
Locally Computing Edge Orientations
Slobodan Mitrović #

University of California, Davis, CA, USA

Ronitt Rubinfeld #

Massachusetts Institute of Technology, Cambridge, MA, USA

Mihir Singhal #

University of California, Berkeley, CA, USA

Abstract
We consider the question of orienting the edges in a graph G such that every vertex has bounded
out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree
at most α and, moreover, the best possible maximum out-degree of an orientation is at least α − 1.
We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely
studied approach for this problem in the distributed algorithms setting is a “peeling algorithm” that
provides an orientation with maximum out-degree α(2 + ϵ) in a logarithmic number of iterations.

We consider this problem in the local computation algorithm (LCA) model, which quickly
answers queries of the form “What is the orientation of edge (u, v)?” by probing the input graph.
When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g.,
the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case
where G has unbounded degree, we show that any LCA that orients its edges to yield maximum
out-degree r must use Ω(

√
n/r) probes to G per query in the worst case, even if G is known to be a

forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G

has unbounded degree. When G is a tree such that the maximum degree ∆ of G is bounded, we
demonstrate an algorithm that uses ∆n1−log∆ r+o(1) probes to G per query. To obtain this result,
we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also
use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear
probes per query.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases local computation algorithms, edge orientation, tree coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.89

1 Introduction

Orienting graph edges while obeying certain constraints has applications in many com-
putational settings. For instance, low-out-degree orientation has been studied in the
dynamic [23, 56, 13, 84, 28], distributed [44, 38, 42, 52, 85, 53], and massively parallel
computation [43, 16] settings. The general problem of graph orientation is of significant
interest as it serves as an important algorithmic tool for other computational problems. In
their celebrated result, when the input is given as a rooted tree where each edge is oriented
toward its parent, Cole and Vishkin [29] show how to 3-color a tree in only O(log∗ n) many
distributed rounds. The algorithm of [84] employs low-out-degree graph orientation to obtain
a dynamic algorithm for graph coloring, and the works [75, 56, 14] apply results from dynamic
edge orientation in designing algorithms for matching. To dynamically maintain spanners,
the work of [20] develops a method that also relies on graph orientation. The authors of
[33] design a local computation algorithm (LCA) for bounded-reachability orientations (a
different class of orientations) to develop an efficient LCA for coloring. It is well-known that

© Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 89; pp. 89:1–89:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smitrovic@ucdavis.edu
mailto:ronitt@csail.mit.edu
mailto:mihirs@berkeley.edu
https://doi.org/10.4230/LIPIcs.ESA.2024.89
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

89:2 Locally Computing Edge Orientations

the low-out-degree orientation and densest subgraph are problems that are dual to each
other [27, 7]. Moreover, graph orientation has applications in small subgraph counting and
listing [12, 16]. Our work focuses on low-out-degree orientation in the context of LCAs.

1.1 The problem of r-orientation
Given a graph G with n vertices, we consider the problem of orienting its edges such that
every vertex has out-degree at most r, for some parameter r. We call such an orientation an
r-orientation. Letting α denote the arboricity and ρ the pseudo-arboricity of G, the best
possible achievable value of r is r = ρ, and it is also known that ρ ≤ α ≤ ρ + 1 [79, 87, 19].
However, we are also interested in approximation algorithms where we can achieve some
value r ≥ ρ. Since ρ and α differ by at most one, we will mostly compare r to α instead of ρ

since it will make some of our algorithms easier to describe.
A line of work [44, 38, 42, 85, 52, 53] studied this problem in the distributed LOCAL

model in which, under different conditions on ϵα, they demonstrate algorithms that use
O(poly log n) rounds to achieve a value of r = α(1 + ϵ). In particular, Su and Vu [85]
provide such an orientation in Õ(log2 n/ϵ2) rounds, while Harris, Su, and Vu [53] improve
the dependence on 1/ϵ from quadratic to linear at the expense of an additional log n factor
in the round complexity.

We consider this problem in the local computation algorithm (LCA) model (fully defined
in Section 2.1), in which the algorithm must be able to orient any input edge such that many
copies of the algorithm will, with no interaction between them except for a shared random
string, produce a consistent orientation. To the best of our knowledge, the low-out-degree
orientation problem has not been previously studied in the LCA setting.

A common method for obtaining LCAs from distributed algorithms is the Parnas-Ron
paradigm [77]. As we will discuss further in Section 1.3, in the regime we consider, the
Parnas-Ron paradigm does not give any nontrivial sublinear-time algorithm.

1.2 Our results
As our first result, we show that an LCA that finds an r-orientation (even when r depends
on n) requires at least Ω(n1/2/r) probes per query, even if the algorithm is randomized and
the input graph is a forest (with α = 1).

▶ Theorem 1 (Rephrasing of Theorem 6). For any parameter r, any LCA randomized
algorithm that yields an r-orientation with probability at least 0.9 must use at least Ω(n1/2/r)
probes per query in the worst case.

In fact, this lower bound holds against an LCA model with relatively strong queries: we
allow algorithms to make adjacency-list, adjacency-matrix, and degree probes.

We then show upper bounds for the problem of r-orientation in arboricity-α graphs of
unbounded degree, with different algorithms for different regimes of r. These upper bounds
are also polynomial in n, though there is some separation between them and the lower bound
of Ω(n1/2/r).

▶ Theorem 2 (Rephrasing of Propositions 3.1–3.3). Suppose there is a parameter r, and an
input graph G of arboricity α. Then, if r ≥ 10(α2n)1/3, there is a randomized LCA that can
r-orient G with at most Õ(max{αn/r2, 1}) probes per query. Moreover, if α = 1 (i.e., G is
a forest), then there is also an LCA which can do so for any r, with at most Õ(n/r) probes
per query.

S. Mitrović, R. Rubinfeld, and M. Singhal 89:3

For example, in the case of a forest (α = 1) and when r = 10n1/3, this result gives an LCA
for r-orientation with probe complexity Õ(n1/3). In contrast, the lower bound given by
Theorem 1 is Ω(n1/6).

Finally, we consider the bounded-degree case, where G has maximum degree ∆, in the
specific case where α = 1 (that is, G is a forest). In this case, any orientation achieves r ≤ ∆,
so the meaningful case to consider is where r < ∆. We show a sublinear algorithm in the
case where r = ∆1−Ω(1):

▶ Theorem 3 (Rephrasing of Theorem 7). Let r be a parameter and G be an input forest
with maximum degree ∆. Then, there is a randomized LCA that r-orients G, with at most
∆n1−log∆ r+o(1) probes per query.

To prove this theorem, we use a concentration bound on the size of connected components
of a random subgraph of a bounded-degree forest. We also use this to derive an LCA for
4-coloring any tree (or forest) with bounded degree in sublinear time. Specifically, we show
the following:

▶ Theorem 4. Let G be an input forest with maximum degree ∆, where ∆ is a constant.
Then, there is a randomized LCA that 4-colors G with query complexity O(n1−β), where
β > 0 is a constant depending on ∆.

1.2.1 Future directions
It remains open whether similar upper bounds for r-orientation can be obtained for other
families of graphs. We are optimistic that ideas akin to those we develop for Theorem 3
might yield new upper bounds for minor-free graphs. This is because minor-free graphs
do not expand, which intuitively is required for the coloring approach we design to prove
Theorem 3. We also believe that useful tools in tackling this question include LCAs for
minor-free partitioning oracles [54, 67, 65]. It would be quite interesting to obtain upper
bounds for bounded arboricity graphs that go beyond our result Theorem 2 or to bring the
lower bound of Theorem 1 up to match the result of Theorem 2 in the case of a forest. We
expect that techniques we develop to prove Theorem 3 do not transfer to bounded arboricity
graphs, as there are even expanders with arboricity 3.

1.3 Related work
Orientation and Parnas-Ron paradigm. The Parnas-Ron paradigm [77] is an important
tool for converting distributed algorithms for use in sublinear-time models. In particular, if
there is a T -round distributed local algorithm A, then applying the Parnas-Ron paradigm is
equivalent to collecting the T -hop neighborhood of a vertex v and using that neighborhood
to obtain the output of A for v, thus getting an LCA with query complexity O(∆T).

There is a classical peeling algorithm that, given a graph of arboricity at most α, finds a
((2+ϵ)α)-orientation in O(log n) parallel or LOCAL rounds, for a constant ϵ > 0. In each step,
this algorithm considers all the vertices with degree at most (2 + ϵ)α. All the edges incident
to these vertices are oriented outward, and those vertices are then removed from the graph.
It is easy to show that this algorithm takes O(log n) such steps. By following the Parnas-Ron
paradigm, in graphs with maximum degree ∆, this peeling algorithm can be simulated with
∆O(log n) LCA probes, which yields a trivial upper-bound for any ∆ > 1 – this upper-bound
amounts to gathering the entire graph. If one aims for a more relaxed approximation, e.g.,
a

√
∆-orientation, then the aforementioned peeling algorithm takes log√

∆ n many steps.
Nevertheless, even in this case the Parnas-Ron approach yields ∆log√

∆ n = n2 LCA probe

ESA 2024

89:4 Locally Computing Edge Orientations

complexity. Moreover, suppose one aims for any LCA probe complexity that is sublinear
in n. In that case, the peeling algorithm provides only the guarantee of ∆-approximate
orientation, which is trivial to obtain by simply orienting every edge arbitrarily.

Orientation and LLL. Several works study the LCA and the closely related VOLUME
complexity of the distributed Lovász local lemma (LLL) [21, 37, 30, 22]. Despite significant
progress in understanding the randomized LCA complexity of sinkless orientation and LLL,
those techniques do not seem to apply to the problem we study. In particular, the LLL
applies in cases where a random orientation will succeed at most vertices (as is the case with
sinkless orientation). However, for the problem of r-orientation, a random orientation is very
unlikely to be close to correct.

LCA sparsification. One recent development in the LCA model is a graph sparsification
technique which is based on considering only a carefully selected subset of the neighbors
of a vertex v in order to update the state of v. This approach has led to new advances
for problems such as approximate matching [45, 62], maximal independent set [45, 41], set
cover [50], and graph coloring [25]. However, it is unclear how to apply this technique in the
context of r-orientation.

LCA shattering. Our approach for bounded-degree forests is reminiscent of the graph-
shattering technique, which has been very influential in designing efficient LCA algorithms
for a number of problems, including approximate matching [68, 9, 45], maximal independent
set [81, 3, 40, 9, 45], graph coloring [9, 25] and LLL algorithms [2, 73, 37, 26]. The ideas in this
line of work can be traced back to Beck’s analysis of the algorithmic LLL [10]. The general
idea in these results is to first execute an algorithm that finds only a partial solution, e.g.,
finds an independent set that is not necessarily maximal. For properly designed algorithms,
it can be shown that such an approach “shatters” the graph into relatively small connected
components of interest, e.g., after removing the found independent set and its neighbors from
the graph each connected component has only poly(∆) vertices. These poly(∆) vertices in a
single connected component can be then processed with poly(∆) LCA probes with a simple
graph traversal.

We remark that our approach departs from this general scheme in that that we do not
design an algorithm that finds a partial solution first. Rather, we immediately shatter the
input tree into more manageable components.

Other related work. Some prior work has also studied the complexity of LCA algorithms
in unbounded-degree graphs. For instance, [33] develop an LCA algorithm for O(∆2 log ∆)-
coloring a graph with maximum degree ∆ = o(

√
n). Another work [68] designs two algorithms

for graphs that do not have constant degree: the first approach is for maximal independent set
which has a quasi-polynomial probe complexity in the maximum degree ∆, while the second
one is for approximate maximum matchings which uses poly(∆, log n) probes per query. Yet
another line of work [78, 5] develops an LCA algorithm to construct an O(k2)-spanner with
Õ(n1+1/k) edges with probe complexity n2/3−Ωk(1) poly(∆).

Several works study the complexity of LLL and related graph problems in LCA, VOLUME,
LOCAL, and locally checkable labeling (LCL) models [48, 21, 57, 80, 22, 51, 8]. We note that
our lower-bound applies to the LCA setting which implies, as we discuss in Section 2, that it
also applies in the VOLUME model. The authors of [22] show that deterministically coloring
a tree with maximum degree poly(c) with c ≥ 2 colors, for any fixed constant c, requires Θ(n)

S. Mitrović, R. Rubinfeld, and M. Singhal 89:5

VOLUME probes. Another line of work on the hierarchies of VOLUME complexities [80],
shows that there are graph problems whose randomized VOLUME complexity is Θ (nc), for
any constant c ∈ (0, 1). The celebrated result [77] proves that to approximate a vertex cover
within a constant factor multiplicative and ϵn additive error it is needed to use at least the
order of the average degree many probes.

2 Preliminaries

2.1 LCA model
Throughout this paper, we use the LCA model of computation, which was originally intro-
duced in [81, 3]. The goal of this model, in short, is to be able to orient any input edge e

quickly – in particular, without necessarily computing the orientations of the rest of the
graph.

Formally, in this model, the algorithm A receives, as a query, an edge e of the graph G.
It also has probe access to an adjacency matrix of G, an adjacency list of G, and the degrees
of the vertices of G. Specifically, for any i, u, v, A can probe the following: whether {u, v}
is an edge of the graph, the i-th neighbor of v, or the degree of v. A is assumed to know
the number of vertices and their IDs beforehand. A also has access to a source of shared
randomness, which does not use up probes to access. Then, after making some probes to the
input, A must return an orientation of e. Suppose that for each edge of G, one separate copy
of A were run, with the same source of shared randomness across all copies (but no ability
to otherwise communicate). Then we wish that the resulting orientation should satisfy the
desired property, e.g., low out-degree for every vertex, with a given (high) probability. We
will be concerned with the probe complexity of such an algorithm, i.e., the maximum number
of probes it can possibly use on any edge. In this paper, we will not be concerned with the
time or space complexity of our algorithms. In particular, we will not limit how long the
shared random string may be.

Though we have defined the model to have access to adjacency matrix probes, all of the
algorithms we describe do not use this kind of probe, instead only using adjacency list and
degree probes. Our lower bounds, on the other hand, are still robust even against algorithms
that use adjacency matrix probes.

The VOLUME model, introduced in [80], is another computation model which is similar
to, but slightly weaker than, the LCA model. Since it is strictly weaker, this means that our
lower bounds also carry over to the VOLUME model.

There has been significant interest in designing LCA algorithms for fundamental problems
in computer science. Some examples include locally (list)-decodable codes [34, 70, 39, 35, 63,
88, 46, 4, 86, 49, 58, 64, 11], local decompression [74, 82, 36, 47], local reconstruction and
filters for monotone and Lipshitz functions [1, 83, 15, 59, 6, 66], and local reconstruction of
graph properties [60]. The study of LCAs has been very active in the past few years, with
recent results that include constructing maximal independent sets [81, 3, 9, 69, 33, 40, 45,
41], coloring [25], approximate maximum matchings [76, 89, 71, 72, 69, 45, 61], satisfying
assignments for k-CNF [81, 3], local computation mechanism design [55], local decompression
[31], local reconstruction of graph properties [24], minor-free graph partitioning [54, 67, 65],
and local generation of large random objects [32, 18, 17].

2.2 Tools and notation
We state Yao’s minimax principle, applied specifically to LCAs in the form that we will use.

ESA 2024

89:6 Locally Computing Edge Orientations

▶ Theorem 5 (Yao’s minimax principle). Suppose there exists a randomized LCA A with
worst-case probe complexity f(n) which solves a problem with probability p. Then, for any
distribution D of inputs, there is a deterministic LCA A with probe complexity f(n) which
with probability p solves the problem on an input drawn from D.

Given a graph G = (V, E), we use degG u to denote the degree of vertex u ∈ V . When G

is clear from the context, we omit the subscript G and write deg u only.
When we use little-o asymptotic notation, it is assumed to be with respect to the variable

n, the number of vertices in the input graph. We will also frequently write inequalities that
only hold when n is sufficiently large, implicitly using the fact that our asymptotic statements
are usually trivially true when n is bounded. Moreover, we will often omit floor and ceiling
signs for clarity.

We use the phrase “with high probability” to mean “with probability at least 1 − n−c,”
where c > 1 is a constant that is sufficiently large such that all union bounds which are used
henceforth will still yield sufficiently small probabilities. This is a slight abuse of notation,
since the threshold for c will vary in each usage, but the meaning will be clear from context.
We also use the phrase “with very high probability” to mean “with probability at least
1 − f(n),” where f(n) is smaller than n−c for any constant c, for sufficiently large n.

3 Orientation in unbounded-degree graphs

We first consider the question of r-orientation in general graphs of arboricity at most α, with
no further restriction on the graph.

3.1 Lower bound for orientation in unbounded-degree graphs
First, we demonstrate a lower bound that shows that even in the α = 1 (i.e., forest) case, we
need Ω(n1/2/r) probes to r-orient a graph. Essentially, the proof constructs a random tree
in which it is hard to find a particular star hidden inside the tree, so the edges of the star
must be oriented randomly. This lower bound is particularly powerful since it works even for
an LCA that can probe both the adjacency lists and the adjacency matrix (as well as the
degrees).

▶ Theorem 6. Suppose that there is an LCA which, on an input forest G with n vertices,
r-orients edges of G with probability greater than 0.9. Then, the LCA must use Ω(n1/2/r)
probes per query in the worst case.

Proof. We assume that r ≤ 0.001n1/2 since otherwise the statement is obvious. Suppose for
contradiction that an LCA A exists which can perform the required orientation, using less
than 0.001n1/2/r probes per query.

We describe the construction of a random graph G, which we will use as input to A.
Define the parameters s = 24r and t = n1/2/4s. Note that t > 10. We construct G as follows.

First, we have a set A of |A| = st vertices. Each a ∈ A is associated with a set Sa of
|Sa| = st vertices, whose vertices are all connected to a (forming a star). Also, there is a
larger set B of |B| = s2t − 2s vertices; each b ∈ B has a corresponding set Sb with |Sb| = t

vertices, whose vertices are all connected to b. These constitute all the vertices in the graph.
The total number of vertices in the graph is then (st + 1)|A| + (t + 1)|B| < 4s2t2 < n. So
far, all the edges we have described are deterministic.

We describe three different types of edges; for ease of reference, we assign each type as a
color. Let the deterministic edges we have drawn so far be black. We refer to all other edges
as colored edges.

S. Mitrović, R. Rubinfeld, and M. Singhal 89:7

set Aa0set B

Figure 1 Graph G used to demonstrate lower bound.

Center vertex: Pick a vertex a0 ∈ A uniformly at random; we refer to this vertex as the
center.

Red edges: Pick a set A′ ⊆ A of size s not containing a0 uniformly at random, and for
each a ∈ A′, draw a red edge between a and a0; so, the red edges form a star centered at
a0. These red edges will form the “hidden star” which it will be difficult for the LCA to
find.

Blue edges: For each vertex a ∈ A, suppose that a currently has degree k (k must equal
one of st, st + 1, or st + s, since a has st black edges and 0, 1, or s red edges). Then,
connect a to st + s − k vertices in B, so that each vertex in B is connected to a single
vertex in A. This matching is picked uniformly at random. The size of B is exactly the
sum of st + s − k over all vertices a, so every vertex in B can indeed have exactly one
blue edge. The purpose of these blue edges is primarily to ensure that the vertices of G

have fixed degree, so that degree probes will give no extra information.
Permuted neighbors: The adjacency list for each vertex is also generated as a random

permutation of its neighbors.

This completes the description of the graph G. An example rendition of this graph is
shown in Figure 1. The red edges form a star centered at a0; in order to get an r-orientation,
many of these edges will have to be oriented away from a0.

We now outline the remainder of the proof. We will show that the LCA A cannot keep
the out-degree of a0 below r with probability 0.9; in particular, we show that with probability
over 0.1 it must orient at least r of the red edges toward a0. To prove this, we consider what
A does when it receives a red edge as a query. We will show that, since the black edges
constitute most of G, A will (with some probability) never be able to probe any colored edge
at all, and thus must return a deterministic orientation which is independent of which of the
endpoints of the queried edge is a0. It will follow that in expectation, many red edges must
be oriented away from a0, so the expected out-degree of a0 will be large, which will complete
the proof.

By Yao’s minimax principle (stated in Theorem 5), we may assume that A is deterministic;
it suffices to show that it is not possible that with probability at least 0.9 (over the randomness
of the graph G), the out-degree of a0 is at most r. Every vertex in G has a fixed degree,
regardless of the fact that some of the edges in G are chosen randomly, so we may further
assume that A never makes a degree probe.

We in fact show that for each red edge, upon probing it with A, there is at least a 1/3
chance it orients toward the center a0.

Consider the action of A upon receiving a probe of the red edge (u, v), where u, v ∈ A,
and the distribution of the graph G is conditioned on (u, v) being an edge of G (so either u

or v is a0, each with probability 1/2, and the other is in A′). We claim that with probability

ESA 2024

89:8 Locally Computing Edge Orientations

at least 1/6, A never probes any colored edge (we assume that it does not probe (u, v) in
the adjacency matrix since it knows this edge is in G). As a reminder, we are assuming that
A uses less than 0.001n1/2/r probes per probe.

Consider the i-th probe that A makes, assuming that it has not probed any colored edges
yet in the previous i − 1 probes. If the first i − 1 probes have not revealed any colored edges,
then their results are deterministic and fixed, so the i-th probe is also deterministic (since
we have assumed that A is deterministic). We claim that the probability that this fixed
probe yields a colored edge is at most 1/t. Since the probe is deterministic, it must be an
adjacency list probe at a fixed index for a fixed vertex, or an adjacency matrix probe for two
fixed vertices (every vertex has a fixed degree in G, so a degree probe does not reveal any
information). We do casework on each of the possible probe types:

Adjacency list probe for any vertex in A (including u or v): Each vertex in A has s

colored edges and st black edges. Since the adjacency list is permuted randomly, the
probability that the probe selects a colored edge is s/(st + s) < 1/t.
Adjacency list probe for any vertex in B: Each vertex in B has 1 colored edge and t black
edges, so again the probe selects a colored edge with probability 1/(t + 1) < 1/t.
Adjacency list probe for a vertex in Sa or Sb for some a ∈ A or b ∈ B: These vertices
have no colored edges, so the probe cannot return a colored edge.
Adjacency matrix probe between either u or v and another vertex in A: either u or
v is a0 with equal probability, and the probability that a0 is connected to any other
given vertex in A (conditioned on it already being connected to the other one of u and
v) is (s − 1)/(st − 2), so the probability that this edge returns a colored (red) edge is
(s − 1)/2(st − 2) ≤ s/2st < 1/t.
Adjacency matrix probe between any vertex a ∈ A and any vertex b ∈ B: for any fixed
a ∈ A, conditioned on the selection of the red edges, the neighbors of a in B are a
uniformly random subset of B of some fixed size which is at most s. Therefore, the
probability that this probe returns an edge is at most s/|B| = s/(s2t−2s) < 2s/s2t < 1/t.
Any other adjacency matrix probe: these cannot reveal any colored edge.

So we have shown that the probability that the first i− 1 probes do not reveal any colored
edges but the i-th probe does is at most 1/t. It follows that the probability that any probe
reveals a colored edge is at most (0.001n1/2/r)(1/t) < 1/3.

Therefore, with probability 2/3, when orienting edge (u, v), conditioned on G containing
that edge, A does not probe any colored edges, and thus returns a deterministic orientation.
Since u and v are each a0 with (conditional) probability 1/2, this means that A orients this
edge away from a0 with probability at least 2/3 − 1/2 = 1/6.

Now, the expected out-degree of a0 is at least∑
u,v∈A

Pr[(u, v) ∈ G] · Pr[(u, v) oriented away from a0 | (u, v) ∈ G]

≥ 1
6

∑
u,v∈A

Pr[(u, v) ∈ G] = 1
6E[deg a0] = s

6 = 4r.

We have shown that the expected out-degree of a0 is at least 4r, but what we actually
want to show is that it cannot be at most r with probability 0.9. Indeed, the out-degree
of a0 is bounded above by s = 24r, so if it were most r with probability at least 0.9, then
the expected out-degree of a0 would be at most 0.9r + 0.1 · 24r < 4r, which would be a
contradiction. Thus we are done. ◀

S. Mitrović, R. Rubinfeld, and M. Singhal 89:9

3.2 Algorithms for orientation in unbounded-degree graphs
With the Ω(n1/2/r) lower bound in mind that follows from Theorem 6, we demonstrate some
algorithms that achieve comparable upper bounds. Specifically, for r-orientation in forests,
we can achieve LCA complexities of O(1) when r ≥ n1/2, Õ(n/r2) when 10n1/3 ≤ r ≤ n1/2,
and Õ(n/r) otherwise.

3.2.1 O(1) algorithm for large r

First, we show the case where r ≥ n1/2. In this case, the algorithm is very simple: just orient
edges toward the higher degree vertex. This also works with graphs of higher arboricity, with
a tradeoff in r.

▶ Proposition 3.1. There exists an LCA that can (2αn)1/2-orient an n-vertex α-arboricity
graph with probe complexity O(1).

Proof. Given edge {u, v} with deg v ≥ deg u, orient the edge from v to u. (If the degrees are
equal, then return an arbitrary orientation.) Suppose for the sake of contradiction that there
is a vertex v with out-degree at least

√
2nα. Then, it has at least

√
2nα neighbors each with

a degree at least
√

2nα, so the total degree of the graph is at least 2nα. But a graph with
arboricity α has at most α(n − 1) edges, a contradiction. ◀

3.2.2 Õ(αn/r2) algorithm for medium r

The following shows that we can use a similar idea for r ≥ 10n1/3. We can orient all edges
toward vertices that have a very large degree since there are very few of these vertices. With
vertices of small degrees (less than r), the condition is trivially satisfied, so we can also
orient all edges away from these vertices. This leaves the medium-degree vertices, of which
there also cannot be too many. We then essentially consider the subgraph induced by these
medium vertices and repeat the previous idea, orienting toward the high-degree vertices.
Again, this generalizes to arboricity α.

▶ Proposition 3.2. Suppose a graph G with n vertices and arboricity α is given as input.
Then, for all 10(α2n)1/3 ≤ r ≤ (αn)1/2, there is an LCA which, with high probability,
r-orients the edges in G with Õ(αn/r2) probes per query.

Proof. We describe the algorithm. Let s = r/10. Call a vertex small if its degree is at most
r, large if its degree is at least αn/s, and medium otherwise.

Suppose the algorithm receives a query of e with endpoints u, v (assume arbitrarily that
u has the smaller ID). Then it proceeds as shown in Algorithm 1, splitting into three cases
based on the degrees of its endpoints. The probe complexity in Cases 1 and 2 is O(1), and in
Case 3 is Õ(d/s) = Õ(αn/r2), as desired. It remains to check correctness of the algorithm.

Correctness. We wish to check that the out-degree of every vertex is at most r with high
probability. Small vertices obviously have out-degree at most s ≤ r, so we only need to check
the medium and large vertices.

The total degree of G is less than 2αn, so there are at most 2s large vertices. Thus, large
vertices end up with an out-degree of 2s at most since edges from large to non-large vertices
are oriented toward the large vertex.

It remains to check the medium vertices. Since the total degree of G is 2αn, there are
also at most 2αn/r medium vertices.

ESA 2024

89:10 Locally Computing Edge Orientations

Algorithm 1 LCA for r-orienting a graph when r ≥ 10(α2n)1/3.

Input : Graph G with n vertices and arboricity α, with probe access
Query edge e = (u, v), where u has lower ID than v

1 Perform degree probes on u and v.
2 if u or v is small then

// Case 1
3 Orient e away from that vertex. (Pick arbitrarily if both are small.)
4 else if u or v is large then

// Case 2
5 Orient e toward that vertex. (Pick arbitrarily if both are large.)
6 else

// Case 3 (u and v are both medium)
7 Let d = deg u. // Note that r ≤ d ≤ αn/s

8 Sample (1000d log n)/s neighbors of u independently and uniformly at random
(using a fixed part of the shared randomness, depending on e).

9 Perform a degree probe on each sampled neighbor.
10 if at most a 2s/d proportion of the sampled neighbors are medium then
11 Orient e away from u.
12 else
13 Orient e toward u.

Now, consider a medium vertex w. No edges would have been oriented away from w in
Case 1, and since there at most 2s large vertices, there are at most 2s edges oriented away
from w in Case 2.

It remains to analyze the number of edges that are oriented away from w in Case 3 (that
is, the medium-to-medium edges). Note that by a Chernoff bound, with high probability,
Case 3 orients a medium-to-medium edge (u, v) away from u if it has at most s medium
neighbors, and toward u if it has at least 3s medium neighbors. We then show that there are
at most 3s edges oriented away from w in Case 3.

If w has at most 3s medium neighbors, then this is obvious, so suppose deg w > 3s.
Consider the action of the algorithm when orienting an edge e containing w. When we input
e = (u, v) into the algorithm, it is possible for either u or v to be w. If u = w, then it
(with high probability) orients the edge toward w. Otherwise, if v = w, then (with high
probability) u must be a medium vertex with at least s medium neighbors in order to orient
e toward w. Now, the subgraph of G induced by the medium vertices also has arboricity α,
and thus has total degree at most 4α2n/r by the bound on the number of medium vertices.
Therefore there are at most 4α2n/rs medium vertices u with at least s medium neighbors.
Therefore, the number of edges oriented away from w in Case 3 is at most 4α2n/rs ≤ 3s.

Thus, in total, every medium vertex has at most 5s < r edges oriented away from it,
completing the proof. ◀

3.2.3 Õ(n/r) algorithm for all r, if G is a forest
Finally, we consider the case of small r, in the case where G is a forest. Here, we can still
orient edges toward very large-degree vertices. Then, we randomly color all the remaining
edges with r colors and orient each color class separately (with maximum out-degree 1 within

S. Mitrović, R. Rubinfeld, and M. Singhal 89:11

each color class). We show that the color classes are small with high probability, bounding
the LCA complexity. Note that this algorithm only applies to arboricity α = 1, i.e., the case
of a forest.
▶ Proposition 3.3. For all r ≤ n1/2, there exists an LCA which, with high probability,
r-orients edges in an n-vertex forest G which uses Õ(n/r) probes per query.
Proof. Color each edge randomly with one of r/5 colors (using the shared randomness). Say
that a vertex is large if its degree is at least 5n/r. Also, define an edge to be large if one of
its vertices is large. Then, we proceed as described in Algorithm 2.

Algorithm 2 LCA for r-orienting a forest for any r.

Input : Forest G with n vertices, with probe access
Query edge e = (u, v), where u has lower ID than v

1 Using the shared randomness, assign an independent and uniformly randomly chosen
color from {1, . . . , r/5} to every pair of vertices in G (so that every edge computes
the same coloring).

2 Perform degree probes on u and v.
3 if u or v is large then
4 Orient e toward that vertex. (Pick arbitrarily if both are large.)
5 else
6 Let c be the color of e.
7 Perform a depth-first search from each of the endpoints of e to find the connected

component of the edge of color c, but stop the search at any large vertex.
8 Orient e toward the minimum-ID vertex in the connected component (which is a

tree). // Note that together, the edges in the connected component
of color c form an orientation of that connected component with
out-degree at most 1.

Since G has a total degree at most 2n, there are at most 2r/5 large vertices, so at most
2r/5 large edges are oriented away from each vertex. Also, at most one non-large edge of
each color is oriented away from each vertex, so in total each vertex has an out-degree less
than r.

Thus this algorithm gives a valid orientation. It remains to see that it has low probe
complexity. Let u be one of the endpoints of e. It is enough to check that the depth-first
search starting at u searches at most Õ(n/r) edges with a very high probability (by symmetry,
the same will hold for the other endpoint of e).

Indeed, let H be the connected component of G \ e containing u; consider it as a tree
rooted at u. For a vertex v ̸= u in H, let Xv be the indicator random variable of whether
the edge from v to its parent has color c. Then, in order for the search to have to check the
edges from v to its descendants, Xv must equal 1 (and v must also not be large). The search
also always checks the edges from u to its descendants (as long as u is not large); there are
at most O(n/r) such edges. Therefore, the total number of edges checked is bounded above
by the following quantity:

O(n/r) +
∑

non-large v∈H\u

Xv deg v.

Since deg v ≤ 5n/r for each non-large v, the above sum is a sum of random variables bounded
in [0, 5n/r]. The Xv are all independent Bernoulli random variables with probability 5/r,
and the total degree of all vertices is at most 2n. The expectation of the sum is then O(n/r).
Then, by a Chernoff bound, the sum is Õ(n/r) with high probability, so we are done. ◀

ESA 2024

89:12 Locally Computing Edge Orientations

4 Orientation in bounded-degree forests

Finally, we present an algorithm that r-orients a forest that has maximum degree ∆, using at
most ∆n1−log∆ r+o(1) probes. The basic algorithm colors the edges of the graph with r colors
and orients each color separately with a maximum out-degree of 1. Then, the combined
out-degree of any vertex is at most r. We analyze the probe complexity by deriving a
Chernoff-style concentration bound on the size of any connected component of any color.

The probe complexity bound is meaningful when r is at least polynomial in ∆ (though
if r ≥ ∆ the problem is trivial). For example, if ∆ = 100 and r = 10, or if ∆ = log n and
r =

√
log n, then the resulting probe complexity is n1/2+o(1). Even if ∆ is polynomial in

n, this algorithm can still be nontrivial (though the ∆ factor does become important). For
example, if ∆ = n0.2 and r = n0.1, then the complexity is n0.7+o(1).

Specifically, we show the following theorem.

▶ Theorem 7. Given parameters r ≤ ∆, there exists an LCA which r-orients an input forest
G with n vertices and maximum degree ∆. For any fixed ϵ and with very high probability,
this algorithm uses at most ∆n1−log∆ r+ϵ probes for every query, for large enough n.

We show this by showing a concentration bound on the size of connected components in
a random subset of a tree:

▶ Proposition 4.1. Fix a constant ϵ. Suppose the edges of a forest G with n vertices and
maximum degree ∆ are each colored independently with probability p ≥ ∆−1+ϵ. Then, with
very high probability (in n), every connected component of colored edges has size at most
n1+log∆ p+ϵ.

Before we prove Proposition 4.1, we show how we can deduce Theorem 7 from it:

Proof of Theorem 7 assuming Proposition 4.1. First, assume that r ≤ ∆1−ϵ/2 (we will
handle the other case at the end). Then the algorithm is given in Algorithm 3.

Algorithm 3 LCA for r-orienting a bounded-degree forest.

Input : Forest G with n vertices and maximum degree ∆, with probe access
Query edge e = (u, v), where u has lower ID than v

1 Using the shared randomness, assign an independent and uniformly randomly chosen
color from {1, . . . , r} to every pair of vertices in G (so that every edge computes the
same coloring).

2 Let c be the color of e.
3 Using adjacency list probes, perform a depth-first search to find the connected

component of e within the edges of G with color c.
4 Orient e toward the minimum-ID vertex in the connected component (which must be

a tree). // This ensures that every vertex has at most 1 edge of
color c oriented away from itself.

Since each vertex has at most 1 edge of color c oriented away from itself, the total
out-degree of any vertex is at most r, as desired.

Using Proposition 4.1 (with ϵ/2 instead of ϵ), with high probability this has size at most
n1−log∆ r+ϵ/2 (with a union bound over all colors). Then, the depth-first search (using the
adjacency lists) takes at most ∆n1−log∆ r+ϵ/2 probes since it must probe the entire adjacency
list of every vertex in this connected component.

S. Mitrović, R. Rubinfeld, and M. Singhal 89:13

Finally, we handle the case where ∆1−ϵ/2 ≤ r ≤ ∆ (if r ≥ D then an arbitrary orientation
works). By the previous logic, we can still get a ∆1−ϵ/2-orientation (which is also an
r-orientation) with probe complexity ∆nϵ. But we have ∆nϵ ≤ ∆n1−log∆ r+ϵ, so we are
done. ◀

The remaining details are provided in the full version of this paper.

References
1 N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property-preserving data reconstruction.

Algorithmica, 51(2):160–182, 2008.
2 Noga Alon. A parallel algorithmic version of the local lemma. Random Structures & Algorithms,

2(4):367–378, 1991.
3 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1132–1139. SIAM, 2012.

4 Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combin-
atorica, 23(3):365–426, 2003.

5 Rubi Arviv, Lily Chung, Reut Levi, and Edward Pyne. Improved local computation algorithms
for constructing spanners. In APPROX-RANDOM, volume 275, pages 42:1–42:23, 2023.

6 Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Limitations of
local filters of lipschitz and monotone functions. In APPROX-RANDOM, pages 374–386, 2012.

7 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for mapreduce. In International Workshop on Algorithms and Models for the Web-Graph,
pages 59–78. Springer, 2014.

8 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling
sets. SIAM Journal on Computing, 51(1):70–115, 2022.

9 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM (JACM), 63(3):1–45, 2016.

10 József Beck. An algorithmic approach to the lovász local lemma. i. Random Structures &
Algorithms, 2(4):343–365, 1991.

11 Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. Local list-decoding with a con-
stant number of queries. Technical Report TR10-047, Electronic Colloquium on Computational
Complexity, April 2010.

12 Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting, graph
degeneracy, and the chasm at size six. arXiv preprint arXiv:1911.05896, 2019.

13 Edvin Berglin and Gerth Stølting Brodal. A simple greedy algorithm for dynamic graph
orientation. Algorithmica, 82(2):245–259, 2020.

14 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 692–711. SIAM, 2016.

15 Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova,
and David P. Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. SIAM J. Discrete Math., 26(2):618–646, 2012.

16 Amartya Shankha Biswas, Talya Eden, Quanquan C Liu, Ronitt Rubinfeld, and Slobodan
Mitrović. Massively parallel algorithms for small subgraph counting. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

17 Amartya Shankha Biswas, Edward Pyne, and Ronitt Rubinfeld. Local access to random walks,
january 2022. Innovations in Theoretical Computer Science (ITCS 2022), 2022.

18 Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Local access to huge
random objects through partial sampling. In 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

ESA 2024

89:14 Locally Computing Edge Orientations

19 Markus Blumenstock and Frank Fischer. A constructive arboricity approximation scheme. In
International Conference on Current Trends in Theory and Practice of Informatics, pages
51–63. Springer, 2020.

20 Greg Bodwin and Sebastian Krinninger. Fully dynamic spanners with worst-case update time.
arXiv preprint arXiv:1606.07864, 2016.

21 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovász local lemma.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
479–488, 2016.

22 Sebastian Brandt, Christoph Grunau, and Václav Rozhoň. The randomized local computation
complexity of the lovász local lemma. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, pages 307–317, 2021.

23 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
Algorithms and Data Structures: 6th International Workshop, WADS’99 Vancouver, Canada,
August 11–14, 1999 Proceedings 6, pages 342–351. Springer, 1999.

24 Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant
testers for connectivity and diameter. In APPROX-RANDOM, pages 411–424, 2013. doi:
10.1007/978-3-642-40328-6_29.

25 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (δ+ 1) coloring in congested clique, massively parallel computation, and centralized
local computation. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 471–480, 2019.

26 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive lovász local lemma. ACM Transactions on
Algorithms (TALG), 16(1):1–51, 2019.

27 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In International workshop on approximation algorithms for combinatorial optimization, pages
84–95. Springer, 2000.

28 Aleksander BG Christiansen, Jacob Holm, Eva Rotenberg, and Carsten Thomassen. On
dynamic α+ 1 arboricity decomposition and out-orientation. In 47th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2022). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

29 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986.

30 Andrzej Dorobisz and Jakub Kozik. Local computation algorithms for coloring of uniform
hypergraphs. arXiv preprint arXiv:2103.10990, 2021.

31 A. Dutta, R. Levi, D. Ron, and R. Rubinfeld. A simple online competitive adaptation of
lempel-ziv compression with efficient random access support. In Proceedings of the Data
Compression Conference (DCC), pages 113–122, 2013.

32 Guy Even, Reut Levi, Moti Medina, and Adi Rosén. Sublinear random access generators for
preferential attachment graphs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 6:1–6:15, 2017.

33 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Algorithms-ESA 2014: 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings 21, pages 394–405. Springer, 2014.

34 D. Beaver J. Feigenbaum. Hiding instances in multi-oracle queries. In Proc. 7th Annual
STACS conference, pages 34–48, 1990.

35 J. Feigenbaum and L. Fortnow. Random self-reducibility of complete sets. SIAM Journal on
Computing, 22:994–1005, 1993.

36 P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds. In
ACM-SIAM Symposium on Discrete Algorithms, pages 690–696, 2007. doi:10.1145/1283383.
1283457.

https://doi.org/10.1007/978-3-642-40328-6_29
https://doi.org/10.1007/978-3-642-40328-6_29
https://doi.org/10.1145/1283383.1283457
https://doi.org/10.1145/1283383.1283457

S. Mitrović, R. Rubinfeld, and M. Singhal 89:15

37 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for lov\’asz
local lemma, and the complexity hierarchy. arXiv preprint arXiv:1705.04840, 2017.

38 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring
via hypergraph maximal matching. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 180–191. IEEE, 2017.

39 P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting
for polynomials and for approximate functions. In Proc. 23rd Annual ACM Symposium on the
Theory of Computing, pages 32–42, 1991.

40 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 270–277. SIAM, 2016.

41 Mohsen Ghaffari. Local computation of maximal independent set. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 438–449. IEEE, 2022.

42 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 662–673. IEEE, 2018.

43 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algorithms for
density-based network clustering. In International Conference on Machine Learning, pages
2201–2210. PMLR, 2019.

44 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2505–2523. SIAM, 2017.

45 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1636–1653. SIAM,
2019.

46 Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries:
the highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535–570, 2000.

47 R. González and G. Navarro. Statistical encoding of succint data structures. In Proceedings of
CPM, pages 295–306, 2006.

48 Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-local probes
do not help with graph problems. arXiv preprint arXiv:1512.05411, 2015.

49 Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding Reed Muller codes
over small fields. In Proc. 40th Annual ACM Symposium on Theory of Computing, pages
265–274, 2008.

50 Christoph Grunau, Slobodan Mitrović, Ronitt Rubinfeld, and Ali Vakilian. Improved local
computation algorithm for set cover via sparsification. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2993–3011. SIAM, 2020.

51 Christoph Grunau, Václav Rozhoň, and Sebastian Brandt. The landscape of distributed
complexities on trees and beyond. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, pages 37–47, 2022.

52 David G Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 700–724. IEEE, 2019.

53 David G Harris, Hsin-Hao Su, and Hoa T Vu. On the locality of nash-williams forest
decomposition and star-forest decomposition. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, pages 295–305, 2021.

54 Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, pages 22–31. IEEE, 2009.

55 Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism design.
ACM Trans. Economics and Comput., 4(4):21:1–21:24, 2016.

ESA 2024

89:16 Locally Computing Edge Orientations

56 Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with applications to
maximal matchings and adjacency queries. In Algorithms and Computation: 25th International
Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, pages 128–140.
Springer, 2014.

57 Dan Hefetz, Fabian Kuhn, Yannic Maus, and Angelika Steger. Polynomial lower bound for
distributed graph coloring in a weak local model. In Distributed Computing: 30th International
Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings, pages 99–113.
Springer, 2016.

58 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proc. 29th Annual ACM Symposium on the Theory of
Computing, pages 220–229, 1997.

59 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013. doi:10.1137/110840741.

60 Satyen Kale, Yuval Peres, and C. Seshadhri. Noise tolerance of expanders and sublinear
expansion reconstruction. SIAM J. Comput., 42(1):305–323, 2013. doi:10.1137/110837863.

61 Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient
approximation to maximum matching size from uniform edge samples. CoRR, abs/1907.05725,
2019.

62 Michael Kapralov, Slobodan Mitrović, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient
approximation to maximum matching size from uniform edge samples. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1753–1772. SIAM,
2020.

63 J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In Proc. 32nd Annual ACM Symposium on the Theory of Computing, pages 80–86,
2000.

64 Swastik Kopparty and Shubhangi Saraf. Local list-decoding and testing of sparse random
linear codes from high-error. Technical Report 115, Electronic Colloquium on Computational
Complexity (ECCC), 2009.

65 Akash Kumar, C Seshadhri, and Andrew Stolman. Random walks and forbidden minors
III: poly(dϵ−1)-time partition oracles for minor-free graph classes. In Electron. Colloquium
Comput. Complex., volume 28, page 8, 2021.

66 Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone functions
via local reconstruction. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2022.

67 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an excluded
minor. ACM Transactions on Algorithms (TALG), 11(3):1–13, 2015.

68 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local computation algorithms for
graphs of non-constant degrees. In Proceedings of the 27th ACM symposium on Parallelism in
Algorithms and Architectures, pages 59–61, 2015.

69 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local computation algorithms for graphs
of non-constant degrees. Algorithmica, 77(4):971–994, 2017.

70 R. Lipton. New directions in testing. In Proc. DIMACS Workshop on Distributed Computing
and Cryptography, 1989.

71 Y. Mansour, A. Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms to local
computation algorithms. In Unpublished manuscript, 2011.

72 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In APPROX-RANDOM, pages 260–273, 2013.

73 Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 524–529, 1998.

74 S. Muthukrishnan, M. Strauss, and X. Zheng. Workload-optimal histograms on streams.
Technical Report 2005-19, DIMACS Technical Report, 2005.

https://doi.org/10.1137/110840741
https://doi.org/10.1137/110837863

S. Mitrović, R. Rubinfeld, and M. Singhal 89:17

75 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1), November 2015.

76 H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements.
In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pages 327–336,
2008.

77 Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theoretical Computer Science, 381(1-3):183–196,
2007.

78 Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee. Local computation
algorithms for spanners. In ITCS, volume 124, pages 58:1–58:21, 2019.

79 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

80 Will Rosenbaum and Jukka Suomela. Seeing far vs. seeing wide: Volume complexity of local
graph problems. In Proceedings of the 39th Symposium on Principles of Distributed Computing,
pages 89–98, 2020.

81 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
arXiv preprint arXiv:1104.1377, 2011.

82 K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In
ACM-SIAM Symposium on Discrete Algorithms, pages 1230–1239, 2006.

83 M. E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM Journal on Computing,
39(7):2897–2926, 2010.

84 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM Transactions on
Algorithms (TALG), 16(3):1–24, 2020.

85 Hsin-Hao Su and Hoa T Vu. Distributed dense subgraph detection and low outdegree
orientation. In 34th International Symposium on Distributed Computing, 2020.

86 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

87 Herbert Hans Westermann. Efficient algorithms for matroid sums. University of Colorado at
Boulder, 1988.

88 Sergey Yekhanin. Private information retrieval. Commun. ACM, 53(4):68–73, 2010.
89 Y. Yoshida, Y. Yamamoto, and H. Ito. An improved constant-time approximation algorithm

for maximum matchings. In Proc. 41st Annual ACM Symposium on the Theory of Computing,
pages 225–234, 2009.

ESA 2024

	1 Introduction
	1.1 The problem of r-orientation
	1.2 Our results
	1.2.1 Future directions

	1.3 Related work

	2 Preliminaries
	2.1 LCA model
	2.2 Tools and notation

	3 Orientation in unbounded-degree graphs
	3.1 Lower bound for orientation in unbounded-degree graphs
	3.2 Algorithms for orientation in unbounded-degree graphs
	3.2.1 O(1) algorithm for large r
	3.2.2 (alpha n/r^2) algorithm for medium r
	3.2.3 (n/r) algorithm for all r, if G is a forest

	4 Orientation in bounded-degree forests

