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Abstract
We study the unit-demand capacitated vehicle routing problem in the random setting of the Euclidean
plane. The objective is to visit n random terminals in a square using a set of tours of minimum
total length, such that each tour visits the depot and at most k terminals.

We design an algorithm combining the classical sweep heuristic and the framework for the
Euclidean traveling salesman problem due to Arora [J. ACM 1998] and Mitchell [SICOMP 1999].
We show that our algorithm is a polynomial-time approximation of ratio at most 1.55 asymptotically
almost surely. This improves on the prior ratio of 1.915 due to Mathieu and Zhou [RSA 2022]. In
addition, we conjecture that, for any ε > 0, our algorithm is a (1 + ε)-approximation asymptotically
almost surely.
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1 Introduction

In the unit-demand capacitated vehicle routing problem (CVRP), we are given a set V of n

terminals and a depot O. The terminals and the depot are located in some metric space.
There is an unlimited number of identical vehicles, each of an integer capacity k. The tour
of a vehicle starts at the depot and returns there after visiting at most k terminals. The
objective is to visit every terminal, using a set of tours of minimum total length. Unless
explicitly mentioned, for all CVRP instances in this paper, each terminal is assumed to have
unit demand. Vehicle routing is a basic type of problems in operations research, and several
books (see [4, 22, 30, 52] among others) have been written on those problems.

We study the Euclidean version of the CVRP, in which all locations (the terminals and the
depot) lie in the two-dimensional plane, and the distances are given by the Euclidean metric.
The Euclidean CVRP is NP-hard, since it is a generalization of the Euclidean traveling
salesman problem (TSP), and the Euclidean TSP is NP-hard [28, 48]. For the Euclidean
TSP, Arora [5] and Mitchell [44] gave the first approximation scheme, which is among the
most prominent results in theoretical computer science.1 However, as stated in a survey

1 For example, the approximation scheme of Arora [5] and Mitchell [44] for the Euclidean TSP won the
Gödel Prize in 2010.
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of Arora [6], the Euclidean CVRP resists Arora’s framework from [5]. The best-to-date
polynomial-time approximation algorithm for the Euclidean CVRP has a ratio of 2 + ε for
any ε > 0.2 Whether there is a polynomial-time (1 + ε)-approximation for the Euclidean
CVRP for any ε > 0 is a fundamental question and remains open regardless of numerous
efforts for several decades, e.g., [1, 6, 8, 24, 32, 33, 35, 42].

Given the difficult challenges in the Euclidean CVRP, researchers turned to an analysis
beyond worst case, by making some probabilistic assumptions on the distribution of the
input instance. In 1985, Haimovich and Rinnooy Kan [32] first studied this problem in
the random setting, where the terminals are n independent, identically distributed (i.i.d.)
uniform random points in [0, 1]2. An event E occurs asymptotically almost surely (a.a.s.)
if limn→∞ P[E ] = 1. It is a long-standing open question whether, in the random setting,
there is a polynomial-time (1 + ε)-approximation for the Euclidean CVRP a.a.s. for any
ε > 0. Haimovich and Rinnooy Kan [32] introduced the classical iterated tour partitioning
(ITP) algorithm, and they raised the question whether, in the random setting, ITP is a
(1 + ε)-approximation a.a.s. for any ε > 0. Bompadre, Dror, and Orlin [19] showed that, in
the random setting, the approximation ratio of ITP is at most 1.995 a.a.s. Recently, Mathieu
and Zhou [41] showed that, in the random setting, the approximation ratio of ITP is at most
1.915 a.a.s. and at least 1 + c0 a.a.s. for some constant c0 > 0.

In this paper, we design a new algorithm for the Euclidean CVRP (Algorithm 1). Our
algorithm is inspired by the classical sweep heuristic, one of the most popular heuristics in
practice; see Section 1.3. The main result of this paper is to show that, in the random setting,
the approximation ratio of Algorithm 1 is at most 1.55 a.a.s. (Theorem 1). Furthermore,
we conjecture that, in the random setting, Algorithm 1 is a (1 + ε)-approximation a.a.s. for
any ε > 0 (Conjecture 8). Note that our analysis can be slightly adapted to show that the
approximation ratio of ITP in the random setting is at most 1.55 a.a.s. (Remark 7).

1.1 Our Results
We present a new algorithm for the Euclidean CVRP. See Algorithm 1. For each terminal v,
let θ(v) ∈ [0, 2π) denote the polar angle of v with respect to O. First, we sort all terminals in
nondecreasing order of θ(v). Let M ≥ 1 be a constant integer parameter. Next, we decompose
the sorted sequence into subsequences, each consisting of Mk consecutive terminals, except
possibly for the last subsequence containing less terminals. Finally, for the terminals in each
subsequence, we compute a solution to the CVRP with a constant number of tours. The last
step is achieved near-optimally using the framework for the Euclidean TSP due to Arora [5]
and Mitchell [44]; see also Section 1.4.

Our main result shows that, in the random setting, Algorithm 1 has an approximation
ratio at most 1.55 a.a.s., see Theorem 1. This improves on previous ratios of 1.995 due to
Bompadre, Dror, and Orlin [19] and 1.915 due to Mathieu and Zhou [41].

▶ Theorem 1. Consider the unit-demand Euclidean CVRP with a set V of n terminals that
are i.i.d. uniform random points in [0, 1]2, a fixed depot O ∈ R2, and a capacity k that takes
an arbitrary value in {1, 2, . . . , n}. For any constant integer M ≥ 105, Algorithm 1 with
parameter M is a polynomial-time approximation of ratio at most 1.55 asymptotically almost
surely.

2 The (2 + ε)-approximation algorithm is obtained by first computing a traveling salesman tour using
the approximation scheme of Arora [5] and Mitchell [44], and then apply the iterated tour partitioning
algorithm [32] on that traveling salesman tour.
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Algorithm 1 Algorithm for the CVRP in R2. Constant integer parameter M ≥ 1.

Input: set V of n terminals in R2, depot O ∈ R2, capacity k ∈ {1, 2, . . . , n}
Output: set of tours covering all terminals in V

1 Sort the terminals in V into u1, u2, . . . , un such that θ(u1) ≤ θ(u2) ≤ · · · ≤ θ(un)
2 for i← 1 to

⌈
n

Mk

⌉
do

3 Vi ← {uj : (i− 1) ·Mk < j ≤ i ·Mk}
4 Compute a

(
1 + 1

M

)
-approximate solution Si to subproblem (Vi, O, k) ▷ Lemma 9

5 return union of all Si

▶ Remark 2. The running time of Algorithm 1 is exponential in the parameter M due to
the computation of a

(
1 + 1

M

)
-approximate solution using the framework of Arora [5] and

Mitchell [44]. We let M ≥ 105 in Theorem 1 in order to achieve the claimed ratio of 1.55.
Note that there is a tradeoff between the value of M and the approximation ratio, according
to (10). Thus we may decrease the value of M at the cost of increasing the approximation
ratio. In practice, it is also possible to replace the framework of Arora [5] and Mitchell [44]
by some heuristic in order to make Algorithm 1 faster.

1.2 Overview of Techniques
A main contribution in our analysis is the novel concepts of R-radial cost and R-local cost.
These are generalizations of the classical radial cost and local cost introduced by Haimovich
and Rinnooy Kan [32].

▶ Definition 3 (R-radial cost). For any R ∈ R+ ∪ {0,∞}, define the R-radial cost radR by

radR := 2
k

∑
v∈V

min {d(O, v), R} .

▶ Definition 4 (R-local cost). For any R ∈ R+ ∪ {0,∞}, define the R-local cost T ∗
R as the

minimum cost of a traveling salesman tour on the set of points {v ∈ V : d(O, v) ≥ R}.

Using the R-radial cost and the R-local cost, we establish a new lower bound (Theorem 5)
on the cost of an optimal solution. This lower bound is a main novelty of the paper. It
unites both classical lower bounds from [32]: when R = 0, it leads asymptotically to one
classical lower bound, which is the local cost; and when R =∞, it leads asymptotically to
the other classical lower bound, which is the radial cost. The proof of Theorem 5 is simple
and combinatorial; see Section 2.

▶ Theorem 5. Consider the unit-demand Euclidean CVRP with any set V of n terminals
in R2, any depot O ∈ R2, and any capacity k ∈ N+. Let opt denote the cost of an optimal
solution. For any R ∈ R+ ∪ {0,∞}, we have

opt ≥ T ∗
R + radR −

3πD

2 ,

where D denotes the diameter of V ∪ {O}.

Next, we establish an upper bound (Theorem 6) on the cost of the solution in Algorithm 1
using the 0-local cost and the ∞-radial cost. To prove Theorem 6, we decompose the plane
into regions according to Algorithm 1 and apply a result of Karp [34] to each region; see
Section 3.

ESA 2024
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▶ Theorem 6. Consider the unit-demand Euclidean CVRP with any set V of n terminals
in R2, any depot O ∈ R2, and any capacity k ∈ N+. For any positive integer M , let sol(M)
denote the cost of the solution returned by Algorithm 1 with parameter M . Then we have

sol(M) ≤
(

1 + 1
M

)(
T ∗

0 + rad∞ + 3πD

2

⌈ n

Mk

⌉)
,

where D denotes the diameter of V ∪ {O}.

Note that both Theorem 5 and Theorem 6 hold for any set of terminals, not only in the
random setting, and thus can be of independent interest.

In the rest of this section, we focus on the random setting.
To prove Theorem 1, we let R in Theorem 5 be some well-chosen value so as to minimize

the ratio between the upper bound (Theorem 6) and the lower bound (Theorem 5). The
proof of Theorem 1 is technical; see Section 4.
▶ Remark 7. In the random setting, the term containing D in the bound in Theorem 5 (resp.
Theorem 6) is negligible. The upper bound in Theorem 6 is then asymptotically identical to
the upper bound for the ITP algorithm established in [2]. As an immediate consequence,
one can prove that the approximation ratio of ITP in the random setting is at most 1.55
a.a.s. using a similar analysis as the proof of Theorem 1.

Note that the upper bound for ITP established in [2] is tight [41, Lemma 7], and the
tightness is exploited to show that ITP is at best a (1 + c0)-approximation for some constant
c0 > 0 [41]. However, the upper bound for Algorithm 1 established in Theorem 6 is possibly
not tight. We conjecture that Algorithm 1 is a (1 + ε)-approximation a.a.s. for any ε > 0.

▶ Conjecture 8. Consider the unit-demand Euclidean CVRP with V , O, and k defined in
Theorem 1. For any ε > 0, there exists a positive constant integer M depending on ε, such
that Algorithm 1 with parameter M is a polynomial-time (1+ε)-approximation asymptotically
almost surely.

1.3 Related Work
1.3.1 Sweep Heuristic
The classical sweep heuristic is well-known and commercially available for vehicle routing
problems in the plane. At the beginning, all terminals are sorted according to their polar
angles with respect to the depot. For each k consecutive terminals in the sorted sequence,
a tour is obtained by computing a traveling salesman tour (exactly or approximately) on
those terminals. Some implementations include a post-optimization phase in which vertices
in adjacent tours may be exchanged to reduce the overall cost. The first mentions of this
type of method are found in a book by Wren [55] and in a paper by Wren and Holliday [56],
while the sweep heuristic is commonly attributed to Gillett and Miller [29] who popularized
it. See also surveys [21, 37, 38] and the book [52].

Our main contribution is the analysis of a new algorithm (Algorithm 1) inspired by the
sweep heuristic. In Algorithm 1, instead of forming groups each of k consecutive terminals,
we form groups each of Mk consecutive terminals, for some positive constant integer M .
Then for each group, we compute a solution consisting of a constant number of tours using
the framework of Arora [5] and Mitchell [44]. We show that Algorithm 1 improves upon the
previous best approximation ratio for the Euclidean CVRP in the random setting.

Thanks to the simplicity of Algorithm 1, it could be adapted to other vehicle routing
problems, e.g., distance-constrained vehicle routing [25, 27, 40, 46].
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1.3.2 Euclidean TSP

The first polynomial-time approximation scheme (PTAS) for the Euclidean TSP is due
to Arora [5] and Mitchell [44]. That approximation scheme is among the most classical
algorithms in textbooks, e.g., [16, 53, 54]. The running time of the approximation scheme
was improved to O(n log n) by Rao and Smith [49] and further to O(n) by Bartal and
Gottlieb [9], for any fixed ε > 0. Recently, Kisfaludi-Bak, Nederlof, and Węgrzycki [36]
achieved the optimal dependence on ε in the running time of the approximation scheme
under the Gap-Exponential Time Hypothesis (Gap-ETH).

1.3.3 Euclidean CVRP

Despite the difficulty of the Euclidean CVRP, there has been progress on several special
cases in the deterministic setting. A series of papers designed PTAS’s for small k: Haimovich
and Rinnooy Kan [32] gave a PTAS when k is constant; Asano et al. [8] extended the
techniques in [32] to achieve a PTAS for k = O(log n/ log log n); and Adamaszek, Czumaj,
and Lingas [1] designed a PTAS for k ≤ 2logf(ε)(n). For higher dimensional Euclidean metrics,
Khachay and Dubinin [35] gave a PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)). For

arbitrary k and the two-dimensional plane, Das and Mathieu [24] designed a quasi-polynomial
time approximation scheme, whose running time was recently improved to nO(log6(n)/ε5) by
Jayaprakash and Salavatipour [33].

1.3.4 Probabilistic Analyses

The random setting in which the terminals are i.i.d. uniform random points is perhaps the
most natural probabilistic setting. The Euclidean CVRP in the random setting has been
studied in several special cases. In one special case when the capacity is infinite, Karp [34]
gave a polynomial-time (1 + ε)-approximation a.a.s. for any ε > 0. In another special case
when k is fixed, Rhee [50] and Daganzo [23] analyzed the value of an optimal solution.

1.3.5 CVRP in Other Metrics

On general metrics, the CVRP has been extensively studied [2, 17, 18, 32, 39]. The best-to-
date approximation ratio on general metrics is 1+α−ε due to Blauth, Traub, and Vygen [17],
where α is the approximation ratio of a TSP algorithm and ε > 0 is a constant depending on
α. For planar graphs, when the tour capacity is bounded, Becker, Klein, and Saulpic [12]
gave a QPTAS, which was improved to a PTAS by Becker, Klein and Schild [14]. The
CVRP has also been studied on trees and bounded treewidth [7, 11, 15, 33, 42], bounded-
genus graphs [12, 20], graphic metrics [45], graphs of bounded highway dimension [13], and
minor-free graphs [20].

1.3.6 CVRP with Arbitrary Demands

A natural way to generalize the unit demand version of the CVRP is to allow terminals to
have arbitrary unsplittable demands, which is called the unsplittable version of the CVRP.
On general metrics, the approximation of this problem was first studied by Altinkemer
and Gavish [3]. Recently, the approximation ratio was improved by Blauth, Traub, and
Vygen [17], and further by Friggstad, Mousavi, Rahgoshay, and Salavatipour [26]. This
problem has also been studied in the Euclidean plane [31] and on trees [43].

ESA 2024
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1.4 Notations and Preliminaries
For any two points u and v in R2, let d(u, v) denote the distance between u and v in R2.
For any curve s in R2, let ∥s∥ denote the length of s; and for any set S of curves in R2, let
∥S∥ :=

∑
s∈S ∥s∥. For any set U of points in R2, the convex hull of U is the minimal convex

set in R2 containing U .
Asano et al. [8] observed that the PTAS of Arora [5] and Mitchell [44] for the Euclidean

TSP implies a PTAS for the Euclidean CVRP when the capacity k is at least a constant
fraction of the number of terminals, see [8, Section 6]. Lemma 9 is a reformulation of [8] by
setting M = 1/ε.

▶ Lemma 9 ([8]). Let M ≥ 1 be an integer constant. There exists a polynomial-time(
1 + 1

M

)
-approximation algorithm for the unit-demand Euclidean capacitated vehicle routing

problem with any finite set U of terminals in R2, any depot O ∈ R2, and any capacity k such
that k = Ω(|U |).

2 Proof of Theorem 5

Let OPT denote an optimal solution to the CVRP. Let C denote the circle centered at O

and with radius R. Let t ∈ N be such that the union of the tours in OPT intersects C at
2t points. Let y1, y2, . . . , y2t be those intersection points in clockwise order. For notational
convenience, we let y2t+1 := y1. Let C1, C2, . . . , Ct be t continuous curves that correspond
to the intersection between OPT and the closure of the exterior of C. See Figure 1.

C3 C2

C1

C

y6

y1

y2

y3

y4y5

O

R

Figure 1 The circle C is dashed. In this example, OPT consists of two tours, in red and in blue,
respectively. The two tours intersect the circle C at y1, . . . , y6. The segments {yiyi+1}1≤i≤6 are in
yellow. C1, C2, and C3 are the thick curves.

▶ Lemma 10. We have
t∑

i=1
∥Ci∥ ≥ T ∗

R −
3πD

2 .

Proof. Let Z denote the set of segments yiyi+1 for all 1 ≤ i ≤ 2t. Let Zodd (resp. Zeven)
denote the set of segments yiyi+1 for all 1 ≤ i ≤ 2t such that i is odd (resp. even). Let Z∗

be one of Zodd and Zeven that has a smaller total length, breaking ties arbitrarily. Let W

denote the union of the curves C1, C2, . . . , Ct, the segments in Z, and the segments in Z∗.
Then W is a connected graph with no odd degree vertices. So W has an Eulerian path. Since
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C

O

R

(a) Case 1: when Us is empty.

O

R

C

C3

C1

(b) Case 2: when Us is nonempty. In this
example, Us = {1, 3}.

Figure 2 The tour s is in red; the dots represent the points in Vs.

W visits all vertices v ∈ V such that d(O, v) ≥ R, the total length of W is at least T ∗
R by

Definition 4. Hence

∥Z∥+ ∥Z∗∥+
t∑

i=1
∥Ci∥ ≥ T ∗

R.

Because the distance between any two points yi and yj (1 ≤ i < j ≤ 2t) is at most D,
the perimeter of the convex hull of {yi : 1 ≤ i ≤ 2t} is at most πD by [51, Section 2]. Thus
∥Z∥ ≤ πD. Since ∥Z∗∥ ≤ 1

2 ∥Z∥, we have

∥Z∥+ ∥Z∗∥ ≤ 3 ∥Z∥
2 ≤ 3πD

2 .

The claim follows. ◀

The next lemma (Lemma 11) is the key to the proof of Theorem 5.

▶ Lemma 11. Let s be any tour in OPT. Let Vs ⊆ V denote the set of points in V that are
visited by s. Let Us ⊆ {1, 2, . . . , t} denote the set of indices i such that Ci is part of s. We
have

∥s∥ ≥
∑
i∈Us

∥Ci∥+ 2
k

∑
v∈Vs

min {d(O, v), R} . (1)

Proof. We consider the following two cases.
Case 1: when Us is empty (see Figure 2a). Then we have

∥s∥ ≥ 2 max
v∈Vs

d(O, v) ≥ 2
|Vs|

∑
v∈Vs

d(O, v) ≥ 2
|Vs|

∑
v∈Vs

min {d(O, v), R} .

The claim follows since |Vs| ≤ k.
Case 2: when Us is nonempty (see Figure 2b). Then the tour s must first travel through a
path to a point on C, paying at least R, then visit all curves Ci for i ∈ Us, and finally, travel
from a point on C back to the depot, paying at least R. Thus we have

∥s∥ ≥ 2R +
∑
i∈Us

∥Ci∥ .

ESA 2024
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Observe that

2R = 2
|Vs|

∑
v∈Vs

R ≥ 2
|Vs|

∑
v∈Vs

min {d(O, v), R} .

The claim follows since |Vs| ≤ k. ◀

Summing (1) over all tours s ∈ OPT, we have

opt =
∑

s∈OPT
∥s∥

≥
∑

s∈OPT

∑
i∈Us

∥Ci∥+ 2
k

∑
s∈OPT

∑
v∈Vs

min {d(O, v), R}

=
t∑

i=1
∥Ci∥+ 2

k

∑
v∈V

min {d(O, v), R}

≥T ∗
R −

3πD

2 + radR,

where the last inequality follows from Lemma 10 and the definition of R-radial cost (Defini-
tion 3).

Therefore, the claim in Theorem 5 follows.

3 Proof of Theorem 6

Let i be any integer with 1 ≤ i ≤
⌈

n
Mk

⌉
. Let the point set Vi and the solution Si be defined

in Algorithm 1. Let S∗
i denote an optimal solution to the subproblem (Vi, O, k). Since Si

is a
(
1 + 1

M

)
-approximate solution, we have ∥Si∥ ≤

(
1 + 1

M

)
· ∥S∗

i ∥. Let TSPi denote the
minimum cost of a traveling salesman tour on the set of points Vi ∪ {O}. By [2, Lemma 2],
we have

∥S∗
i ∥ ≤ TSPi + 2

k

∑
v∈Vi

d(O, v).

Thus

∥Si∥ ≤
(

1 + 1
M

)(
TSPi + 2

k

∑
v∈Vi

d(O, v)
)

. (2)

Let t∗ be an optimal traveling salesman tour on the set of points V . If the polar angles
of points in Vi have a span of at most π, let Yi be the interior of the convex hull of Vi ∪ {O};
otherwise, let Yi be the exterior of the convex hull of (V \ Vi)∪ {O}. By a result of Karp [34,
Theorem 3], we have3

TSPi − ∥t∗ ∩ Yi∥ ≤
3
2 per(Yi),

where per(Yi) denotes the perimeter of Yi. Since either Yi or the complement of Yi is convex
with diameter at most D, the perimeter of Yi is at most πD by [51, Section 2]. Thus

TSPi ≤ ∥t∗ ∩ Yi∥+ 3πD

2 . (3)

In order to bound
∑

i ∥t∗ ∩ Yi∥, we need the following lemma.

3 Note that the setting in [34] is a rectangle. However, the proof of Theorem 3 in [34], which is based on
duplicating the boundary, holds in the more general setting of a polygon or the exterior of a polygon.
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▶ Lemma 12. For any i and j with 1 ≤ i < j ≤
⌈

n
Mk

⌉
, Yi and Yj do not intersect.

Proof. For each v ∈ V , let θ(v) ∈ [0, 2π) denote the polar angle of v respect to O. By the
definition of Vi and Vj , we have

0 ≤ min
v∈Vi

θ(v) ≤ max
v∈Vi

θ(v) ≤ min
v∈Vj

θ(v) ≤ max
v∈Vj

θ(v) < 2π.

Hence

max
v∈Vi

θ(v)− min
v∈Vi

θ(v) ≤ π (4)

or

max
v∈Vj

θ(v)− min
v∈Vj

θ(v) ≤ π. (5)

If (4) holds and (5) does not hold, then by definition, Yi is the interior of the convex hull
of Vi ∪ {O}, which is contained in the interior of the convex hull of (V \ Vj) ∪ {O}. Thus Yi

and Yj do not intersect. If (5) holds and (4) does not hold, the argument is similar.
It remains to consider the case when both (4) and (5) hold. Let Zi be the set

Zi :=
{

x ∈ R2 : min
v∈Vi

θ(v) < θ(x) < max
v∈Vi

θ(v)
}

,

and Zj be the set

Zj :=
{

x ∈ R2 : min
v∈Vj

θ(v) < θ(x) < max
v∈Vj

θ(v)
}

.

By (4) and (5), Zi and Zj are convex sets. By the definition of Yi and Yj , we have Yi ⊂ Zi

and Yj ⊂ Zj . Since Zi and Zj do not intersect, Yi and Yj do not intersect. ◀

Therefore, we have

sol(M) =
⌈ n

Mk⌉∑
i=1
∥Si∥

≤
(

1 + 1
M

)⌈ n
Mk⌉∑
i=1

TSPi + 2
k

∑
v∈V

d(O, v)


≤
(

1 + 1
M

)⌈ n
Mk⌉∑
i=1
∥t∗ ∩ Yi∥+ 3πD

2

⌈ n

Mk

⌉
+ rad∞

 ,

where the first inequality follows from (2) and the fact that
⋃

i Vi = V , and the last inequality
follows from (3) and the definition of ∞-radial cost (Definition 3). Using Lemma 12 and the
definition of 0-local cost (Definition 4), we have

⌈ n
Mk⌉∑
i=1
∥t∗ ∩ Yi∥ ≤ ∥t∗∥ = T ∗

0 .

The claim in Theorem 6 follows.

ESA 2024
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4 Proof of Theorem 1

In this section, we prove a strong law for the approximation ratio of Algorithm 1, as presented
in Theorem 13. Since almost sure convergence implies convergence in probability, Theorem 13
implies Theorem 1.

▶ Theorem 13. Let v1, v2, . . . be an infinite sequence of i.i.d. uniform random points in
[0, 1]2. Let O be a point in R2. Let k1, k2, . . . be an infinite sequence of positive integers.
Let M ≥ 105 be a positive integer. For each positive integer n, consider the unit-demand
Euclidean CVRP with the set of terminals V = {v1, . . . , vn}, the depot O, and the capacity
kn. Let opt denote the cost of an optimal solution, and sol(M) denote the cost of the solution
returned by Algorithm 1 with parameter M . Then we have

lim sup
n→∞

sol(M)
opt < 1.55

almost surely.

In the rest of this section, we prove Theorem 13.
Let R = 3

4 E (d(O, v)) , where v is a uniform random point in [0, 1]2. Let D denote the
diameter of [0, 1]2 ∪ {O}. Let T ∗

0 and T ∗
R denote the 0-local and R-local costs respectively.

Let rad∞ and radR denote the ∞-radial and R-radial costs respectively. By Theorem 5 and
Theorem 6, we have

lim sup
n→∞

sol(M)
opt

≤ lim sup
n→∞

(
1 + 1

M

) (
T ∗

0 + rad∞ + 3πD
2

(
n

Mkn
+ 1
))

T ∗
R + radR − 3πD

2

≤ lim sup
n→∞

max


(
1 + 1

M

) (
T ∗

0 + 3πD
2
)

T ∗
R −

3πD
2

,

(
1 + 1

M

) (
rad∞ + 3πDn

2Mkn

)
radR


=
(

1 + 1
M

)
max

{
lim sup

n→∞

T ∗
0 + 3πD

2
T ∗

R −
3πD

2
, lim sup

n→∞

rad∞ + 3πDn
2Mkn

radR

}
(6)

almost surely.
The upper bounds on both of the limit superiors in (6) are established in Lemma 14 and

Lemma 15, respectively.

▶ Lemma 14. We have

lim sup
n→∞

T ∗
0 + 3πD

2
T ∗

R −
3πD

2
≤ 48

31

almost surely.

▶ Lemma 15. We have

lim sup
n→∞

rad∞ + 3πDn
2Mkn

radR
≤ 48

31

(
1 + 15π

4M

)
almost surely.

The proof of Lemma 14 is given in Section 4.1. The proof of Lemma 15 is given in
Section 4.2. Finally, in Section 4.3, we prove Theorem 13 using Lemma 14 and Lemma 15.



Z. Nie and H. Zhou 91:11

4.1 Proof of Lemma 14
Let λR denote the measure of the set

{
x ∈ [0, 1]2 : d(O, x) > R

}
. Let SR(n) denote the size

of the set {1 ≤ i ≤ n : d(O, vi) > R}. By the strong law of large numbers, we have

lim
n→∞

SR(n)
n

= λR (7)

almost surely.

▶ Lemma 16. We have λR ≥ 31
48 .

The proof of Lemma 16 is available in the full version [47] of the paper.
By Lemma 16, SR(n)→∞ as n→∞. By applying the main result of [10] to the infinite

sequence v1, v2, . . . and its intersection with the set
{

x ∈ [0, 1]2 : d(O, x) > R
}

, we have

lim
n→∞

T ∗
0√
n

= lim
n→∞

T ∗
R√

λRSR(n)
> 0 (8)

almost surely. Thus

lim
n→∞

T ∗
0 + 3πD

2
T ∗

R −
3πD

2

= lim
n→∞

T ∗
0√
n

+ 3πD
2

√
n

λR

√
SR(n)
λR n

T ∗
R√

λRSR(n)
− 3πD

2
√

n

=
limn→∞

T ∗
0√
n

+ limn→∞
3πD
2

√
n

λR limn→∞

√
SR(n)
λR n limn→∞

T ∗
R√

λRSR(n)
− limn→∞

3πD
2

√
n

= 1
λR

almost surely, where the last equality follows from Equation (7) and Equation (8). Since
λR ≥ 31

48 (Lemma 16), the claim in Lemma 14 follows.

4.2 Proof of Lemma 15
By the strong law of large numbers, we have

lim
n→∞

kn rad∞

2n
= E (d(O, v))

and

lim
n→∞

kn radR

2n
= E (min {d(O, v), R})

almost surely. Thus

lim
n→∞

rad∞ + 3πDn
2Mkn

radR

= lim
n→∞

kn rad∞
2n + 3πD

4M
kn radR

2n

=
E (d(O, v)) + 3πD

4M

E (min {d(O, v), R})

almost surely.
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▶ Lemma 17. For R = 3
4 E (d(O, v)), we have

E (min {d(O, v), R}) ≥ 31
48 E (d(O, v)) .

The proof of Lemma 17 is available in the full version [47] of the paper.
From Lemma 17, we obtain

lim
n→∞

rad∞ + 3πDn
2Mkn

radR
≤

48
(
E (d(O, v)) + 3πD

4M

)
31 E (d(O, v)) (9)

almost surely.

▶ Lemma 18. We have

D ≤ 5 E (d(O, v)) .

Proof. Let Oc =
( 1

2 , 1
2
)
∈ R2 denote the center of the square [0, 1]2. Let v denote the

reflection of v across the point Oc. Then we have

d(O, v) + d(O, v)
2 ≥ d(v, v)

2 = d(Oc, v).

Because v and v have the same distribution, we have

E (d(O, v)) ≥ E (d(Oc, v)) .

We use a closed-form formula of E (d(Oc, v)) established in the full version [47] of the paper
to obtain

E (d(Oc, v)) =
√

2 + log
(
1 +
√

2
)

6 ≥
√

2
4 .

Therefore, by the definition of D, we have

D ≤
√

2 + E (d(O, v)) ≤ 4 E (d(Oc, v)) + E (d(O, v)) ≤ 5 E (d(O, v)) . ◀

Lemma 15 follows from Equation (9) and Lemma 18.

4.3 Proof of Theorem 13
From (6), we have, almost surely,

lim sup
n→∞

sol(M)
opt

≤
(

1 + 1
M

)
max

{
lim sup

n→∞

T ∗
0 + 3πD

2
T ∗

R −
3πD

2
, lim sup

n→∞

rad∞ + 3πDn
2Mkn

radR

}

≤ 48
31

(
1 + 1

M

)(
1 + 15π

4M

)
(10)

< 1.55,

where the second inequality follows from Lemma 14 and Lemma 15, and the last inequality
follows from the assumption M ≥ 105.

This completes the proof of Theorem 13.
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