [N] from a universal hash family; this technique is
standard in the literature (see [14, 26, 31, 41, 32]).

Even after reducing the codomain of the function, Lemma 6 does not suffice for our
purposes. When using locality-sensitive hashing, we must compare the query to all points
in its preimage, whereas Lemma 6 only returns a single point. In the remainder of this
subsection, we show in fact we can obtain all x with f(x) = q. Note that this result requires
an additive O(N) space – it is only useful when we want to invert multiple hash functions
over the same set [N].

The All-Function Inversion Data Structure. We now give our data structure, the all-
function-inversion data structure, which generalizes Lemma 6 to handle the above issues. We
first describe the data structure, and then prove its performance in Theorem 7.

We describe how we can use sampling to find all points that a function f : [N]→ D maps
to a given value, and briefly outline the idea behind why our strategy is correct (the proof of
Theorem 7 argues correctness more formally). Along the way, we will handle the case where
f has large codomain.

Let’s focus on inverting a single f for a query q. Assume momentarily that we are
given κ = |f−1(q)| and that 1 < κ < o(N/ log N) (if κ = 1 then Lemma 6 suffices; if
κ = Ω(N/ log N) then we can find f−1(q) by applying f to all possible N = Õ(|f−1(q)|)
elements in the domain). Then we create Θ(κ log N) sets, each obtained by sampling every
element of [N] with probability 1/κ; denote these sets N k for k = 1 . . . Θ(κ log N).

With high probability, since N/κ = Ω(log N), each set N k has C1N/κ elements for some
constant C1.1 Let us store all elements of N k in an array of size |N k| – that way we can
find the ith element of N k, denoted N k[i], in O(1) time (this requires an additional Õ(N)

1 Assume C1 is chosen so that C1N/κ is an integer.

S. McCauley 88:9

space). Then we can define a function fk : [C1N/κ]→ [C1N/κ] which simulates the behavior
of f on N k as fk(i) = hk(f(N k[i])) where hk : D → [C1N/κ] is from a universal family. We
build the data structure from Lemma 6 for each fk.

Call an element x ∈ f−1(q) a singleton for N k if x is the only element in f−1
k (q) (see

also [41]). By standard Chernoff bounds (Corollary 5), x is a singleton for Θ(log n) sets N k.
If x is a singleton, then the data structure from Lemma 6 returns x with constant probability;
again by Corollary 5, x is returned for some N k with high probability.

We remove the assumption that κ is known up front using repeated doubling. We begin
with κ = 2. We run the above algorithm for fk for k = 1, . . . , κ log N . Specifically, for
each k, we query for a j = f−1

k (hk(f(q))), look up y = N k[j] in the array, and check that
f(y) = f(q). If over all k queries at least κ distinct elements x are found with f(x) = f(q),
we double κ and repeat; otherwise we return all elements found so far as f−1(q).

We call the above data structure the all-function-inversion data structure.

▶ Theorem 7. Consider the all-function inversion data structure built with parameter σ for
a set of R ≤ N functions f1, . . . fR, where fi : [N]→ D and fi can be calculated in T (f) time
for all i. This data structure requires Õ(N + NR/σ) space, can be built in Õ(NR) time, and
can find f−1

i (q) for any query q ∈ [N] and any fi with high probability. Each query requires

Õ
(
T (f)

(
1 + |f−1

i (q)|
)

σ3)
expected time.

Before proving Theorem 7 we prove a useful intermediate lemma that treats the idea
of a singleton in more generality. In the above discussion, we used κ functions fk to invert
some function f ; from now on, we refer to these as the k functions fi,k used to invert each
function fi.

▶ Lemma 8. For any q ∈ [N], any κ ≥ 2, and any k (with fi and fi,k as defined above),
for any set X ⊆ f−1

i (q) with |f−1
i (q) \X| ≤ 2κ, the probability that some element of X is

returned when querying the function inversion data structure for fi,k is Ω(1) if |X| > κ/2,
and Ω(|X|/κ) if |X| ≤ κ/2.

Proof of Theorem 7. We begin with space and preprocessing time: we show that for each κ,
the data structure requires Õ(N/σ) space and Õ(N) preprocessing time with high probability.
The function inversion data structure built on each fi,k requires Õ(|N k|/σ) space and Õ(|N k|)
preprocessing time, plus O(log N) space to store hi,k. By Chernoff bounds (Corollary 5),∑
|N k| = O(N log N) with high probability; summing over all log N values of κ gives the

bound.
Now, correctness. We split into two claims: first, that if κ > |f−1

i (q)|, then (across
all queries to f−1

i,k) all elements in f−1
i (q) are found with high probability; second, that if

κ ≤ |f−1
i (q)|, that κ distinct elements from f−1(q) are found (and thus κ is doubled and the

search continues) with high probability.
First, consider the case where κ is the smallest power of 2 satisfying κ > |f−1(q)|. Since

there are fewer than κ elements in f−1(q), the all-function-inversion data structure must
return after this round; thus we are left to show that all elements of f−1(q) are returned in
this round. Fix an x ∈ f−1(q). By Lemma 8 with X = {x} (and thus |Y | = |f−1(q)| ≤ 2κ),
x is returned by the data structure for fi,k with probability Ω(1/κ). Since we choose a
new N k and hi,k for each fi,k these events are independent; thus by Corollary 5, over all
Θ(κ log N) values of k, one returns x with high probability. Taking a union bound over all
< N values of x, all are returned with high probability.

ESA 2024

88:10 Improved Space-Efficient ANN Using Function Inversion

Now, consider κ ≤ f−1
i (q). A technical note on this case: the proof of in Lemma 6

from [30] does not as-is guarantee that a uniform random element is returned from f−1(q).
A stronger version of this lemma that did provide such a guarantee would simplify this proof.

Partition the Θ(κ log n) values of k into epochs of C2κ consecutive values. There are
Θ(log n) epochs. For the jth epoch, let Fj be the set of elements in f−1(q) that have been
found by the data structure so far, and let rj = κ − |Fj |. We say that the jth epoch is
successful if rj+1 ≤ rj/2. After log κ + 2 = O(log N) successful epochs, κ elements have been
found and we are done. We now show that an epoch is successful with constant probability;
a Chernoff bound (Corollary 5) over the Θ(log N) epochs gives the proof.

Fix an epoch j with |Fj | < κ; we want to show that it is successful with constant
probability. For any k within epoch j, let F be the elements found so far; assume that
F satisfies κ − |F | > rj/2 (i.e. assume the epoch is not yet successful). Note that since
rj ≥ 0 this implies that |F | < κ. Let X ← f−1(q) \ F ; since |f−1(q)| ≥ κ we have
that |X| ≥ κ − |F | > rj/2. Applying Lemma 8 to X (with F = f−1(q) \ X; notice
|F | < κ− rj/2 ≤ 2κ), we have that a new element is found for a given fi,k with probability
Ω(rj/(2κ)). Consider the random variable representing if each fi,k increases |F |. These are
independent Bernoulli trials (they are independent since we choose a new hk and build a new
function inversion data structure for each fi,k); the expected number of elements found in
the epoch is Ω(rj), and the standard deviation is Θ(√rj); thus with constant probability the
number of elements found is Ω(rj) (i.e. is within one standard deviation of the expectation)
and the epoch is successful.

The time required is (defining ℓ = log2 κ and lg x = ⌊log2 min{x, 2}⌋):

1+lg |f−1(q)|∑
ℓ=1

Õ(2ℓ log Nσ3).

Summing gives the desired bound. ◀

3.2 Applying Function Inversion to LSH
We reiterate how LSH can help us solve ANN. Consider a locality-sensitive hash family L.
To solve ANN using L, classically one selects2 R = Θ(nρ) hashes ℓ1 . . . , ℓR from L. For each
such ℓi, one stores a reverse lookup table allowing us to find x given ℓi(x), for all x ∈ S. This
requires O(n) space per lookup table, giving O(n1+ρ) space overall. On a query, one iterates
through i ∈ {1, . . . , R}, using the lookup table to find all x ∈ S with ℓi(x) = ℓi(q), giving
O(nρ) expected query time.

Function inversion gives a space-efficient replacement for the lookup table – after all, the
point of the lookup table is really to find ℓ−1

i (ℓi(q)). We now describe this strategy in more
detail.

Consider R = O(nρ) hash functions ℓ1, . . . , ℓR from a locality-sensitive hash family L. We
define a new sequence of functions ℓ̂1, . . . , ℓ̂R: for all i ∈ [R] and j ∈ [n], let ℓ̂i(j) = ℓi(xj).
(Thus, the domain of ℓ̂i is [n] for all i.)

We apply Theorem 7 to invert all functions ℓ̂i with space savings σ ← ns. The query
algorithm follows immediately: for i ∈ {1, . . . , R}, rather than looking up all values of x

with ℓi(x) = ℓi(q) in the lookup table, we can instead query ℓ̂−1(ℓ(q)) to obtain the same
candidate points, in Õ(n3s) time per returned candidate point.

2 From now on we assume p1 is a constant for L for simplicity; our results easily generalize.

S. McCauley 88:11

Thus, we store the following: the original set S, the hash functions ℓ1, . . . , ℓR, and an
all-function-inversion data structure for each of ℓ̂1, . . . , ℓ̂R. We emphasize that we do not
store the reverse lookup table for ℓ1, . . . , ℓR – we just store enough information to evaluate
each function.

With this strategy we obtain Theorem 1.

▶ Theorem 1. For any locality-sensitive hash family L (where L has ρ = log p1/ log p2 and
evaluation time T , and storing a given ℓ ∈ L requires O(n1−ρ) space), approximation ratio
c, and space-saving parameter s < ρ, there exists an ANN data structure with preprocessing
time O(n1+ρ), expected space Õ(n1+ρ−s) and expected query time Õ(Tnρ+3s).

Discussion. Setting s = ρ gives a near-linear space data structure using any locality-sensitive
hash family, with query time O(Tn4ρ) where T is the time to evaluate a function from the
family. Thus we obtain a black box near-linear space data structure with nontrivial query
time for any LSH family with no(1) evaluation time, O(n1−ρ) space, and ρ < 1/4. We point
out that most LSH families we are aware of easily meet these requirements: for example, a
hash sampled from the classic Indyk-Motwani LSH family [38] has O(log n) evaluation time
and O(log n) space (as a hash from their family consists of O(log n) sampled dimensions).

For Euclidean ANN, Andoni and Indyk achieved an LSH with ρ = 1/c2 and evaluation
time no(1) [6]. Applying Theorem 1 gives a data structure with n1+o(1) space and query time
n4/c2+o(1). This is already competitive with many past space-efficient Euclidean ANN data
structures.

That said, the performance of this black box approach is worse than can be obtained
by more recent results, e.g. [24, 11]. Improving on [24, 11] requires more sophisticated
techniques, which we give in Section 4.

4 Near-Linear-Space Euclidean ANN

In this section we use function inversion to improve the performance of the most performant
near-linear-space ANN data structure for Euclidean distance. Specifically, we improve
performance of the space-efficient data structure for Euclidean ANN given by Andoni et al.
in [11]; we call this data structure ALRW.

First, let us give some intuition for this improvement. ALRW is able to achieve space
n1+ρu+o(1) and expected query time nρq+o(1) for any ρu, ρq satisfying

c2√ρq + (c2 − 1)√ρu ≥
√

2c2 − 1. (1)

We can set ρu = 0 and obtain that linear-space ALRW achieves query time nALRW (c)+o(1)

with ALRW (c) = ρq = (2c2 − 1)/c4. Note that this is significantly better than we would get
by applying Theorem 1 to these bounds directly: Equation 1 allows ρq = ρu = 1/(2c2 − 1),
after which applying function inversion to obtain near-linear space would give query time
n4/(2c2−1)+o(1).

The key idea behind our improvement is to note that the query time of ALRW begins
increasing quickly as ρu approaches 0. For example, let’s fix c = 2. Then near-linear-space
ALRW achieves query time ≈ n.44. If we increase ρu just slightly, the query time drops:
setting ρu = .01 in Equation 1, we obtain ρq ≈ .34 (and thus query time ≈ n.34).

This leaves room for function inversion to help: consider instantiating ALRW with ρq ≈ .34
and ρu = .01, with the plan to reduce the space to near-linear by applying Theorem 1 with
s = ρu. If this worked, we would incur total query time nρq+4s = n.38 ≪ n.4375.

ESA 2024

88:12 Improved Space-Efficient ANN Using Function Inversion

In the rest of this section we give a more thorough exposition of these ideas. In particular,
there are several obstacles we must handle. First, ALRW is not an LSH – it consists of a tree
with a list of points at each leaf. Therefore, Theorem 1 does not directly apply. Moreover,
the tree alone in ALRW requires n1+ρu+o(1) space: thus, we do not even have enough space
to store the internals of ALRW, even if we use function inversion to efficiently store the
lists of points. We must describe how to reduce the space usage of ALRW, as well as how
function inversion can be applied to a tree rather than a hash to recover the lists of points
at the leaves. Finally, we must set parameters: we want to find the value of ρu to optimize
performance.

In the rest of this section we combine function inversion with the ALRW data structure
to obtain improved state-of-the-art query times for near-linear-space Euclidean ANN.

Throughout this section we will use d(·, ·) to refer to the Euclidean distance (we will extend
our results to Manhattan distance using a standard reduction [11, 44]). Our data structure
begins with an instance of ALRW and modifies it to achieve our bounds. Throughout this
section we use ρu to denote the parameter used to construct ALRW. (We will set the optimal
ρu for a given c in Section 4.3.3.)

4.1 The Optimal List-of-Points Data Structure

In this subsection we summarize ALRW. We focus on the aspects of ALRW that are relevant
to applying function inversion to their data structure; the reader should reference [12] for a
full description and proof of correctness. Note that we use the full version of the paper [12],
as opposed to the conference version [11], when referencing details of the algorithm.

ALRW is built using parameters ρu and ρq which provide the space/query time tradeoff:
ALRW requires n1+ρu+o(1) space, and queries can be performed in nρq+o(1) time, so long as
ρu and ρq satisfy Equation 1.

4.1.1 High-level Description of ALRW

ALRW consists of a single tree. Each leaf of the tree has a pointer to a list of points; each
internal node contains metadata to help with queries. During preprocessing, the tree is
constructed, along with the list for each leaf of the tree. We say that a leaf ℓ contains a
point x if x is in the list pointed to by ℓ.

During a query q, a subtree of ALRW is traversed, beginning with the root. We say all
nodes in this subtree are traversed by q. For each internal node traversed, in no(1) time it is
possible to find the children of the node that are recursively traversed for q. When reaching
a leaf, for each point in the list pointed to by the leaf, d(x, q) is calculated. If d(x, q) ≤ cr,
then x is returned.

A similar process defines what leaf contains each x ∈ S: a subtree of ALRW is traversed
using the metadata stored at each internal node (in no(1) time per node); each time a leaf is
traversed it contains x.3 We say that any node in this subtree is traversed by x.

3 In reality, the ALRW tree is built and the lists are created simultaneously using a single recursive
process. However, it is useful for our exposition to imagine each point as if it were stored using a
separate process after the tree was already constructed.

S. McCauley 88:13

4.1.2 ALRW Details and Parameters
The internal ALRW nodes are of two types: ball nodes and sphere nodes; these correspond to
recursive calls during construction to ProcessBall (for dense clusters) and ProcessSphere
(for recursing using LSH) in [12].4 Any node in the tree has at most bb ball node children,
with bb = (log log log n)O(1), and at most bs sphere node children, with bs = no(1).

Consider a sphere node v traversed when preprocessing a point x ∈ S. The number of
children of v that are also sphere nodes, and the probability that x traverses each child, vary
as we traverse the tree – however, they are set so that the expected number of sphere node
children that x traverses recursively remains the same. Let bu be this quantity: the expected
number of sphere node children traversed when determining what lists to use to store x. By
the proof of [12, Claim 4.12], for any sphere node, bu = n(ρu+o(1))/K .

The number of sphere nodes on a root-to-leaf path in ALRW is at most K with K =
Θ(
√

log n). Furthermore, all root-to-leaf paths have at most Kb = Õ(log log n) ball nodes [12,
Lemma 4.2].5

In fact, if ρu is a positive constant that does not depend on n, the number of children
traversed by any x is very close to bu with high probability. (This result does not appear
explicitly in [12], but can be obtained by applying Chernoff bounds to their analysis.)

▶ Lemma 9. Consider an ALRW data structure with parameter ρu > 0 with ρu = Ω(1). For
any sphere node v traversed when considering a point x, the number of sphere node children
of v also traversed when considering x is at most bu(1 + 1/K) with high probability.

The candidate points for a given q consist of the points contained by all leaves traversed
by q. Thus, the following lemma immediately gives correctness.

▶ Lemma 10 ([12], Lemma 4.9). For any query q, let x ∈ S be a point with d(q, x) ≤ r.
Then with probability > .9, some leaf ℓ of ALRW traversed by q is traversed by x.

4.2 Making the Tree Space-Efficient
ALRW requires n1+ρu(c)+o(1) space, even if we ignore the lists of points at each leaf (i.e.,
there are Ω(n1+ρu(c)) nodes in the tree). Furthermore, this high space usage appears to be
integral to the data structure: since the tree is recursively data-dependent, each tree node
stores extra information about the data being stored. In this section we describe how to
reduce the space of ALRW while still retaining enough data to answer queries efficiently.

We create a truncated tree which is a subtree of ALRW. The main idea is as follows.
ALRW consists of n1+ρu+o(1) leaves, each of which contains O(1) points on average. The
goal of the truncated tree is to have n1+o(1) leaves, each with O(nρu) points on average. The
truncated tree is created carefully to satisfy some slightly stronger properties: we also want
to bound the number of sphere nodes along the path from the root to any leaf in the tree
(for e.g. the proof of Lemma 12); furthermore, we want to be sure that any leaf traversed by
a query contains O(nρu) expected points (for e.g the proof of Lemma 13).

We create the truncated tree in two steps. First, let K = K/(1 + ρu) and consider the
largest subtree of ALRW such that there are at most K sphere nodes on any root-to-leaf
path of the truncated tree. Call this subtree the middle step tree; see Figure 2a.

4 These two types of nodes are the reason why ALRW is data-dependent; they are integral to the bounds
achieved by ALRW.

5 Technically we are using K slightly differently than in [12] – they use K to bound the number of edges
along a root-to-leaf path where both parent and child are sphere nodes; since Kb = o(K) this does not
affect our analysis.

ESA 2024

88:14 Improved Space-Efficient ANN Using Function Inversion

�

K̄

(a) We begin with ALRW (on the left), and re-
move all nodes with with more than K̄ ancestor
sphere nodes to obtain the middle step tree (on
the right).

�

(b) Recursively removing small
leaves (outlined) of the middle step
tree (on the left) gives the truncated
tree (on the right).

Figure 2 Creating the truncated tree in two steps.

We can define lists for each leaf of the middle step tree by running the recursive process
from ALRW for each x ∈ S. (Since this process is recursive, the points in the list of in a
middle step tree leaf are exactly the points in its descendant leaves in ALRW.)

Now, we trim the middle step tree to obtain the truncated tree. We proceed bottom-up
through the middle step tree, starting with the second-to-last level. Call a leaf of the middle
step tree large if it contains at least nρu/(1+ρu) points and small otherwise. If all children of
a node v are small leaves, we remove all children of v (so v is now a leaf), repeating until no
nodes have only small leaves as children. We call this structure the truncated tree.

The following lemma shows that the truncated tree achieves near-linear space.

▶ Lemma 11. The truncated tree contains n1+o(1) nodes in expectation, each of which
requires no(1) space.

Our data structure stores a distinct label (e.g. from 1 to n1+o(1)) for each node of the
truncated tree. We occasionally refer to a leaf using its label (if ℓ is a label we may say “leaf
ℓ”). We retain the definition that a leaf ℓ contains x ∈ S in the truncated tree if x traverses
ℓ, even though we do not store the actual lists.

Note that Lemma 10 immediately applies to the truncated tree: if d(x, q) ≤ cr, then with
probability ≥ .9, x is contained in a leaf of the truncated tree traversed by q.

4.3 Applying Function Inversion
4.3.1 Truncated tree functions
The job of the truncated tree functions is to recover the points contained by each leaf in the
truncated tree. Specifically if xj is contained in some leaf with label ℓ, we want there to be a
truncated tree function τ such that τ(j) = ℓ; thus, τ−1(ℓ) = j.

The challenge is that each x ∈ S maps to many points in the truncated tree, whereas
each function must output a single leaf. Fortunately, we have shown that the way x traverses
the tree is highly regular: if a node v is traversed by x, with high probability, the number of
children of v traversed by x is at most bu(1 + 1/K). This allows us to efficiently iterate over
the leaves traversed by x.

S. McCauley 88:15

A tree route I is a vector of length K̄ + Kb where each entry in I is a number between 1
and bu(1 + 1/K) + bb. Let R = (bu(1 + 1/K) + bb)K̄+Kb be the number of tree routes.

▶ Lemma 12. The number of possible tree routes is R = nρu/(1+ρu)+o(1).

For all possible tree routes I, we define a function τI(j) using the following process. We
begin with vertex v equal to the root of the truncated tree. In step i (for i from 1 to K̄), we
set v equal to the I[i]th child of v traversed by xj . (There are at most bu(1 + 1/K) + bb such
children by Lemma 9 and definition of bb.) If at any point there are less than I[i] children of
v traversed by xj , then τI(j) = −1. If v is a leaf with label ℓ, then τI(j) = ℓ.

We immediately obtain the following. First, if x is contained in ℓ, then there is a tree
route I with τI(j) = ℓ. Second, for any j ∈ [N] and any tree route I, we can calculate τI(j)
in no(1) time. (This follows from the definition of ALRW: each node has no(1) total children
which we consider one by one, and for each child we can determine if x traverses that child
in no(1) time; multiplying by K retains no(1) time.)

4.3.2 The Data Structure
First, preprocessing. We begin by creating the truncated tree. Then, for all R possible tree
routes I, we build the all-function-inversion data structure (Theorem 7) on τI with σ = R.
This data structure requires n1+o(1) space (noting that the domain of all τI is [n]).

To query, we use the function inversion data structure to recover the contents of all leaves
traversed by q in the truncated tree as follows. We calculate the labels of leaves of the
truncated tree traversed by q; call this set of labels L. For each ℓ ∈ L and each tree route I,
we query τ−1

I (ℓ). We compare q to each point returned; if any has distance at most cr from
q, it is returned. If no such point is found, we return that there is no close point.

4.3.3 Analysis
Correctness follows immediately from ALRW: if d(q, x) ≤ r, then with probability ≥ .9, x is
in a leaf traversed by q in the truncated tree. The all-function-inversion data structure will
return this leaf with high probability.

Now we give performance. The following is the key performance lemma, bounding the
number of leaves traversed by the query in expectation, as well as the total number of points
at distance > cr they contain.

▶ Lemma 13. The number of leaves of the truncated tree traversed by q in expectation is
at most nρq/(1+ρu)+o(1). The expected number of points x satisfying: (1) x is contained in a
leaf traversed by q, and (2) d(x, q) > cr, is at most nρu/(1+ρu)+o(1).

We can now give the final bounds.

▶ Lemma 14. The above data structure requires n1+o(1) space, preprocessing time nR =
n1+ρu/(1+ρu)+o(1), and expected query time n(ρq+4ρu)/(1+ρu).

Proof. The truncated tree requires a total of n1+o(1) space. The time to build the middle
step tree and truncated tree is n1+ρu/(1+ρu)+o(1). (We cannot build all of ALRW and truncate
it in this time – instead, we must build the middle step tree recursively as in [12] with
maximum depth K̄.) Finally, preprocessing the all-function-inversion data structure requires
Õ(nR) time by Theorem 7.

Recalling that a node can be traversed in no(1) time, we can find the set of leaves L

traversed by q in nρq/(1+ρu)+o(1) time by Lemma 13.

ESA 2024

88:16 Improved Space-Efficient ANN Using Function Inversion

Now, we bound the time to complete the function inversion queries. By Theorem 7,
for any I and any leaf ℓ of the conceptual tree, we can find τ−1

i (ℓ) in Õ(R3(|τ−1
I (ℓ)|+ 1))

expected time.
Summing over all ℓ and I, the query time is Õ

(
R4|L|+ R3 ∑

ℓ∈L,I |τ
−1
I (ℓ)|

)
. Note that

when we find a point at distance ≤ cr we return it; thus we need only include points at
distance > cr in each τ−1

I (ℓ) term.
By Lemma 12, R3|L| = n(ρq+3ρu)/(1+ρu)+o(1). By Lemma 13,

E

 ∑
ℓ∈L,I

|τ−1
I (ℓ)|

 = n(ρu+ρq)/(1+ρu)+o(1)

Summing we obtain the lemma. ◀

Now, we set ρu to optimize the above results. Note that the following bounds are
somewhat loose. For query time, we ignore the 1 + ρu term in the denominator of the
exponent. For preprocessing time, we give the worst case for any c; if c is small or large the
bound is fairly pessimistic. That said, both of these losses have, ultimately, a modest effect
on the running time since we will choose small values for ρu.

We use α(c) to bound our running time (rather than the more traditional ρ) to prevent
confusion with ρu and ρq used by ALRW, and ρ used in Theorem 1.

▶ Theorem 2. There exists a Euclidean ANN data structure requiring n1+o(1) space and at
most n1.013+o(1) preprocessing time that can answer queries in nα(c)+o(1) expected time with

α(c) = 2c2 − 1
c4

(
1− (c2 − 1)2

4c4 + (c2 − 1)2

)
.

Manhattan ANN. As mentioned in Section 1, we can obtain bounds for Manhattan ANN
by a classic embedding; see [44]. This immediately gives a Manhattan ANN data structure
with query time nαM (c)+o(1) with

αM (c) = 2c− 1
c2

(
1− (c− 1)2

4c2 + (c− 1)2

)
.

The preprocessing time remains bounded above by n1.013+o(1). The proof is essentially
identical to that of Theorem 2.

References
1 Thomas D Ahle, Martin Aumüller, and Rasmus Pagh. Parameter-free locality sensitive

hashing for spherical range reporting. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 239–256. SIAM, 2017.

2 Thomas Dybdahl Ahle. Optimal las vegas locality sensitive data structures. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS), pages 938–949. IEEE,
2017.

3 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. On the
complexity of inner product similarity join. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 151–164, 2016.

4 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 136–150.
IEEE, 2015.

S. McCauley 88:17

5 Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis,
Massachusetts Institute of Technology, 2009.

6 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In 47th Annual Symposium on Foundations of Computer Science
(FOCS), pages 459–468. IEEE, 2006.

7 Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. In Handbook
of Discrete and Computational Geometry, pages 1135–1155. Chapman and Hall/CRC, 2017.

8 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. Advances in neural information processing
systems, 28, 2015.

9 Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1018–1028. SIAM, 2014.

10 Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Lower bounds on
time-space trade-offs for approximate near neighbors. arXiv preprint arXiv:1605.02701, 2016.

11 Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of the twenty-eighth
annual ACM-SIAM symposium on discrete algorithms, pages 47–66. SIAM, 2017.

12 Alexandr Andoni, Thijs Laarhoven, Ilya P. Razenshteyn, and Erik Waingarten. Optimal
hashing-based time-space trade-offs for approximate near neighbors. CoRR, 2016. arXiv:
1608.03580.

13 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 793–801, 2015.

14 Boris Aronov, Jean Cardinal, Justin Dallant, and John Iacono. A general technique for
searching in implicit sets via function inversion. arXiv preprint arXiv:2311.12471, 2023.

15 Boris Aronov, Esther Ezra, Micha Sharir, and Guy Zigdon. Time and space efficient collinearity
indexing. Computational Geometry, 110:101963, 2023.

16 Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87:101374,
2020.

17 Martin Aumuller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco Silvestri.
Fair near neighbor search via sampling. ACM SIGMOD Record, 50(1):42–49, 2021.

18 Martin Aumüller, Rasmus Pagh, and Francesco Silvestri. Fair near neighbor search: Independ-
ent range sampling in high dimensions. In Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 191–204, 2020.

19 Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic time/memory
tradeoffs. In Annual International Cryptology Conference, pages 1–21. Springer, 2006.

20 Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional
data: Recent advances in clustering, pages 25–71. Springer, 2006.

21 Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P Pissis, Eva Rotenberg, and Teresa Anna
Steiner. Gapped string indexing in subquadratic space and sublinear query time. arXiv preprint
arXiv:2211.16860, 2022.

22 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29.
IEEE, 1997.

23 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

24 Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 31–46. SIAM, 2017.

ESA 2024

https://arxiv.org/abs/1608.03580
https://arxiv.org/abs/1608.03580

88:18 Improved Space-Efficient ANN Using Function Inversion

25 Tobias Christiani and Rasmus Pagh. Set similarity search beyond minhash. In Proceedings of
the 49th annual ACM SIGACT symposium on theory of computing, pages 1094–1107, 2017.

26 Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and
opportunities. In Theory of Cryptography Conference, pages 393–421. Springer, 2019.

27 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

28 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pages 253–262, 2004.

29 Anne Driemel and Francesco Silvestri. Locality-sensitive hashing of curves. In 33rd International
Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017.

30 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM
Journal on Computing, 29(3):790–803, 2000.

31 Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.
Data structures meet cryptography: 3sum with preprocessing. In Proceedings of the 52nd
annual ACM SIGACT symposium on theory of computing, pages 294–307, 2020.

32 Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. Revisiting
time-space tradeoffs for function inversion. In Annual International Cryptology Conference,
pages 453–481. Springer, 2023.

33 David Gorisse, Matthieu Cord, and Frederic Precioso. Locality-sensitive hashing for chi2
distance. IEEE transactions on pattern analysis and machine intelligence, 34(2):402–409,
2011.

34 Christian Hachenberg and Thomas Gottron. Locality sensitive hashing for scalable structural
classification and clustering of web documents. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 359–368, 2013.

35 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory OF Computing, 8:321–350, 2012.

36 Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transactions on Information
Theory, 26(4):401–406, 1980.

37 Piotr Indyk. High-dimensional computational geometry. PhD thesis, Stanford University, 2001.
38 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613, 1998.

39 Michael Kapralov. Smooth tradeoffs between insert and query complexity in nearest neighbor
search. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 329–342, 2015.

40 Kifayat Ullah Khan, Batjargal Dolgorsuren, Tu Nguyen Anh, Waqas Nawaz, and Young-
Koo Lee. Faster compression methods for a weighted graph using locality sensitive hashing.
Information Sciences, 421:237–253, 2017.

41 Tsvi Kopelowitz and Ely Porat. The strong 3sum-indexing conjecture is false. arXiv preprint
arXiv:1907.11206, 2019.

42 Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere. arXiv preprint
arXiv:1511.07527, 2015.

43 Thijs Laarhoven. Graph-based time-space trade-offs for approximate near neighbors. In
34th International Symposium on Computational Geometry (SoCG 2018). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018.

44 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15:215–245, 1995.

45 Guillaume Marçais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive
hashing for the edit distance. Bioinformatics, 35(14):i127–i135, 2019.

S. McCauley 88:19

46 Samuel McCauley. Approximate similarity search under edit distance using locality-sensitive
hashing. In 24th International Conference on Database Theory, 2021.

47 Samuel McCauley, Jesper W Mikkelsen, and Rasmus Pagh. Set similarity search for skewed
data. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 63–74, 2018.

48 Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, 1969.

49 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabil-
istic techniques in algorithms and data analysis. Cambridge university press, 2017.

50 Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 1186–1195, 2006.

51 Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the
50th annual ACM SIGACT symposium on theory of computing, pages 1260–1268, 2018.

52 Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

53 Francisco Santoyo, Edgar Chavez, and Eric S Tellez. Compressing locality sensitive hashing
tables. In 2013 Mexican International Conference on Computer Science, pages 41–46. IEEE,
2013.

54 Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-linear
vs barely-subquadratic complexity. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1207–1215. SIAM, 2018.

55 Andrew Chi-Chih Yao. Coherent functions and program checkers. In Proceedings of the
twenty-second annual ACM symposium on Theory of computing, pages 84–94, 1990.

ESA 2024

	1 Introduction
	1.1 Results
	1.2 Comparing Results
	1.3 Related Work

	2 Preliminaries
	3 Function Inversion for LSH
	3.1 Function Inversion
	3.2 Applying Function Inversion to LSH

	4 Near-Linear-Space Euclidean ANN
	4.1 The Optimal List-of-Points Data Structure
	4.1.1 High-level Description of ALRW
	4.1.2 ALRW Details and Parameters

	4.2 Making the Tree Space-Efficient
	4.3 Applying Function Inversion
	4.3.1 Truncated tree functions
	4.3.2 The Data Structure
	4.3.3 Analysis

