
Parameterized Algorithms for Node Connectivity
Augmentation Problems
Zeev Nutov #

The Open University of Israel, Ra’anana, Israel

Abstract
A graph G is k-out-connected from its node s if it contains k internally disjoint sv-paths to every
node v; G is k-connected if it is k-out-connected from every node. In connectivity augmentation
problems, the goal is to augment a graph G0 = (V, E0) by a minimum costs edge set J such that
G0 ∪ J has higher connectivity than G0. In the k-Out-Connectivity Augmentation (k-OCA)
problem, G0 is (k − 1)-out-connected from s and G0 ∪ J should be k-out-connected from s; in the
k-Connectivity Augmentation (k-CA) problem G0 is (k − 1)-connected and G0 ∪ J should be
k-connected. The parameterized complexity status of these problems was open even for k = 3
and unit costs. We will show that k-OCA and 3-CA can be solved in time 9p · nO(1), where p

is the size of an optimal solution. Our paper is the first that shows fixed-parameter tractability
of a k-node-connectivity augmentation problem with high values of k. We will also consider the
(2, k)-Connectivity Augmentation ((2, k)-CA) problem where G0 is (k − 1)-edge-connected and
G0 ∪ J should be both k-edge-connected and 2-connected. We will show that this problem can be
solved in time 9p · nO(1), and for unit costs approximated within 1.892.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases node connectivity augmentation, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.92

1 Introduction

In network design problems, the goal is to find a minimum cost subgraph that satisfies given
connectivity requirement. Most of these problems are NP-hard, hence parameterized and
approximation algorithms are of interest. A natural question then is whether the problem
is fixed-parameter tractable w.r.t a parameter p, namely, if it can be solved in time
f(p) · NO(1), where N is the input size. A related question is what approximation ratio
can be achieved within this time bound. One of the most studied problems is the Steiner
Tree problem, where we seek a minimum cost subtree that spans a given set of terminals.
Already in the 70’s, Dreyfus and Wagner [14] showed that this problem can be solved in
time 3q · nO(1), where q is the number of terminals and n = |V | is the number of nodes in
the graph; for improvements over this running time see [21]. The Dreyfus-Wagner algorithm
extends to the Directed Steiner Tree problem, in which the goal is to find a minimum
cost directed tree that contains a path from a root node s to every terminal.

Graphs in this paper are assumed to be undirected and may have parallel edges, unless
stated otherwise. While there was a large progress in the study of parameterized complexity
of edge-connectivity problems [22, 29, 5, 1, 16], many papers mention that very little is known
about their much harder node-connectivity counterparts. We will consider the “simplest”
type of node-connectivity problems, that however have a rich history, when the goal is to
increase the node connectivity from k − 1 to k from a given node to other nodes, or between
all nodes. A graph G = (V,E) is k-out-connected from s if it contains k internally disjoint
sv-paths for every v ∈ V \ {s}, and G is k-connected if it is k-out-connected from every
node and |V | ≥ k + 1. In the k-Out-Connected Subgraph problem the goal is to find a
minimum cost spanning subgraph that is k-outconnected from s, while in the k-Connected
Subgraph problem the spanning subgraph should be k-connected. These two problems are

© Zeev Nutov;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 92; pp. 92:1–92:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nutov@openu.ac.il
https://orcid.org/0000-0002-6629-3243
https://doi.org/10.4230/LIPIcs.ESA.2024.92
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

92:2 Parameterized Algorithms for Node Connectivity Augmentation Problems

trivially fixed-parameter tractable w.r.t. an optimal solution size, since any feasible solution
has at least kn/2 edges. Therefore, it is reasonable to choose as a parameter the number
of non-zero cost edges in an optimal solution, a number that may be between 1 and Θ(kn).
This leads to the augmentation versions of these problems, where the goal is to augment
a graph G0 = (V,E0) (of cost zero) by a minimum costs edge set J such that G0 ∪ J has
larger connectivity than G0. In this work, we will consider the problem of increasing the
connectivity only by 1. Formally, these augmentation problems are as follows.

k-Out-Connectivity Augmentation (k-OCA)
Input: A (k − 1)-out-connected from s graph G0 = (V,E0) and an edge set E with costs
{ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that G0 ∪ J is k-out-connected from s.

k-Connectivity Augmentation (k-CA)
Input: A (k− 1)-connected graph G0 = (V,E0) and an edge set E with costs {ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that G0 ∪ J is k-connected.

These are the optimization versions of k-OCA and k-CA. In the decision versions, we
are also given a parameter p, and ask whether there exists a feasible solution J ⊆ E of size
|J | ≤ p and cost c(J) ≤ opt, where opt is the optimal solution cost.

Let us briefly review the parameterized and approximation status of these problems. The
directed version of k-Out-Connected Subgraph admits a polynomial time algorithm
[20], and this implies approximation ratio 2 for the undirected version. On the other hand,
the approximability status of k-Connected Subgraph is somewhat complicated; the
problem admits ratio ⌈ k+1

2 ⌉ for 2 ≤ k ≤ 7 [26, 3, 12, 27], 4 + ϵ for any constant k and ϵ > 0
[40, 9]1, and O

(
log k log n

n−k

)
for any k [34]. The augmentation version k-CA admits better

approximation ratios for k ≥ 8: ratio 4 for n ≥ 3k − 5 and O
(

log n
n−k

)
for any k [35, 34].

When (V,E) is a complete graph with unit costs (so any edge can be added by a cost of 1),
the problem of augmenting an arbitrary graph G0 to be k-connected can be solved in time
f(k) · nO(1) [24], and for a (k − 1)-connected G0 admits a polynomial time algorithm [43];
however, no such results are known for k-OCA, see [32]. See also a survey in [36].

Let k-Edge-Connectivity Augmentation be the edge-connectivity version of k-CA;
note that it is equivalent to the edge connectivity version of k-OCA. By the cactus model of
Dinitz, Karzanov, and Lomonosov [11], for k-Edge-Connectivity Augmentation, the
case of k−1 odd and even is equivalent to the case k−1 = 1 (so called Tree Augmentation
problem) and k − 1 = 2 (so called Cactus Augmentation problem), respectively. For
approximation algorithms for these two problems see recent papers [8, 41, 42].

We will consider one of the most common choices of the parameter p – an optimal solution
size. Nagamochi [30] showed that the problem of augmenting a tree by a min-size edge set
can be solved in time 2O(p log p) · nO(1). Guo and Uhlmann [22] considered both edge an
node connectivity versions of 2-CA with unit costs, and showed that they have a kernel of
size O(p2). Marx and Végh [29] showed that k-Edge-Connectivity Augmentation with
arbitrary costs can be solved in time 2O(p log p) · nO(1), and that the problem of increasing
the edge connectivity from 0 to 2 can also be solved within this time bound. Basavaraju et

1 More precisely, the approximation ratio in [40] is 2
(
2 + 1

ℓ

)
, where ℓ ≈ 1

2 (logk n − 1) is the largest
integer such that 2ℓ−1kℓ+1 ≤ n.

Z. Nutov 92:3

al. [5] used a novel reduction to the Node Weighted Steiner Tree problem to improve
the running time for k-Edge-Connectivity Augmentation to 9p · nO(1) (see also [39]
for a very simple algorithm for Tree Augmentation with running time 16p · nO(1)). The
reduction of Basavaraju et al. [5] was generalized in [38] to the problem of covering a crossing
set family by edges (see definitions below), and also was extended to 2-CA; specifically, the
result of [38] implies that 2-CA and 2-OCA can also be solved in time 9p · nO(1). However,
the parameterized complexity status of both 3-OCA and 3-CA was open even for unit costs
[29, 23].

We will show that the reductions of [5, 38] can be extended to k-node-connectivity
augmentation problems with high values of k. But our reduction is not to the Node
Weighted Steiner Tree problem, but to the Node Weighted Group Steiner Tree
problem. The later can be reduced to the Directed Steiner Tree problem, that can be
solved in time 3q · nO(1), where q is the number of terminals. Formally, we will prove the
following.

▶ Theorem 1. k-OCA can be solved in time 9p · nO(1).

Algorithms for k-OCA are sometimes used as subroutines in algorithms for k-CA. Auletta
et al. [3] showed that 3-CA can be reduced in polynomial time to 3-OCA. Specifically, this
reduction relies on two facts: (i) Any minimally k-connected graph has a node s of degree k,
c.f. [28]; (ii) If a graph is 3-out-connected from a node s that has exactly 3 neighbors then
the graph is 3-connected, c.f. [3]. Thus 3-CA is reduced to 3-OCA by “guessing” such s

and its 3 neighbors in some minimal 3-CA optimal solution. For k = 4, 5, [13] shows that if
k-OCA admits approximation ratio ρ then k-CA admits ratio ρ+ 1. Thus from Theorem 1
we get the following.

▶ Corollary 2. In time 9p · nO(1), 3-CA can be solved optimally, and 4-CA and 5-CA can
be 2-approximated.

Corollary 2 resolves the open question of parameterized complexity of 3-CA [29, 23], by
establishing that 3-CA is fixed-parameter tractable.

To prove Theorem 1, we will consider a more general problem of covering a biset family
by edges. A biset is an ordered pair A = (A,A+) such that A ⊆ A+; ∂A = A+ \ A is
the boundary of A, A∗ = V \ A+ is the co-set of A, and A∗ = (V \ A+, V \ A) is the
co-biset of A. A biset A is proper if A ̸= ∅ and A∗ ̸= ∅. The intersection and the union of
bisets A,B are defined by A ∩ B = (A ∩B,A+ ∩B+) and A ∪ B = (A ∪B,A+ ∪B+). Two
bisets A,B intersect if A ∩ B ̸= ∅, and cross if also A+ ∪ B+ ̸= V . A biset family F is
intersecting/crossing if A ∩ B,A ∪ B ∈ F whenever A,B ∈ F intersect/cross. An edge e

covers A if e goes from A to A∗, and an edge set J covers F if every A ∈ F is covered by
some edge in J . We will identify a set A with the biset (A,A), so when A = A+ for every
A ∈ F we have an ordinary set family, and we use for set families a similar terminology.

Let G0 = (V,E0) be (k− 1)-out-connected from s. Let us say that a proper biset A on V
is tight if A ̸= ∅, s ∈ A∗ and |∂A| + dG0(A) = k − 1, where dG0(A) is the number of edges
in G0 that cover A. For the family T of tight bisets the following is known, see [19]:

G0 ∪ J is k-connected iff J covers T (by Menger’s Theorem).
T is an intersecting biset family.

Thus the following problem includes k-OCA.

Intersecting Biset Family Cover
Input: A graph G = (V,E) with costs {ce : e ∈ E}, an intersecting biset family F on V .
Output: A minimum cost edge set J ⊆ E that covers F .

ESA 2024

92:4 Parameterized Algorithms for Node Connectivity Augmentation Problems

In this problem, F may not be given explicitly (|F| may be exponential in |V |); instead, we
require that some queries on F can be answered in polynomial time. We will assume that for
any edge set I we can find in time polynomial in n = |V | the family FI

min and FI
max of all

inclusion minimal and maximal bisets, respectively, among the bisets in F not covered by I.
In Intersecting Biset Family Cover instances that arise from the k-OCA problem, this
can be done using n max-flow computations. Under this assumption we will prove:

▶ Theorem 3. Intersecting Biset Family Cover can be solved in time 9p · nO(1).

A node v is a cut-node of a graph G if G \ {v} is disconnected. In addition, we will
consider the following problem, that combines both edge and node connectivity augmentation:

(2, k)-Connectivity Augmentation ((2, k)-CA)
Input: A (k − 1)-edge-connected graph G0 = (V,E0) where k ≥ 2, Q ⊆ V , and an edge
set E on V with costs {ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that G0 ∪ J is k-edge-connected and has no
cut-node in Q.

We will show that (2, k)-CA (resp., with unit costs) can be reduced to the Node
Weighted Steiner Tree problem (resp., with unit weights) with the following properties:
(A) The neighbors of every terminal induce a clique.
(B) Every non-terminal has at most 2 terminal neighbors.
(C) There are no edges between the terminals.
Node Weighted Steiner Tree can be solved in time 3q · nO(1) by the Dreyfus-Wagner
algorithm [14]. Byrka et al. [7] showed that unit weight instances with properties (A,B,C)
admit approximation ratio 1.91, and Angelidakis et al. [2] improved the ratio to 1.892. Thus
we get the following.

▶ Theorem 4. (2, k)-CA can be solved in time 9p ·nO(1), and in the case of unit costs admits
approximation ratio 1.892.

In the Crossing Family Cover problem we are given a graph G0 = (V,E) with edge
costs and a symmetric crossing set family F on V , and seek a minimum cost edge set J ⊆ E

that covers F . Theorem 4 was known for the Crossing Family Cover problem [38]. We
will show that (2, k)-CA generalizes Crossing Family Cover, see Section 3.

Theorems 3 and 4 are proved in Sections 2 and 3, respectively.

In the rest of the Introduction we survey some additional related work. As was mentioned,
min-cost connectivity problems that have solution size Ω(n) are trivially fixed-parameter
tractable w.r.t. an optimal solution size; this is why our parameter choice is the number
of non-zero cost edges in an optimal solution. Several other papers studied the so called
“deletion set” parameter, i.e., the number of edges to be removed from the input graph in
order to obtain a minimum cost solution. For example, Bang-Jensen et al. [4] show that
the k-Edge Connected Subgraph problem is fixed-parameter tractable for the combined
parameter of k and the size of a deletion set. Gutin et al. [23] show a similar result for
k-Connected Subgraph with unit costs.

In the more general Survivable Network Design (SND) problem we are given a
graph with edge costs and pairwise connectivity requirements {ruv : uv ∈ D} over a set
D ⊆ V × V of demand pairs. The goal is to find a min-cost subgraph that contains ruv

internally disjoint paths for all uv ∈ D. In the edge-connectivity version EC-SND the paths
are only required to be edge disjoint. EC-SND admits a 2-approximation algorithm [25],

Z. Nutov 92:5

and can be solved in 2O(p log p) ·nO(1) time [16], where p is the solution size. The status of the
node-connectivity version SND with ruv ∈ {0, 1, 2} is similar, see [18] and [16], respectively.
On the other hand SND parameterized by the solution size is W[1]-hard even when |D| = 2.
SND admits approximation ratio O(k3 logn) for arbitrary requirements [10], O(k2) for rooted
requirements, and O(k log k) for rooted requirements in {0, k} [33], where k is the maximum
requirement. See also a survey in [37]. For the current status of SND problem on directed
graphs, see for example [15] and [37].

2 Covering intersecting biset families (Theorem 3)

We will reduce Intersecting Biset Family Cover to the following problem:

Subset Steiner Connected Dominating Set (SS-CDS)
Input: A graph H = (U, I), a set R ⊆ U of terminals, and node weights {wv : v ∈ U \R}.
Output: A min-weight node set J ⊆ U \R such that H[J] is connected and J dominates R.

As was observed in [6, 38], SS-CDS reduces to the Node Weighted Group Steiner
Tree problem: given a graph with node weights wv and a collection S of subsets (groups)
of the node set, find a min-weight subtree that contains a node from every group. Given a
SS-CDS instance (H,R,w) obtain an equivalent Node Weighted Group Steiner Tree
instance as follows: for every r ∈ R, introduce a group Sr that consists of the neighbors of r
in H, and then remove r. This problem reduces to the Directed Steiner Tree problem
with |R| = |S| terminals, that can be solved in time 3q · nO(1), where q = |R| = |S|.

In fact, we will consider the rooted version Rooted SS-CDS, when we are also given a
non-terminal root node s ∈ U \R and we must have s ∈ J . All algorithms that we use, as
well as hardness results, are applicable to Rooted SS-CDS. In the case when property (A)
holds, we get the rooted version of the Node Weighted Steiner Tree problem, and then
the algorithms of Dreyfus and Wagner [14] and of Angelidakis et al. [2] apply on (and were
in fact designed for) the rooted version.

Let F be an intersecting biset family and J an edge set on V . W.l.o.g. we may assume
that there is a root node s ∈ V \ (∪A∈FA

+). For A,B ∈ F we say that B contains A and
write A ⊆ B if A ⊆ B and A+ ⊆ B+. An F-core is an inclusion minimal biset in F . Let
C = CF denote the set of F-cores. For C ∈ C let F(C) = {A ∈ F : C ⊆ A} denote the set of
those members of F that contain C. Given an edge set J and a node set A we will write
J ⊆ A and say that A contains J meaning that the set of endnodes of J is contained in A.

Now we define a certain “separability relation” on J ∪ C ∪ {s} and a ”separability graph”
that represents this relation. This follows [38], where the problem of covering a symmetric
crossing set family F was considered. In [38], two edges x, y are “separated” by a set A if
one of x, y is contained in A and the other in V \A, but it is less clear how to extend this
definition to bisets. Consider for example the biset A and the 6 edges x, y, z, e, f, g in Fig. 1 .
It is reasonable to say that A separates each one of x, y from each one of e, f . But does A
separate x from z, or z from g? Our answer would be yes in both cases. For disjoint edge
sets X,Y , we will say that A separates X from Y if X ⊆ A+ and Y ⊆ V \A. So in Fig. 1,
A separates {x, y, z} from {e, f, g}, because {x, y, z} ⊆ A+ and {e, f, g} ⊆ V \A. Also note
that A does not separate an edge that covers A from any other edge. In the next definition
we will extend this notion of “separability” to sets that include both edges and cores.

ESA 2024

92:6 Parameterized Algorithms for Node Connectivity Augmentation Problems

*A

A

e

f

x

z

g

y

Figure 1 Illustration to the cases when a biset separates one edge set from the other.

(a) (c)(b)

φ

B

A

B

A

B

A

*B

*A

*B

*

g

A

*B

*A

X

Y
s

Z

X

Y Z
s

U

s

C
C

Figure 2 Illustration to the proof of Lemmas 6 and 7. Dark parts are non-empty, empty parts
are marked by ∅; other parts may or may not be empty.

▶ Definition 5. We say that a biset A separates X ⊆ C ∪ J from Y ⊆ J ∪ {s} if
X ∩ Y ∩ J = ∅, every F-core in X is contained in A, J ∩ X ⊆ A+, and J ∩ Y ⊆ V \ A.
X,Y are F-separable if such A ∈ F exists, and X,Y are F-inseparable otherwise.
The separability graph H = (U, I) of F , J has node set U = C ∪ J ∪ {s} and edge set
I = {xy : x ∈ C ∪ J, y ∈ J ∪ {s} are F-inseparable}.

Note that s and any C ∈ C are F-separable, and that C ∪ {s} is an independent set in
the separability graph H. We need the following technical lemma.

▶ Lemma 6. If A separates X from Z and B separates Y from Z, then (see Fig. 2(a,b)):
(i) A ∪ B separates X ∪ Y from Z.
(ii) If A ∩B = ∅ then A separates X from Y .

Proof. By the assumption of the lemma we have (see Fig. 2(a)):
Since A separates X from Z, every F-core in X is contained in A, every edge in X is
contained in A+, and every edge in Z is contained in V \A.
Since B separates Y from Z, every F-core in Y is contained in B, every edge in X is
contained in B+, and every edge in Z is contained in V \B.

Consequently, every F -core in X ∪ Y is contained in A∪B, every edge in X ∪ Y is contained
in A+ ∪ B+, and every edge in Z is contained in V \ (A ∪ B). This implies that A ∪ B
separates X ∪ Y from Z.

Now suppose that A∩B = ∅; see Fig. 2(b). To see that then A separates X from Y , note
that every F-core in X is contained in A and every edge in X is contained in A+ (since A
separates X from Z), and that every edge in Y is contained in V \A (since A ∩B = ∅). ◀

The following key lemma is the technical part of the reduction.

Z. Nutov 92:7

▶ Lemma 7. Let H = (C ∪ J ∪ {s}, I) be the separability graph of an intersecting biset
family F and an edge set J on V . Let C ∈ C. Then J covers F(C) iff H has a Cs-path.
(Equivalently: J does not cover some C ∈ F(C) iff H has no Cs-path.)

Proof. Suppose that J does not cover some A ∈ F(C). Let CA be the set of F -cores contained
in A and JA the set of edges in J contained in A+. Then H has no edge between CA ∪ JA
and (C ∪ J ∪ {s}) \ (CA ∪ JA). Consequently, H has no Cs-path.

Suppose that H has no Cs-path. Let UC be the set of nodes of the connected component
of H that contains C, and let g ∈ (J \ UC) ∪ {s}. We now will show that F contains a biset
that separates UC from g. Let f0, f1, . . . be an ordering of UC, where f0 = C, such that in
H each fi with i ≥ 1 is adjacent to some fj with j < i; since H[UC] is connected, such an
ordering exists. For any fi there is Ai ∈ F that separates fi from g. By Lemma 6 and since
F is an intersecting family, for X,Y ⊆ C ∪ J and Z ⊆ J ∪ {s}, if A separates X from Z and
B separates Y from Z, then (see Fig. 2(a,b)):

(i) A ∪ B separates X ∪ Y from Z; moreover, if A,B ∈ F and A ∩B ̸= ∅ then A ∪ B ∈ F .
(ii) If A ∩B = ∅ then A separates X from Y .

In particular, if A,B ∈ F andX,Y are F -inseparable, thenA∩B ̸= ∅ must hold, and thus A∪B
belongs to F and separates X ∪ Y from Z. Applying this on X = {f0}, Y = {f1}, Z = {g}
and A = A0,B = A1, we get that A1 ∪A2 ∈ F and separates {f0, f1} from g. By an identical
argument applied on X = {f0, f1} and Y = {f2} we get that (A0 ∪A1) ∪A2 ∈ F separates
{f0, f1, f2} from g. By induction we get that ∪iAi ∈ F and separates UC from g.

Let A be an inclusion minimal biset in F that separates UC from s. Note that A ∈ F(C).
We claim that J does not cover A. Suppose to the contrary that some g ∈ J covers A. Note
that g ∈ J \UC, thus as we just proved, there is B ∈ F that separates UC from g, see Fig. 2(c).
Note that C ⊆ A ∩ B, hence A,B intersect and thus A ∩ B ∈ F . Summarizing, we have:

A separates UC from s and B separates UC from g.
A ∩ B ̸= ∅ and thus A ∩ B ∈ F .

By interchanging the roles of A,B and A∗,B∗ in Lemma 6, we get that if A separates Z
from X and B separates Z from Y , then A ∩ B separates Z from X ∪ Y . Applying this on
Z = UC, X = {s}, and Y = {g}, we get that A ∩ B separates UC from {s, g}. As g has both
ends in V \B and covers A, it has one end in A \B and the other in A∗ \B. This implies
that A ∩ B ⊊ A (namely, A ∩ B is strictly contained in A). Since A ∩ B separates UC from g

and A ∩ B ∈ F , we obtain a contradiction to the minimality of A. ◀

From Lemma 7 we get:

▶ Corollary 8. An edge set J covers an intersecting biset family F iff the separability graph
H of F , J has a subtree that contains s and has leaf set C.

The reduction of Intersecting Biset Family Cover to Rooted SS-CDS is as follows.

▶ Definition 9. Given an Intersecting Biset Family Cover instance (F , E, c), the
corresponding Rooted SS-CDS instance (H,R,w) is constructed as follows.

H is the separability graph of F , E.
R = C and the root is s.
For every e ∈ E, the weigh of the node e in H equals to the cost of the edge e in E.

By Corollary 8, J ⊆ E is a feasible solution to the obtained Rooted SS-CDS instance
iff J covers F . By the reduction, the weight of J equals the cost of J . As was explained
at the beginning of this section, Rooted SS-CDS can be solved in time 3q · nO(1), where
q = |R|. Since A ∩B = ∅ for any A,B ∈ CF , we need at least |CF |/2 edges to cover F , and
since |R| = |CF | + 1, we can find an optimal cover of F in 3q · nO(1) = 9p · nO(1) time.

ESA 2024

92:8 Parameterized Algorithms for Node Connectivity Augmentation Problems

It remains to show that H can be constructed in polynomial time. For that it is sufficient
to show that for any x ∈ C ∪ E and y ∈ E ∪ {s} we can check in polynomial time whether
there is A ∈ F that separates x from y. Recall that we assume that for any edge set I we
can find in polynomial time the family FI

min and FI
max of all inclusion minimal and maximal

bisets, respectively, among the bisets in F not covered by I. From Definition 5, it is not hard
to verify that there is a biset in F that separates:

C ∈ C from e ∈ E iff e ⊆ V \ C.
e ∈ E from s iff there is A ∈ F∅

max such that e ⊆ A+.
uv ∈ E from u′v′ ∈ E iff there is A ∈ FI

max with e ⊆ A+ and e′ ⊆ V \ A, where
I = {u′s, v′s}.

This concludes the proof of Theorem 3.

3 Reduction for (2,k)-Connectivity Augmentation (Theorem 4)

Let (G0 = (V,E0), E, c,Q, k) be an instance of (2, k)-CA with k ≥ 2. Recall that G0 is
(k − 1)-edge-connected, and we seek a min cost edge set J ⊆ E such that G0 ∪ J is both
k-edge-connected and has no cut node in Q. We will construct an equivalent instance
(H = (U,F), w,R) of Rooted SS-CDS that satisfies the following two properties:
(A) The neighbors of every terminal induce a clique.
(B) Every non-terminal has at most 2 terminal neighbors.
It is easy to see that if property (A) holds, then any subtree of H that contains R can be
converted into a subtree of the same cost with leaf set R. Thus any SS-CDS instance that
satisfies property (A) is equivalent to the Node Weighted Steiner Tree instance with
the same graph, weights, and set of terminals.

▶ Definition 10. Given a (k − 1)-connected graph G0 = (V,E0) with k ≥ 2 and Q ⊆ V , we
assign capacities to the nodes q(v) = k − 1 if v ∈ Q and q(v) = ∞ otherwise. We say that a
proper biset A is tight if dG0(A) + q(∂A) = k − 1 and denote by T = TG0 the family of tight
bisets.

Equivalently, a proper biset A is tight if either ∂A = ∅ and dG0(A) = k − 1, or ∂A is a
single node in Q and dG0(A) = 0. Namely, the family of tight bisets is a union T = A ∪ B of
a set family A and a biset family B defined by

A = {A : dG0(A) = k− 1} B = {B : ∂B is a single node in Q, dG0(B) = 0, B,B∗ ̸= ∅} .

Note that since G0 is (k − 1)-edge-connected, dG0(A) + q(∂A) ≥ k − 1 for every proper
biset A. From Menger’s Theorem it follows that J is a feasible (2, k)-CA solution iff J covers
the family T = {A : A,A∗ ̸= ∅, dG0(A) + q(∂A) = k − 1} of tight bisets.

We need some definitions. The co-biset of a biset A is the biset A∗ = (V \A+, V \A).
A biset family is symmetric if A∗ ∈ F whenever A ∈ F . Two bisets A,B co-cross if
A \B+, B \A+ are both non-empty.

▶ Lemma 11. The family T of tight bisets is symmetric and crossing, and any A,B ∈ T
cross or co-cross. Consequently, C ⊆ A or C ⊆ A∗ holds for any A ∈ T and a T -core C ∈ CT .

Proof. Define a biset function f(A) = dG0(A) + q(∂A). Since f(A) = f(A∗) for any biset A,
we get that T is symmetric. We will show that T is a crossing family. The functions f(A) is
submodular, namely, f(A) + f(B) ≥ f(A∩B) + f(A∪B) holds for any two bisets A,B; this is

Z. Nutov 92:9

(a) (b) (c)

φφ φ

φφφφ φ

φ φφφ φφ

φ

BB

A

B

A

*B B

A

B *

*A*A *

*

A

u

vvv

Figure 3 Illustration to the proof of Lemma 11. Dark parts are non-empty, empty parts are
marked by ∅; other parts may or may not be empty.

so since it is known that each of the functions dG0(A) and q(∂A) is submodular. If A,B cross
then A ∩ B,A ∪ B are both proper bisets and thus f(A ∩ B), f(A ∪ B) ≥ k − 1. This implies

k − 1 + k − 1 = f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) ≥ k − 1 + k − 1 .

Thus equality holds everywhere, hence f(A ∩ B) = f(A ∪ B) = k − 1.
Now we show that any A,B ∈ T cross or co-cross. Suppose to the contrary that there

are A,B ∈ T that do not cross nor co-cross. Then A ⊆ ∂B, or A∗ ⊆ ∂B, or B ⊆ ∂A, or
B∗ ⊆ ∂A; say A ⊆ ∂B; see Fig. 3(a). Then A ∩ ∂B ̸= ∅ since A ̸= ∅, and ∂B = {v} for some
v ∈ Q ∩A since B is tight.

Suppose that ∂A ̸= ∅, say ∂A = {u} for some u ∈ Q ∩ B; see Fig. 3(b). This implies
A∗ ∩ B∗ = A∗ ̸= ∅. Since A,B are tight, G0 has no edge between A∗ ∩ B∗ and {u, v},
contradicting that G0 is connected.

Suppose that ∂A = ∅. Then since B is a proper biset, none of A∗ ∩B,A∗ ∩B∗ is empty;
see Fig. 3(c). Since ∂B ̸= ∅ and since B is tight, there is no edge between B∩A∗ and B∗ ∩A∗.
This gives the contradiction k − 1 + k − 1 ≤ dG0(B \ A) + dG0(A ∪ B) = dG0(A) = k − 1. ◀

▶ Lemma 12. Fix some T -core C0 and s ∈ C0, and let F = {A ∈ T : s ∈ A∗}. Then F is
an intersecting biset family and J is a feasible (2, k)-CA solution iff J covers F .

Proof. To prove the lemma it is sufficient to show that if J covers F then J covers T . Let
A ∈ T . By Lemma 11, C0 ⊆ A or C0 ⊆ A∗. If C0 ⊆ A then A∗ ∈ F and if C0 ⊆ A∗ then
A ∈ F . Thus J covers A or A∗, which is equivalent to covering A. ◀

Let C = CF be the family of F-cores. Let (H = (U,F), R, s, w) be a Rooted SS-CDS
instance as in Definition 9, where H is the separability graph of F , E, R = C, the root is s,
and for every e ∈ E, the weigh of the node e in H equals to the cost of e. By Lemma 11 and
Corollary 8, G0 ∪ J is a feasible solution to (2, k)-CA iff H[J] is connected and J dominates
R in H. The first part of Theorem 4 now follows from Lemma 12 and Theorem 3.

For the second part of Theorem 4 we will prove the following.

▶ Lemma 13. The SS-CDS instance (H = (U,F), w,R) satisfies properties (A,B).

Proof. We prove property (A). Consider an F-core C. Let uv, xy ∈ E such that each of
the pairs uv,C and xy,C is F-inseparable. Then {u, v} ∩ C ̸= ∅ and {x, y} ∩ C ̸= ∅; say,
u, x ∈ C. Let A ∈ Fs. If C ⊆ A then u, x ∈ A. If C ⊆ A∗ then u, x in A∗. In both cases, A
cannot separate one of uv, xy from the other.

Property (B) follows from the fact that if C and uv are F-inseparable then u ∈ C or
v ∈ C, and since C ∩ C ′ = ∅ holds for any two F-cores. ◀

This concludes the proof of Theorem 4.

ESA 2024

92:10 Parameterized Algorithms for Node Connectivity Augmentation Problems

Now we will show that (2, k)-CA generalizes the Crossing Family Cover problem. Let
(F , E, c) be an instance of Crossing Family Cover, where F is a symmetric crossing set
family on a groundset U , and E is an edge set with costs {ce : e ∈ E}. We will show how to
construct an equivalent (2, 3)-CA instance. A cactus is a 2-edge-connected graph in which
any two cycles have at most one node in common (equivalently: every block of the graph is
a cycle). Dinitz, Karzanov, and Lomonosov [11] showed that the family F of minimum edge
cuts of a graph G on node set U can be represented by the family T of minimum edge cuts
of a cactus G0 = (V,E0) and a mapping ψ : U −→ V , such that F = {ψ−1(A) : A ∈ T }.
Dinitz and Nutov [12, Theorem 4.2] (see also [31, Theorem 2.7]) extended this representation
by showing that an arbitrary symmetric crossing family F can be represented by 2-edge cuts
and specified 1-node cuts of a cactus.2 This representation can be stated as follows.

▶ Theorem 14 ([12]). Let F be a crossing family on a groundset U . Then there exists a cactus
G0 = (V,E0), a mapping φ : U −→ V , and a set Q of cut-nodes of G0 with ψ−1(Q) = ∅,
such that F = {φ−1(A) : A ∈ A} ∪ {φ−1(B) : B ∈ B}, where

A = {A : dG0(A) = 2} B = {B : ∂A is a single node in Q, dG0(B) = 0, B,B∗ ̸= ∅} .

Furthermore, if for any A,B ∈ F the set (A \B) ∪ (B \A) is not in F , then Q = ∅.

Given a Crossing Family Cover instance (F , E, c) construct a (2, 3)-CA instance
(G0 = (V,E0), E′, Q, c′) as follows.

G0 and Q (and φ) are as in Theorem 14.
For every edge e = uv in E there is an edge e′ = φ(u)φ(v) in E′ of cost c′(e′) = c(e).

Then T = A ∪ B is the family of tight sets of G0, and J ⊆ E covers F iff J ′ ⊆ E covers
T , where J ′ = {e′ : e ∈ J}. Note that in the obtained (2, 3)-CA instance no edge in E′ is
incident to a node in Q, while in general (2, 3)-CA instances such edge might exist. This
suggests that (2, 3)-CA strictly generalizes the Crossing Family Cover problem.

References
1 A. Agrawal, P. Misra, F. Panolan, and S. Saurabh. Fast exact algorithms for survivable

network design with uniform requirements. In WADS, pages 25–36, 2017.
2 H. Angelidakis, D. H. Denesik, and L. Sanità. Node connectivity augmentation via iterative

randomized rounding. CoRR, abs/2108.02041, 2021. URL: https://arxiv.org/abs/2108.
02041.

3 V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an
optimum 3-vertex-connected spanning subgraph. J. Algorithms, 32(1):21–30, 1999.

4 J. Bang-Jensen, M. Basavaraju, K. V Klinkby, P. Misra, M. Ramanujan, S. Saurabh, and
M. Zehavi. Parameterized algorithms for survivable network design with uniform demands. In
SODA, pages 2838–2850, 2018.

5 M. Basavaraju, F. V. Fomin, P. A. Golovach, P. Misra, M. S. Ramanujan, and S. Saurabh.
Parameterized algorithms to preserve connectivity. In ICALP, Part I, pages 800–811, 2014.

6 A. Belgi and Z. Nutov. A polylogarithmic approximation algorithm for 2-edge-connected
dominating set. Information Processing Letters, 173:106175, 2022.

7 J. Byrka, F. Grandoni, and A. J. Ameli. Breaching the 2-approximation barrier for connectivity
augmentation: a reduction to Steiner tree. In Proceedings of the 52nd Annual ACM Symposium
on Theory of Computing, STOC 2020, pages 815–825, 2020.

2 A representation identical to the one of [12] was announced later by Fleiner and Jordán [17].

https://arxiv.org/abs/2108.02041
https://arxiv.org/abs/2108.02041

Z. Nutov 92:11

8 F. Cecchetto, V. Traub, and R. Zenklusen. Bridging the gap between tree and connectivity
augmentation: unified and stronger approaches. In Proceedings of the 53rd ACM Symposium
on Theory of Computing, STOC 2021, pages 370–383, 2021.

9 J. Cheriyan and L. A. Végh. Approximating minimum-cost k-node connected subgraphs via
independence-free graphs. SIAM J. Comput., 43(4):1342–1362, 2014.

10 J. Chuzhoy and S. Khanna. An O(k3 log n)-approximation algorithm for vertex-connectivity
survivable network design. Theory Comput., 8(1):401–413, 2012.

11 E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal
weighted cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1976.

12 Y. Dinitz and Z. Nutov. A 2-level cactus model for the system of minimum and minimum+1
edge-cuts in a graph and its incremental maintenance. In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, STOC 1995, pages 509–518, 1995.

13 Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding optimum 4,5-vertex-connected
spanning subgraphs. J. Algorithms, 32(1):31–40, 1999.

14 S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1.3:195–207, 1971.
15 A. E. Feldmann and D. Marx. The complexity landscape of fixed-parameter directed steiner

network problems. In ICALP, pages 27:1–27:14, 2016.
16 A. E. Feldmann, A. Mukherjee, and E.-Jan van Leeuwen. The parameterized complexity of

the survivable network design problem. In SOSA, pages 37–56, 2022.
17 T. Fleiner and T. Jordán. Coverings and structure of crossing families. Mathematical

Programming, 84(3):505–518, 1999.
18 L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms

for minimum-cost vertex connectivity problems. Journal of Computer and System Sciences,
72(5):838–867, 2006.

19 A. Frank. Rooted k-connections in digraphs. Discrete Applied Mathematics, 157(6):1242–1254,
2009.

20 A. Frank and É. Tardos. An application of submodular flows. Linear Algebra Appl., 114/115:329–
348, 1989.

21 B. Fuchs, W. Kern, D. Molle, S. Richter, P. Rossmanith, and X. Wang. Dynamic programming
for minimum steiner trees. Theory of Computing Systems, 41(3):493–500, 2007.

22 J Guo and J. Uhlmann. Kernelization and complexity results for connectivity augmentation
problems. Networks, 56(2):131–142, 2010.

23 G. Gutin, M. Ramanujan, F. Reidl, and M. Wahlström. Path-contractions, edge deletions and
connectivity preservation. Journal of Computer and System Sciences, 101:1–20, 2019.

24 B. Jackson and T. Jordán. Independence free graphs and vertex connectivity augmentation.
J. Comb. Theory, Ser. B, 94(1):31–77, 2005.

25 K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

26 S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity
problems. J. Algorithms, 21(2):434–450, 1996.

27 G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set covers. Al-
gorithmica, 37:75–92, 2003.

28 W. Mader. Ecken vom grad n in minimalen n-fach zusammenhängenden graphen. Archive der
Mathematik, 23:219–224, 1972.

29 D. Marx and L. A. Végh. Fixed-parameter algorithms for minimum-cost edge-connectivity
augmentation. ACM Trans. Algorithms, 11(4):27:1–27:24, 2015.

30 H. Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph containing
a specified spanning tree. Discrete Applied Mathematics, 126:83–113, 2003.

31 Z. Nutov. Structures of Cuts and Cycles in Graphs; Algorithms and Applications. PhD thesis,
Technion, Israel Institute of Technology, 1997.

32 Z. Nutov. Approximating rooted connectivity augmentation problems. Algorithmica, 44(3):213–
231, 2006.

ESA 2024

92:12 Parameterized Algorithms for Node Connectivity Augmentation Problems

33 Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies.
ACM Transactions on Algorithms, 9(1):1–16, 2012.

34 Z. Nutov. Approximating minimum-cost edge-covers of crossing biset-families. Combinatorica,
34(1):95–114, 2014.

35 Z. Nutov. Improved approximation algorithms for minimum cost node-connectivity augmenta-
tion problems. Theory Comput. Syst., 62(3):510–532, 2018.

36 Z. Nutov. The k-connected subgraph problem. In T. F. Gonzalez, editor, Handbook of
Approximation Algorithms and Metaheuristics, Second Edition, Volume 2: Contemporary and
Emerging Applications. Chapman and Hall/CRC, 2018.

37 Z. Nutov. Node-connectivity survivable network problems. In T. F. Gonzalez, editor, Handbook
of Approximation Algorithms and Metaheuristics, Second Edition, Volume 2: Contemporary
and Emerging Applications. Chapman and Hall/CRC, 2018.

38 Z. Nutov. 2-node-connectivity network design. In WAOA, pages 220–235, 2020.
39 Z. Nutov. On the tree augmentation problem. Algorithmica, 83(2):553–575, 2021.
40 Z. Nutov. A 4 + ϵ approximation for k-connected subgraphs. J. Computer and System Science,

123:64–75, 2022.
41 V. Traub and R. Zenklusen. Local search for weighted tree augmentation and steiner tree. In

Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 3253–3272,
2022.

42 V. Traub and R. Zenklusen. A (1.5 + ϵ)-approximation algorithm for weighted connectivity
augmentation. In Proceedings of Annual ACM Symposium on Theory of Computing, STOC
2023, pages 1820–1833, 2023.

43 L. A. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discret. Math,
25(2):695–718, 2011.

	1 Introduction
	2 Covering intersecting biset families (Theorem 3)
	3 Reduction for (2,k)-Connectivity Augmentation (Theorem 4)

