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Abstract
Integration of spatial data is a major field of research. An important task of data integration is finding
correspondences between entities. Here, we focus on combining building footprint data from cadastre
and from volunteered geographic information, in particular OpenStreetMap. Previous research on
this topic has led to exact 1:1 matching approaches and heuristic m:n matching approaches, most
of which are lacking a mathematical problem definition. We introduce a model for many-to-many
polygon matching based on the well-established Jaccard index. This is a natural extension to
the existing 1:1 matching approaches. We show that the problem is NP-complete and a naive
approach via integer programming fails easily. By analyzing the structure of the problem in detail,
we can reduce the number of variables significantly. This approach yields an optimal m:n matching
even for large real-world instances with appropriate running time. In particular, for the set of all
building footprints of the city of Bonn (119,300 / 97,284 polygons) it yielded an optimal solution in
approximately 1 hour.
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1 Introduction

When dealing with spatial data, it is often necessary to integrate information from several
data sources of the same region. Consider the scenario of building footprints available on the
one hand as cadastral data, e.g., in Germany ALKIS [2], and on the other hand data created
by volunteers, in our case OpenStreetMap [15]. These data sets most likely differ in the
number of buildings as well as the buildings’ exact positions and outlines. For example, an
OpenStreetMap user registers a building complex as a whole, while the official land registry
lists the complex as a conglomerate of multiple buildings. Often the buildings of both data
sets have different attributes, such as type, height, zip code, year of construction, etc. Thus,
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it is desirable to integrate both data sets, where a major task is finding correspondences
between the buildings.

Besides data integration, finding such correspondences allows a quality assessment of one
map with respect to a benchmark map. This is especially useful in the active research field
of generating maps from satellite data [20].

In this paper, we discuss the problem of finding matches (correspondences) between
elements in the two sets of polygons B1 and B2. For example, every element p ∈ B1 is a
polygon of a building footprint of the ALKIS data and every element q ∈ B2 is a polygon of
a building footprint of the OpenStreetMap data. Note that 1:1 matches do not suffice to
model the relationships between building footprints in real-world data (see Figure 1 (a.)).
The same holds for 1:n matches. Hence, we allow m:n (many-to-many) matches, where every
match µ is defined with a subset of B1 and a subset of B2, i.e., µ = {Pµ ⊆ B1, Qµ ⊆ B2}.
We call a set of matches a many-to-many matching (or m:n matching) if all polygons in B1
and B2 are part of at most one match.

Amongst all possible m:n matchings, we want to find an m:n matching M that consists
of reasonable matches. As a widely applied measure, which has been used before to rate
1:1 matchings, we make use of the Jaccard index IoU (intersection over union) which for
two-dimensional objects Pµ, Qµ is defined via the area of the intersection I(Pµ, Qµ) and the
area of the union U(Pµ, Qµ).

IoU(µ) = IoU(Pµ, Qµ) = I(Pµ, Qµ)
U(Pµ, Qµ) (1)

Note, however, that not all matches with IoU > 0 might be favorable: Figure 1 (b.) shows
an example, where two intersecting building footprints of the two data sets clearly do not
correspond to each other. To avoid these matches, we introduce a parameter λ ∈ [0, 1) to
quantify the quality of a match µ as σ(µ) = IoU(µ)− λ.

Overall, we want to find an optimal m:n matching, i.e., an m:n matching maximizing the
sum over the qualities of the contained matches.

max
M is m:n matching

∑
µ∈M

(IoU(µ)− λ) (2)

We call σ(M) =
∑

µ∈M (IoU(µ)− λ) the quality of an m:n matching M .

▶ Problem 1 (Matching).
Given: Data sets B1 and B2 of interior-disjoint polygons.
Find: Many-to-many matching M∗ that maximizes the quality σ =

∑
µ∈M∗ (IoU(µ) − λ).

To the best of our knowledge, this is the first formal definition of many-to-many polygon
matching, while previous research focused on heuristic approaches to the problem.

We prove by reduction from PARTITION [9] that the decision variant of our optimization
problem is NP-complete (Subsection 3.1). This motivates the use of integer linear program-
ming (ILP). However, trying to solve the problem with a naive ILP formulation easily gets
infeasible. We present structural properties of the problem that allow us to solve even large
data sets optimally. For example, we show that our choice of objective implies that the
polygons of a match included in an optimal m:n matching are connected (Section 4). Using
structural properties, we can decompose the instance into smaller sub-problems (Section 5).
We implemented the algorithm and applied it to large-scale real-world data comparing ALKIS
and OpenStreetMap data from Bonn and Cologne, Germany, to confirm its applicability
with experiments (Section 6).
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a.

b.

Figure 1 An excerpt of the data sets from the city of Bonn (ALKIS in grey, OSM in red). ((a.)
An example occurring in the excerpt where a 1:1 match does not suffice. (b.) Two footprints of the
excerpt that do intersect but should not be matched.)

Our Contribution

With this work, we investigate correspondences between two sets of interior-disjoint polygons.
In particular, we contribute

a model for an optimal many-to-many matching,
an NP-completeness proof of the problem,
an analysis of structural properties,
an ILP formulation for solving the problem,
an algorithm using the structural properties to reduce the number of variables and
constraints of the ILP,
experiments on large-scale real-world data.

2 Related Work

For the matching of polygons representing building footprints, multiple approaches have been
introduced. Fan et al. proposed a heuristic approach for finding m:n matchings of building
footprints [5]. Two buildings are in the same match if their intersection area divided by the
area of the smaller polygon is larger than a threshold. In application, often simpler matching
rules are used. For example, Müller et al.’s research focuses on quality assessment [12]. The
matching is a preprocessing step where they match every polygon from one data set to the
polygon from the other data set that has the smallest centroid distance. While both works
provide an evaluation of real-world data, they do not introduce a formal statement of the
problem. In contrast, our approach is based on a formally stated optimization problem with
a clear optimization objective.

Liu et al. present an approach MBRCO for matching polygons of two maps of different
scales [11]. In contrast to our problem, corresponding objects can be dislocated due to shape
simplification. Their approach is based on the minimum bounding rectangles of the input
polygons where the quality of a match is rated by the consistency of the shapes. However,
they neither state the problem formally nor provide proofs regarding the optimality.
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Besides approaches that are based on geometry (location and shape), there also exists work
that incorporates other information. For example, Kim et al. use geographical context to find
the matching [10]. Huh et al. consider the problem of finding a matching of automatically
retrieved building footprints from satellite image data [24]. They use latent semantic analysis
where they assign a feature vector to each polygon and perform a hierarchical clustering.

Closely related to matchings of polygons, there exists work on matchings of lines that
represent a road network. Walter et al. introduced a method that grows buffers around
entities [21]. Based on this method different approaches have been developed, e.g., taking
into account statistic measures [22] or extending the lines additionally [23]. Again, these
methods are heuristic approaches.

For comparing two maps, evaluating found correspondences of entities is essential. Jozdani
and Chen investigated several quality measures comparing two maps [8]. They showed that
the Jaccard index is well-performing and robust. Also, the Jaccard index has been widely
applied in related problems, e.g., in the context of real-time tracking with 1:1 matches [1]
and m:n matches [13], and for the quality assessment of extracted polygons from satellite
imagery to cadastral data [20]. Hecht et al. proposed an approach that quantifies a map’s
completeness by measuring the overlap with respect to a benchmark map [7]. Müller et
al. introduced the difference between integrals of the turning function of the polygons for
measuring the quality of a map [12]. Another common measure is to examine the point-to-
point relationship of the matched geometries [5, 17]. We deem that the Jaccard index is one
of the most common measures that is widely accepted. Hence, we use it for our objective.

Within our algorithm, we model the configuration of the two data sets as a bipartite
graph. The emerging problem is known as many-to-many (graph) matching. Regarding this
problem, there has been research presenting a continuous relaxation approach [25]. From
the field of computer vision, it has been explored for object [18] and pattern recognition
[4]. Our problem differs from these approaches, since the qualities of our m:n matches
cannot be derived directly from single buildings contained in them. Further research has
also added constraints to the problem in order to find efficient algorithms. Examples are
critical matchings introducing lower quotas to each vertex [14] or tree-constrained matchings
considering two trees as parts of the bipartite graph, where the tree hierarchies define the
possible sets to be matched [3].

3 Model

In the following, we consider the presented problem as a graph problem. For this, let G =
(V = {V1 ∪ V2}, E) be a graph where for i ∈ {1, 2} a vertex in Vi represents a set of polygons
from Bi and an edge e ∈ V1 × V2 corresponds to a possible match µ = (P ⊆ B1, Q ⊆ B2).
Each edge eµ ∈ E is weighted with the match quality w(eµ) = σ(µ). We denote the set
of represented polygons of a vertex v of G by p(v). Analogously, p(V ) denotes the set of
represented polygons of a set V of vertices. We call a vertex v simple if p(v) has size 1 and
cumulative otherwise.

An m:n matching M corresponds to a constrained matching in G such that no polygon
occurs in more than one set of polygons represented by a vertex incident to an edge of the
matching. We call such a selection of edges matching selection. An optimal m:n matching
corresponds to the matching selection with the highest sum of edge weights over all matching
selections. We call a graph G containing the optimal matching selection a candidate graph.
A trivial example of a candidate graph is a complete bipartite graph where Vi contains a
vertex for every element of the powerset of Bi, see Figure 2.
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Figure 2 An example of (a.) two sets of polygons (blue and orange) and (b.) the candidate
graph G we use to compute the optimal m:n matching.

The presented m:n matching problem can easily be formulated as an integer linear
program (ILP). For each edge e ∈ E, we introduce a variable xe ∈ {0, 1}. To ensure that
a polygon p is contained in at most one match, we introduce the constraint

∑
e∈Ep

xe ≤ 1
where Ep is the set of edges incident to any vertex v where p ∈ p(v). Formally, this gives us
the following objective for the ILP.

maximize
∑
e∈E

w(e) · xe (3)

3.1 NP-Completeness
▶ Theorem 1. The problem of deciding for a given σ∗ ∈ R whether an m:n matching M∗

with quality σ(M∗) > σ∗ exists is NP-complete.

Proof. Let MATCHING be the problem of deciding whether for a given quality σ∗ ∈ R there
exists an m:n matching M∗ with σ(M∗) ≥ σ∗. To prove NP-completeness of MATCHING, we
need to show that it lies in NP: Given an m:n matching M , the matching quality σ(M)
can be computed in polynomial time. Hence, deciding whether σ(M) ≥ σ∗ can be done in
polynomial time and MATCHING ∈ NP.

We prove NP-completeness of MATCHING via a polynomial reduction PARTITION ⊆p

MATCHING (PARTITION is NP-complete [9]). Let A = {a1, ..., an} be a set where for all
i ∈ [n] : ai ∈ Z. Then, PARTITION decides if there is a subset A′ ⊂ A such that

∑
a∈A′ a =∑

a∈(A\A′) a. We will build an instance of MATCHING from the given instance of PARTITION
as depicted in Figure 3. The optimal solution of the constructed MATCHING instance will
enable us to solve the underlying PARTITION problem.

Let p1, . . . , pn be axis-parallel rectangular polygons in R2 such that the upper left corner of
rectangle pi is (

∑i−1
j=1 aj , 2) and the lower right corner is (

∑i
j=1 aj , 0). Let S =

∑
a∈A a. Let

pn+1 be a polygon defined by (S, 2)×(2S, 1) and pn+2 be a polygon defined by (S, 1)×(2S, 0).
Let B1 be the set {p1, . . . , pn+2}. Let B2 be a set of two rectangular polygons q1, q2 defined
by (0, 2)× (2S, 1) and (0, 1)× (2S, 0). These polygons are the input of MATCHING. We can
construct them in polynomial time. We set λ = 0.

Now, we will show that σ∗ = 6
5 is the optimal quality for the given instance and that it can

be achieved only for a m:n matching {{B′
1, q1}, {B1 \B′

1, q2}} where B′
1 corresponds to a set

A′ ⊂ A that fulfills PARTITION. Due to |B2| = 2, we have two options to match the polygons
from B2. The first option is that both polygons of B2 are in the same match. Then, trivially,
it is optimal to match them to all polygons of P leading to a quality σ({B1, B2}) = 1. We
call this m:n matching MB12 . The second option is to separate the polygons of B2 into two

ESA 2024



90:6 Many-To-Many Polygon Matching à La Jaccard

...𝑎1 𝑎2 𝑎3 𝑎𝑛

𝑆 𝑆

2

1

1

Figure 3 Construction of an instance of the MATCHING from an instance of PARTITION. The blue
polygons correspond to polygons of B1 and the orange polygons to polygons of B2. For the sake of
readability, we scaled down the size of the polygons in B2.

matches. Let µ1 = {B′
1, q1} and µ2 = {B1 \B′

1, q2} and M = {µ1, µ2}, where B′
1 corresponds

to a set A′ with an element wise sum of exactly S/2. For M , we obtain

σ(M) = IoU(µ1) + IoU(µ2) = 1.5S

2.5S
+ 1.5S

2.5S
= 6

5 > 1 = σ(MB12).

Hence, the quality of M is better than the quality of MB12 . It remains to show that there is
no B̂1 ⊆ B1 such that σ({{B̂1, q1}, {B1 \ B̂1, q2}}) > 6

5 . Since we know that q1, q2 cannot
be in the same match and improve upon σ(M) = 6

5 , every other possible m:n matching can
be modeled as reassigning a set of polygons R1 ⊆ B′

1 from µ1 to µ2 and a set of polygons
R2 ⊆ B1 \ B′

1 from µ2 to µ1. Let x1 be the sum of all widths of polygons from R1, x2
be the sum of all widths of polygons from R2, and x = |x1 − x2|. Note that x ∈ (0, S/2]
as the polygons of B′

1 have a width of S/2. The quality of the new m:n matching after
reassignment corresponds to f : x 7→ 1.5S+x

2.5S+x + 1.5S−x
2.5S−x for x ∈ [0, S/2]. The maximal value

of f corresponds to the maximal value of the quality over all m:n matchings. We derive f

as f ′(x) = − 160S2x
(2x−5S)2(2x+5S)2 and f ′′(x) = 160S2(12x2+25S2)

(2x−5S)3(2x+5S)3 and obtain f ′(x) = 0 only for
x = 0 and f ′′(0) < 0. Hence, x = 0 is the only maximum of f , which means that assigning
exactly half of the width to each match is optimal.

Hence, we can solve PARTITION by solving MATCHING: If and only if there is an m:n
matching M with a quality σ(m) ≥ σ∗ = 6

5 , then there is a solution for PARTITION. Hence,
MATCHING is NP-complete. ◀

4 Structural Properties

In this section, we discuss properties of an optimal solution M∗, which we will use for our
algorithm. Let Gint = (Vint = (Vint,1 ∪ Vint,2), Eint) be a bipartite graph that contains a
vertex in Vint,1 for every polygon in B1 and a vertex in Vint,2 for every polygon in B2 and
an edge for every two vertices where the associated polygons intersect. We call Gint the
intersection graph of B1 and B2. We call a match µ = {P ⊆ B1, Q ⊆ B2} connected if the
corresponding vertices induce a connected subgraph in Gint.

▶ Lemma 2 (Match Connectedness). Given two sets of polygons B1, B2, every matching M∗

maximizing σ(M∗) exclusively consists of connected matches.
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Proof. Let µ = {P, Q} be a non-connected match. Assume, there was an optimal solution
including µ. We can split it into two disjoint non-empty matches µ1 = {P1, Q1} and
µ2 = {P2, Q2} where (P1 ∪Q1) ∩ (P2 ∪Q2) = ∅. We distinguish two cases:
Case 1: σ(µ1) = σ(µ2). In this case, it trivially holds that σ(µ) = σ(µ1) = σ(µ2) and
σ(µ) > 0, since µ is in an optimal solution per assumption. But then, σ(µ) < 2 · σ(µ) =
σ(µ1) + σ(µ2) and therefore the many-to-many matching could be improved by replacing µ

with µ1 and µ2.
Case 2: w.l.o.g. σ(µ1) < σ(µ2). Let I, U be the intersection and union of µ and Ii, Ui

be the intersection and union of µi for i ∈ {1, 2}. We claim that IoU(µ) < IoU(µ2), which
implies σ(µ) < σ(µ2) and therefore replacing µ by µ2 increases the objective. This holds,
because:

IoU(µ) < IoU(µ2) (4)

⇔ I

U
<

I2

U2
(5)

⇔ I1 + I2

U1 + U2
<

I2

U2
(6)

⇔ I1U2 + I2U2 < I2U1 + I2U2 (7)

⇔ I1

U1
<

I2

U2
(8)

where the last equation is true by assumption since σ(µ1) < σ(µ2). Hence the objective
of any solution including a non-connected match µ can always be improved, meaning no
many-to-many matching including such a non-connected match is optimal. ◀

▶ Lemma 3 (Outlier Polygons). Given two sets of polygons B1, B2. Let p ∈ B1 and let Q be
the subset of B2 that consists of all polygons that intersect p. If I(p,Q)

area(p\Q) < λ, then p is not
part of a match in an optimal m:n matching.

Proof. Assume p is a polygon that fulfills the property of the lemma and assume it is part of
a match µp in an optimal solution M∗. Then, it holds that σ(µp) ≥ 0 and hence, IoU(µp) ≥ λ.
Assume we remove p from its match µp. Let x be the intersection area and y be the union
area that µp loses when removing p. Since I(p,Q)

area(p\Q) < λ, we know that x
y < λ. We claim

that if we remove p from the match µp, this increases its IoU:

IoU(µp) = I(µp)
U(µp) <

I(µp)− x

U(µp)− y
= IoU(µp \ p) (9)

⇔ I(µp) · (U(µp)− y) < U(µp) · (I(µp)− x) (10)
⇔ I(µp) · y > U(µp) · x (11)

⇔ I(µp)
U(µp) >

x

y
(12)

Equation (12) always holds, since IoU(µp) ≥ λ and x
y < λ. But then, we can remove p from

µp and increase the objective of M∗. Therefore M∗ cannot have been optimal in the first
place, contradicting our assumption. ◀

▶ Lemma 4 (Polygons in the same Match). Let p ∈ B1, q ∈ B2, and let Np(q) = {p′ ∈ B1 \p |
p′ ∩ q ̸= ∅}. If it holds that

(1) I(p, q) > area(p \ q), (2) IoU(p, q) > λ, and (3) I(q,Np(q))
area(q\Np(q)) < λ,

then, polygons p and q are contained in the same match in every optimal solution.

ESA 2024
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Proof. We show this lemma via contradiction. Consider M is an optimal m:n matching, and
p and q fulfill properties (1), (2), and (3), and p and q are not in the same match in M . We
distinguish the following cases:
Case 1: p and q are both unmatched. Let µ = {p, q}. Due to (2) adding µ to M will
increase q(M). Therefore M cannot be optimal.
Case 2: one polygon is in a match, the other one not. Assume p is in a match µp but q

is unmatched. Then, IoU(µp) > λ. Let µpq be the match µp extended by q. Due to property
(1), adding q to µp increases the intersection of the match more than its union. In detail,
I(µp ∪ q)− I(µp) > U(µp ∪ q)−U(µp). Note that (i) IoU ≤ 1 and (ii) ∀a, b, c, d ∈ R>0 with
a ≤ b, c ≤ d it holds that a

b < a+d
b+c . Altogether, it holds that

IoU(µp) = I(µp)
U(µp) <

I(µp ∪ q)
U(µp ∪ q) = IoU(µpq). (13)

Hence, M can not be optimal. Note that the case q is in a match and p is unmatched can be
handled analogously.
Case 3: p and q are in different matches. Let p be in µp and q in µq with µp ̸= µq. Due
to property (3) and IoU(µp) > λ and IoU(µq) > λ, we can remove p from µp and q from µq

and improve the matches’ contribution to the objective function.

λ < IoU(µp) = I(µp)
U(µp) <

I(µp)− I(p, µp)
U(µp)− area(p \ µp) = IoU(µp \ p) (14)

The same holds for µq analogously. Additionally, due to (2), σ({p, q}) > 0 and adding {p, q}
to M improves the quality. Hence, M can not be optimal. ◀

We provide the following lemmas without proofs. Lemma 5 follows immediately from
Lemma 4. Lemma 6 requires a contradictory argument similar to the proof of Lemma 3.
Lemma 7 follows from the foregoing results.

▶ Lemma 5 (Containment). Given two sets of polygons B1 and B2. Let p ∈ B1. If there
exists q ∈ B2 such that q contains p (p ⊂ q), then in every optimal m:n matching p is either
in the same match as q or in no match at all.

▶ Lemma 6 (Two Matches better than one). Given two sets of polygons B1, B2. Let p, p′ ∈ B1
and let q, q′ ∈ B2 with p ̸= p′ and q ̸= q′. If σ({p, q}) + σ({p′, q′}) > 1− λ, then there is no
optimal m:n matching with a match that includes p, p′, q, and q′.

▶ Lemma 7 (1:1 Match). Given two sets of polygons B1, B2. Let p ∈ B1 and q ∈ B2 with
σ({p, q}) > 0. Let P = {p′ ∈ B1 | q ∩ p′ ̸= ∅} and Q = {q′ ∈ B2 | p ∩ q′ ̸= ∅}. If
1. for every p′ ∈ P there exists q′ ∈ B2 \ q such that q({p, q}) + q({p′, q′}) > 1− λ

2. for every q′ ∈ Q there exists p′ ∈ B1 \ p such that q({p, q}) + q({p′, q′}) > 1− λ

3. Lemma 4 (polygons in the same match) holds for (p′, q′),
then every optimal solution contains the 1:1 match {p, q}.

5 Construction of Candidate Graph

Our algorithm to compute an optimal m:n matching (Algorithm 1) consists of two parts.
First, we build the candidate graph and, secondly, we use an ILP to solve the problem. In
the following, we will describe our procedure of setting up the candidate graph, as the ILP is
provided in Section 3.
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Algorithm 1 OPTIMAL M:N MATCHING.
Input polygon-sets {B1, B2}, threshold λ

Output optimal m:n matching M∗

1: M∗ ← {}, G← {}
2: compute intersection graph Gint = (Vint, Eint) of B1, B2 and initialize G = Gint
3: C ← find all connected components of G

4: for each connected component C ∈ C do
5: insert one representing vertex for each included group to G (Lemma 4)
6: compute 1:1 matches and delete the respective vertices from G (Lemma 7)
7: add cumulative_vertices(C) to G

8: set up Integer Linear Program using G

9: M∗ ← solve Integer Linear Program
10: return M∗

Let B1 and B2 be the input sets of polygons and G a candidate graph. To improve upon
the naive approach of building a graph with every combinatorial subset of B1 and B2, we
make use of the structural properties of any optimal solution (Section 4).

We start by computing the intersection graph Gint = (Vint = (Vint,1, Vint,2), Eint) of B1
and B2 and initialize the candidate graph with G = Gint. We decompose G into its connected
components C. Due to Lemma 2 (Match Connectedness), we can handle those as independent
sub-instances. For each connected component we perform three steps: First, we use Lemma 4
(Polygons in the same Match), which means we search for sets of vertices V with a common
neighbor v′, where the represented polygons p(V ) and p(v′) fulfill properties (1), (2), and (3).
Then the polygons in p(V ) are always in the same match. Hence, we replace V by one single
vertex ṽ in G representing all polygons p(V ) (line 5). Secondly, we apply Lemma 7. If we
can find a pair of vertices v, v′ where p(v) and p(v′) fulfill properties 1., 2., 3. of Lemma 7
(1:1 Match) we add the match {p(v), p(v′)} to our optimal m:n matching M∗ and we remove
v and v′ from G (line 6). Thirdly, we build the cumulative vertices and their edges and add
these to G′ (line 7). For that, we traverse G in a breadth-first-way from each of its vertices
once. In contrast to the standard breadth-first-search, our queue holds sets of vertices S,
where each set corresponds to a possible match µS = {S ∩ V1, S ∩ V2}. In every iteration, we
pop such a set S off the queue. We add the corresponding cumulative vertices to G if they
are not included yet. A weighted edge between the vertices is added if the quality of the
corresponding match is larger than 0. For each vertex v in G adjacent to a vertex within
S, we insert the set S ∪ {v} into the queue if it has not been visited yet. This way, we find
every set of vertices that could potentially form a match in M∗ and G is a candidate graph
afterward. We speed up our computation via the following techniques:

Note that sets can be found more than once. Hence, an efficient way of checking for
duplicates is necessary. We make use of an AVL tree data structure.
To avoid visiting a large number of matches that can never be in an optimal solution
we can stop the breadth-first search if, for the polygons p(S) of the current candidate
match, there is a 1:1 matching M1:1 of p(S) with σ(M1:1) > 1 − λ. We use a simple
greedy heuristic to check this.
To compute the weights of the edges in the candidate graph, we need many redundant
spatial computations (intersection, union). We reduce the running time by pre-computing
an arrangement of all line segments of the polygons in both sets. This way we can
compute the area per face once and only need to make look-ups later on.
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a. b.

Figure 4 An optimal m:n matching of Cologne for λ = 0.4. (a.) ALKIS buildings are displayed
in grey, OSM buildings in blue gradients. The darker the blue color, the higher σ(µ) of the match µ

the polygon is included in. (b.) The excerpt shows the m:n matching with one color per match,
where ALKIS buildings are displayed as a vertical line pattern and OSM buildings as their boundary.
Unmatched polygons of both data sets are shown in grey.

Table 1 The sizes of the data sets used in our experiments.

City # polygons ALKIS # polygons OSM # connected components of Gint

Bonn 119,300 97,284 40,928
Cologne 301,355 303,173 86,596

6 Experiments

To evaluate our model and algorithms with real-world data, we implemented the algorithm
presented in Section 5 in C++ and provide the code in the referenced repository. For
geometrical operations, we used the CGAL library [19]. The graph operations were done
using the boost library and the ILP was solved with the Gurobi solver [6]. We pre-computed
the connected components of the intersection graph using QGIS [16]. Before discussing the
results of the runs, we want to give a brief overview of the implementation details.

Data and Experimental Settings

For our evaluation, we used German cadastral data ALKIS and the open-source data of
OpenStreetMap (in the following OSM) of the cities of Bonn, Germany, and Cologne,
Germany, which we call Bonn and Cologne, respectively. The OSM data sets contain all
elements flagged as building in the geographical area of Bonn and Cologne. For the specific
sizes of the datasets, see Table 1. For illustration of the datasets see Figure 1 (excerpt
of Bonn) and Figure 4 (a.) (Cologne). For an exemplary result of an m:n matching see
Figure 4 (b.).

We performed experiments for λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We limited the execution
time per construction of the candidate graph of a connected component to 1000s. When
the limit is reached, the construction stops and we solve the ILP on the candidate graph
computed so far.
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Figure 5 The total running times of Algorithm 1 after pre-computing the connected components
of Bonn and Cologne.

Results: Running Time

We solved Bonn for every value of λ in at most ≈ 1.5h (max 221s per component). Among
the 86,596 components of Cologne, we could not solve 1–12 components within the time
limit, depending on λ. Figure 5 shows the running time for the different values of λ for
Bonn and Cologne. Generally, a larger λ leads to more sets of polygons fulfilling Lemma 4
(Polygons in the same match) as condition (3) gets less strict. On the other hand, smaller
λ favor the application of Lemma 7 (1:1 Match), because the sum of two matches exceeds
the sum of one big match more easily. This leads to λ close to 0.5 striking a good balance
between the applicability of both properties and hence the best running time. Figure 6 shows
the impact of Lemma 4 and Lemma 7 on the average number of buildings of the connected
components. The combination of Lemma 4 and Lemma 7 allows us to reduce the average
number of buildings of the connected components significantly. Often, the simplification
solves the m:n matching of a connected component entirely. These cases do not require the
construction of the candidate graph and running the ILP and we treat their sizes as 0 in our
statistic. Hence, the average size after the simplification can be less than 1. As the average
number of buildings of a connected component corresponds to the average number of vertices
of its intersection graph, the simplification reduces the running time tremendously.

Challenging instances. As described before, a few components of Cologne were not solved
in the preset time limit. One exemplary component consists of 57 ALKIS- and 42 OSM-
polygons (Figure 7). Here, the maps differ severely: (i) the outline of the components of
ALKIS and OSM differ, and (ii) multiple OSM-building intersect multiple ALKIS-buildings.
Hence, we can apply our observations and lemmas only a few times. The algorithm stopped
during the construction of the candidate graph and it consisted already of 32,964 nodes
and 62,323 edges. In application, we propose to limit the maximum number of represented
polygons per cumulative vertex to a fixed value k (in this example, k = 10 would suffice and
lead to a running time of ≈ 20s with a graph of 8,449 nodes and 36,482 edges with λ = 0.4).
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Figure 6 The average (= arithmetic mean) size (= number of vertices) of a component occurring
in the data sets before and after the application of our observations.

Results: Reasonability
We analyzed the size of m and n of the matches included in optimal m:n matchings for
λ ∈ {0.4, 0.6, 0.8} (Figure 8). Larger values of λ favor solutions with less matches and higher
qualities. This is due to our choice of σ(M). The more matches M includes, the more often
λ gets subtracted in σ(M). Hence, the larger λ gets, the more the total number of matches
is penalized. On the contrary, small λ lead to solutions including many matches with few
buildings and often less quality (see Figure 1 (b.) as an example for a possible match using a
small λ).

Results: Comparison to 1:1 Matching
As shown in Figure 8, the optimal m:n matching contains matches with m > 1 and n > 1.
This validates our approach of using an m:n matching instead of a 1:1 matching. To rate
the improvement, we compared our approach to the optimal 1:1 matching M1:1 maximizing
σ(M1:1) as a baseline. We obtained qualities in the range of 84%− 87% for the different λ

values with respect to optimal m:n matching qualities. For smaller λ, the similarity is higher.
Further, we compared the number of matches for optimal 1:1- and m:n matchings. It showed
that while for λ = 0.3 we have ≈ 1% less matches in the 1:1 matching than in the m:n
matching, this difference grows to ≈ 9% for λ = 0.7. This aligns well with the observation
stated in the last paragraph that higher λ favor larger matches, which cannot be formed
with 1:1 matching.

7 Conclusion and Outlook

We presented the first optimization approach for finding an m:n matching of two sets
of polygons. We introduced a natural quality measure of a m:n matching based on the
established Jaccard index. We formalized the problem of finding an optimal m:n matching
w.r.t. this measure. A naive approach via integer programming for solving this problem is
not feasible for real-world data and average computing systems. We presented structural
properties of any optimal solution that allows us to make the computation feasible. We
implemented the algorithm and evaluated it on building footprint data of the cities of Bonn
and Cologne.
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Figure 7 The instance that could not be solved optimally within our chosen execution time
threshold of 1000s. The ALKIS data is shown in grey, and OSM in red.
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Figure 8 The numbers of occurrences per match composition w.r.t. the number of included OSM
and ALKIS polygons of Bonn. The numbers are represented by a color gradient using a logarithmic
scale.

Our m:n matching approach allows combining information from two data sets as well
as the evaluation of the quality of one data set with respect to the other one. Alongside
the m:n matching itself, our algorithm implicitly assigns each match a quality index. This
enables detailed analysis as well as visualization of the correspondences. These tasks are
important in real-world applications, as the total amount of data continuously increases,
making combination as well as evaluation necessary. Our algorithm applies for any application
working with polygons. Hence, it is not limited to building footprints.

Although we were able to find multiple properties of optimal solutions that reduced the
running time, a few instances could not be solved within the chosen time limit. Hence,
investigating structural properties for an exact solution or considering an approximation
are open research topics. It could be possible to simplify the graph even more within
approximation guarantees. This could decrease the running time with possibly only a
negligible loss of solution quality. It would also be interesting to explore other objectives
for a matching that do not scale linearly w.r.t. the Jaccard index. Furthermore, one could
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explore how the m:n matching can be used for further processing. For example, for merging
the geometries of two maps or combining the polygon attributes, the m:n matching can serve
as a starting point for additional computations.
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