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Abstract
We propose an exact algorithm for the Graph Burning Problem (GBP), an NP-hard optimization
problem that models the spread of influence on social networks. Given a graph G with vertex
set V , the objective is to find a sequence of k vertices in V , namely, v1, v2, . . . , vk, such that k is
minimum and

⋃k

i=1{u ∈ V : d(u, vi) ≤ k − i} = V , where d(u, v) denotes the distance between u

and v. We formulate the problem as a set covering integer programming model and design a row
generation algorithm for the GBP. Our method exploits the fact that a very small number of covering
constraints is often sufficient for solving the integer model, allowing the corresponding rows to be
generated on demand. To date, the most efficient exact algorithm for the GBP, denoted here by
GDCA, is able to obtain optimal solutions for graphs with up to 14,000 vertices within two hours of
execution. In comparison, our algorithm finds provably optimal solutions approximately 236 times
faster, on average, than GDCA. For larger graphs, memory space becomes a limiting factor for GDCA.
Our algorithm, however, solves real-world instances with more than 3 million vertices in less than
19 minutes, increasing the size of graphs for which optimal solutions are known by a factor of 200.
Additionally, we conduct tests on the proposed algorithm using a series of challenging instances
composed of grid graphs containing up to 5,000 vertices. As a result, we achieve novel optimal
solutions and tight optimality gaps that have not been previously reported in the literature.
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1 Introduction

The Graph Burning Problem (GBP) is a combinatorial optimization problem that models a
form of contagion diffusion on social networks in which one seeks to propagate influence over
the entire network as quickly as possible [5]. By representing networks as graphs, a contagion
can be thought of as a fire that spreads throughout the vertices of a graph following its
adjacency relations.

In this problem, we are given an undirected graph G = (V, E) that represents a social
network, where each vertex in V corresponds to an individual and each edge {u, v} ∈ E

indicates a reciprocal influence relationship between the individuals represented by u and v.
A burning process in G unfolds in a series of rounds. In every round i ≥ 1, each vertex

is either assigned the burned or unburned state. Initially, all vertices are unburned. In
each round i ≥ 1, exactly one vertex (a fire source) is chosen to be set on fire and becomes
burned. Moreover, starting in round i = 2, each unburned vertex that has at least one burned
neighbor in round i− 1 becomes burned and remains in that state until the last round.

A sequence (v1, v2, . . . , vk) ∈ V k, where vi is the i-th fire source, constitutes a burning
sequence for G, if the entire graph is burned by the k-th round.

For each u ∈ V , we denote by Nj [u] = {v ∈ V : d(u, v) ≤ j} the j-th closed neighborhood
of u, where d(u, v) denotes the distance between u and v, i.e., the number of edges in a
shortest path in G that connects these vertices.

Formally, (v1, v2, . . . , vk) is a burning sequence for G if⋃k

i=1
Nk−i[vi] = V (1)

It follows from the burning process that vi ascertains that each vertex in Nk−i[vi] (including
vi) gets burned by round k.

▶ Problem 1 (Graph Burning Problem). Given an undirected graph G, find a burning sequence
for G of minimum length.

The length of a shortest burning sequence for G is called its burning number, denoted
b(G), and was introduced in the literature as a graph parameter that measures the speed
at which a propagation can spread throughout a network: the smaller the burning number
of G is, the more susceptible G is to fast contagions. Although this parameter is of special
interest for social networks, the problem has also been investigated for various other classes
of graphs [2, 3, 4, 7, 8, 16, 18, 19, 20, 26, 27].

The GBP is NP-hard [2, 5] and, so far, four exact approaches have been proposed to solve
the problem for arbitrary graphs [12, 14]. The currently best known exact algorithm [12],
referred to, here, as GDCA, is able to find provably optimal solutions for real-world networks
with up to 14,000 vertices in less than two hours. For larger graphs, memory space becomes
a limiting factor.

1.1 Our Contributions
In this paper, we propose an exact algorithm for the GBP based on an integer programming
(IP) formulation together with a row generation procedure. Through a series of computational
experiments, we are able to demonstrate that the proposed method significantly outperforms
GDCA. More specifically, our algorithm:

Finds provably optimal solutions 236 times faster, on average, than GDCA for networks
with up to 14,000 vertices;
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Solves real-world networks with over 3 million vertices in less than 19 minutes, hence
increasing the size of the vertex set of graphs for which optimal solutions are known by a
factor of 200.

This paper is organized as follows. In Section 2, we review the literature on the GBP
and, in Section 3, we describe our exact algorithm. Section 4 contains a full report on
computational experiments and an analysis of the results. Lastly, in Section 5, we present
concluding remarks and address future work.

2 Previous Work

The GBP was proposed in [5] and has been extensively studied both from theoretical and
practical points of view. In this section, we present a brief background review of the problem
for arbitrary graphs, focusing on upper bounds, heuristics, approximation algorithms, and
mathematical models. For a probe regarding the GBP on specific families of graphs, we refer
the reader to the survey [3].

Let G = (V, E) be an arbitrary undirected graph with p ≥ 1 connected components and
let n1, n2, . . . , np be the numbers of vertices of the these components. Denote by b(G) the
burning number of G.

Theorem 2 provides the best known upper bound for b(G) [1, 14].

▶ Theorem 2. b(G) ≤ p +
∑p

i=1
⌈
(4ni/3)1/2⌉

.

Conjecture 3 suggests a tighter upper bound for b(G), but that result remains open since
the problem was introduced [5, 14].

▶ Conjecture 3. b(G) ≤
∑p

i=1

⌈
n

1/2
i

⌉
.

Moreover, Theorem 4 states that Conjecture 3 holds assymptotically for connected graphs
with n vertices [23].

▶ Theorem 4. b(G) ≤ (1 + o(1))n1/2.

Among the plethora of heuristics proposed for the GBP [11, 12, 15, 22, 28, 29], the most
recent are a centrality-based genetic algorithm [22] and the greedy algorithm from [12].
On the other hand, there are two 3-approximation algorithms for the GBP [2, 7], and a
(3− 2/b(G))-approximation [13] referred to, here, as BFF. Algorithm 1 describes BFF.

Algorithm 1 BFF (as used in [12]).

Input : Graph G = (V, E); distances between all pairs of vertices of G

Output : A burning sequence S

1 Select v1 arbitrarily
2 S ← (v1)
3 i← 2
4 while S is not feasible do
5 vi = arg max

u∈V
(min{d(u, v1), d(u, v2), . . . , d(u, vi−1)})

6 S ← (v1, v2, . . . , vi)
7 i← i + 1
8 return S

ESA 2024



94:4 Finding Optimal Burning Sequences of Large Graphs

BFF progressively builds a burning sequence S by iteratively selecting the i-th fire source
as the vertex that is farthest from any of the previous selected fire sources. In [13], it is
shown that |S| ≤ 3 · b(G)− 2 and that BFF has worst-case time complexity O(|V |2), provided
that the distances between all pairs of vertices are computed a priori.

2.1 Existing Mathematical Models
Regarding exact formulations for the GBP, three IP models, namely, ILP, CSP1 and CSP2,
were proposed in [14]. While ILP consists of an optimization model, the last two are decision
models that, for a given integer B, determine whether a burning sequence of length B exists.

In both ILP and CSP1, the main variables are indexed by each pair (v, i) ∈ V ×{1, 2, . . . , U},
where U is a known upper bound for b(G), and each of them indicates whether v is burned
in round i. This idea has also been applied for the design of mathematical models for related
problems, such as the well studied Target Set Selection Problem and some of its variants [25].

In CSP2, the main variables are indexed by each pair (u, v) ∈ V × V and each of them
specifies whether u is responsible for v getting burned, if u is a fire source. The assemblage
of CSP2 requires that the distances between every pair of vertices be known.

2.2 The Current Best Known Exact Algorithm
We now describe GDCA, an exact algorithm that leads to better performance results when
compared to simply solving the models cataloged in the previous section, as was empirically
demonstrated by experiments reported in [12].

GDCA relies on the fact that the GBP can be seen as a set covering problem. This was
first observed in [6] and later formalized in [12] by means of a reduction of the GBP to the
Clustered Maximum Coverage Problem (CMCP) [12] that we now describe.

▶ Problem 5 (Clustered Maximum Coverage Problem). Given a set P and k ≥ 1 sets (clusters)
C1, C2, . . . , Ck, each one containing subsets of P , find k sets S1, S2, . . . , Sk such that Si ∈ Ci,
for i = 1, 2, . . . , k, and

∣∣∣⋃k
i=1 Si

∣∣∣ is maximum.

Given an undirected graph G = (V, E), let P = V , k = B and, for each i = 1, 2, . . . , B,
take Ci = {Si,v : v ∈ V }, where Si,v = NB−i[v]. The value of an optimal solution for
CMCP corresponds to the maximum number of vertices that can be burned in G using a
sequence of B vertices [12]. If such number equals |V |, then an optimal solution for CMCP, say,
S1,v1 , S2,v2 , . . . , Sk,vk

, corresponds to a burning sequence (v1, v2, . . . , vk) for G. Otherwise,
one can conclude that b(G) > B.

In [12], the following IP model, originally designed for the CMCP, and referred to, here,
as CMCP-IP, is used to decide whether a burning sequence of length B for G exists. Let
X = {xv,i : v ∈ V, i ∈ {1, 2, . . . , B}} and Y = {yv : v ∈ V } be sets of binary variables s.t.
xv,i = 1 iff v is the i-th fire source and yv = 1 iff v gets burned during the burning process.

CMCP-IP



max
∑
v∈V

yv

s.t.
∑
v∈V

xv,i = 1 ∀i ∈ {1, 2, . . . , B}

B∑
i=1

∑
u∈V :v∈NB−i[u]

xu,i ≥ yv ∀v ∈ V

(2)

(3)

(4)
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The objective function (2) maximizes the number of burned vertices. Constraints (3)
establish that exactly one vertex is assigned to each position in the burning sequence. Lastly,
Constraints (4) ensure that if v is in the burned state, then there is at least one fire source
u (possibly v itself) such that d(u, v) ≤ B − i, where i is the position of u in the burning
sequence. CMCP-IP has a total of O(|V | ·B) binary variables and O(|V |) constraints. Loading
this model requires that the distances between every pair of vertices be known.

GDCA performs a binary search in a certain interval of candidate values for b(G) and uses
CMCP-IP to solve each of the decision problems encountered during the search. Algorithm 2
describes the procedure.

Algorithm 2 GDCA.

Input : Graph G = (V, E)
Output : Optimal burning sequence S

1 D ← distance matrix of G

2 S ← BFF(G, D)
3 U ← |S|
4 L← ⌈(|S|+ 2)/3⌉
5 while L ≤ U do
6 B ← ⌊(L + U)/2⌋
7 (obj, S′)← SolveCMCP-IP(G, D, B)
8 if obj = |V | then
9 S ← S′

10 U ← B − 1
11 else
12 L← B + 1

13 return S

First, the algorithm computes the distances between all pairs of vertices (e.g., by |V |
breadth-first searches, totaling O(|V |2 + |V | · |E|) time). Then, BFF is applied to obtain a
burning sequence S for G. Next, GDCA computes upper and lower bounds for b(G), namely,
U = |S| and L = ⌈(|S|+ 2)/3⌉. The lower bound follows from the fact that, since BFF is a
(3− 2/b(G))-approximation, |S| ≤ (3− 2/b(G)) · b(G) and, therefore ⌈(|S|+ 2)/3⌉ ≤ b(G).
Then, a binary search is employed to solve O(log(U − L + 1)) GBP decision problems.

In [12], it is shown that GDCA is able to find optimal solutions for networks with up to
12,000 vertices. In the next section, we show how to improve GDCA to design a more effective
and efficient exact algorithm for the GBP.

3 A Row Generation Algorithm

In this section, we introduce an exact algorithm for the GBP, denoted by PRYM, preceded by
the presentation of some useful results and an IP formulation for which a row generation
method is employed in PRYM.

Let G = (V, E) be an undirected graph. Since any sequence containing all vertices of V

constitutes a trivial feasible solution for G, we have that b(G) ≤ |V |. Moreover, there exists
a burning sequence of length k for G for each integer k, with b(G) ≤ k ≤ |V | since we may
append (dummy) fire sources to any given burning sequence.

ESA 2024
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Furthermore, although the definition of GBP does not forbid burning sequences that
contain reoccurring vertices, it is easy to prove that for each k ∈ Z, where b(G) ≤ k ≤ |V |,
there exists a burning sequence of length k for G that does not contain repeated vertices.

We now propose an integer program for the decision version of the GBP, denoted by
GBP-IP. This model determines whether there exists a burning sequence of length B ≤ |V |
for G. Let X = {xv,i : v ∈ V, i ∈ {1, 2, . . . , B}} be a set of binary variables such that xv,i = 1
iff v is the i-th fire source in a burning sequence for G.

GBP-IP



Find X

s.t.
B∑

i=1
xv,i ≤ 1 ∀v ∈ V∑

v∈V

xv,i = 1 ∀i ∈ {1, 2, . . . , B}

B∑
i=1

∑
u∈V :v∈NB−i[u]

xu,i ≥ 1 ∀v ∈ V

(5)

(6)

(7)

(8)

Constraints (6) ensure that each v ∈ V appears at most once in the burning sequence.
Constraints (7) establish that exactly one vertex is assigned to each position in the burning
sequence. Lastly, Constraints (8) ensure that each vertex is burned by the end of round B,
i.e., that Equation (1) is satisfied. From now on, we also refer to (8) as covering constraints.
Whenever (8) is satisfied for a vertex v, we say that v is covered, otherwise, v is uncovered.

We remark that although Constraints (6) are not necessary for the correctness of the
model, they cut off integer solutions with repeated vertices, which reduces the search space.
Indeed, Constraints (6) accelerates the resolution of GBP-IP for some graphs by up to 18%
in practice (see Section 4).

GBP-IP has a total of O(B · |V |) binary variables and O(|V |) constraints. Observe that
GBP-IP can be obtained from CMCP-IP by: removing the objective function (2), adding
Constraints (6), and setting yv = 1 for each v ∈ V .

▶ Proposition 6. If X = {xv,i : v ∈ V, i ∈ {1, 2, . . . , B}} is a feasible solution for GBP-IP,
then there exists a burning sequence S of length B for G such that for each v ∈ V , if xv,i = 1,
then v is the i-th fire source of S.

Proof. Let X be a feasible solution for GBP-IP. By (7), for each i ∈ {1, 2, . . . , B}, there
exists exactly one vertex v such that xv,i = 1. Take a sequence S = (v1, v2, . . . , vB) such
that xvi,i = 1. Since X satisfies (8), S satisfies Equation (1) and, therefore, S is a burning
sequence for G. ◀

▶ Proposition 7. If there is a burning sequence of length B for G, then GBP-IP is feasible.

Proof. Let S = (v1, v2, . . . , vB) be a burning sequence for G with no repeated vertices. Take
X = {xv,i : v ∈ V, i ∈ {1, 2, . . . , B}} such that xv,i = 1 iff v is the i-th fire source of S. By
construction, X satisfies Constraints (6) and (7). Also, since S satisfies Equation (1), X

satisfies Constraints (8). Therefore, X is a feasible solution for GBP-IP. ◀

Now, let L and U be lower and upper bounds for b(G). Since there is no burning sequence
for G of length less than b(G), it follows from Proposition 6 that for every B ∈ [L, b(G)− 1],
GBP-IP is infeasible. Similarly, since there is a burning sequence for G of length b(G) + q for
every q ∈ Z≥0, it follows from Proposition 7 that for every B ∈ [b(G), U ], GBP-IP admits a
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feasible solution from which a burning sequence of length B can be built. Therefore, one can
perform a binary search to determine the smallest value B in the interval [L, U ] for which a
feasible solution of GBP-IP exists, leading to an optimal solution of length B for G. This
idea is similar to the one employed in GDCA (see Algorithm 2) and is the core of PRYM, which
is described in Algorithm 3.

Algorithm 3 PRYM.

Input : Graph G = (V, E)
Output : Optimal burning sequence S

1 S ← BFF-d(G)
2 U ← |S|
3 L← ⌈(|S|+ 2)/3⌉
4 while L < U do
5 B ← ⌊(L + U)/2⌋
6 (answer , S′)← SolveGBP-IP(G, B)
7 if answer = feasible then
8 S ← S′

9 U ← B

10 else
11 L← B + 1

12 return S

First, PRYM obtains a feasible solution S by running a modified version of BFF (BFF-d)
which, instead of being provided with all pairwise distances between vertices, as in GDCA,
computes only the required distances on demand. In other words, during the i-th iteration of
BFF-d, right before vertex vi is selected as the i-th fire source of S (see step 5 of Algorithm 1),
BFF-d computes the distance between vi−1 and each vertex in V by means of a single
breadth-first search. These distances are stored in memory until PRYM halts. The motivation
for this change is that in that iteration only the distances from each vertex in V to the i− 1
previous fire sources are needed. Since the lengths of burning sequences are often much
smaller than |V |, this modification speeds up BFF-d to a total complexity of O(|S|(|V |+ |E|)),
leading to a significant improvement in practice.

Next, PRYM computes lower and upper bounds for searching for b(G), namely, L =
⌈(|S|+ 2)/3⌉ and U = |S|. We notice that the other approximation algorithms for GBP
from [2, 7] could be applied in these first steps of PRYM, despite their weaker approximation
ratios in comparison to BFF-d. Although, at times, the actual performance of approximation
algorithms can be superior (on average) than their worst-case theoretical guarantee, we chose
to employ BFF-d for PRYM since its standard version, BFF, is used in GDCA, whose performance
is compared to that of PRYM in Section 4.

Lastly, PRYM performs a binary search on the interval of values between L and U , solving
O(log(U − L)) GBP decision problems by means of solving the GBP-IP model on each query.

We remark that to solve the GBP-IP model, PRYM does not need to load the whole set
of covering constraints from the start. Instead, these constraints are loaded on demand
following the traditional lazy constraint strategy: whenever the IP solver finds an integer
solution, we separate a violated covering constraint, if it exists, and add it to the model as a
lazy constraint. This approach comes from the observation that, very often, a small subset of
the covering constraints may be sufficient to prove that GBP-IP is either infeasible or feasible.

ESA 2024
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As an illustration, consider these real-world networks obtained from [24]: ia-enron-only
(|V | = 143, |E| = 623, b(G) = 4); DD244 (|V | = 291, |E| = 822, b(G) = 7); and
ca-netscience (|V | = 379, |E| = 914, b(G) = 6) and depicted in Figure 1. For each
of them, the infeasibility of the GBP-IP model for B = b(G)− 1 can be established by loading
only the covering constraints associated with the colored vertices. Moreover, in Section 4,
we show that, for instances with up to millions of vertices, between just dozens and a few
hundred covering constraints are sufficient to prove that there is no burning sequence of
length B = b(G)− 1.

(a) ia-enron-only (b) DD244 (c) ca-netscience

Figure 1 Illustration of the vertices (colored and enlarged) whose covering constraints suffice to
prove the infeasibility of GBP-IP for B = b(G) − 1.

In light of that, whenever PRYM invokes an IP solver to solve GBP-IP, only the covering
constraints associated to the vertices in the burning sequence obtained by BFF-d are initially
loaded into the model. The rest of the covering constraints used by the solver are added
according to the following separation procedure.

Given an integer solution found by the solver, we first extract the sequence S =
(v1, v2, . . . , vB) such that xvi,i = 1 in O(|V | · B) time. Then, for each i ∈ {1, 2, . . . , B},
we determine the distances between vi and all vertices of G by breadth-first search, in
O(|V |+ |E|) time, whenever they had not been previously computed by PRYM. Next, for each
u ∈ V , we calculate the distance between u and its closest vertex among those burned by
round B in the burning process. This value, denoted by dS(u), can be calculated in O(B)
time as dS(u) = max(0, min{d(u, v1)− (B − 1), d(u, v2)− (B − 2), . . . , d(u, vB)}).

If dS(u) = 0, then u is covered, otherwise, dS(u) ≥ 1 and u is uncovered. If dS(v) = 0 for
every v ∈ V , then no constraint is violated and S is a burning sequence for G. Otherwise,
we select w = arg maxu∈V dS(u), i.e., the uncovered vertex that is farthest from any burned
vertex. Then, we calculate the distances between w and all vertices of G by a breadth-first
search, in O(|V |+ |E|) time, if they were not calculated previously. Lastly, we compute the
covering constraint for w and load it onto the solver as a lazy constraint.

As a branching rule for solving the GBP-IP, PRYM determines that for each vertex v, the
variable xv,i has a higher priority for branching than xv,j for every j > i. The purpose of
this approach is to decide the first positions of the burning sequence earlier in the search.

We now highlight the advantages of PRYM over GDCA. First, observe that PRYM addresses
the GBP decision problem directly via the GBP-IP model, while GDCA attempts to solve, via
the CMCP-IP model, an instance of an optimization problem all the way through, even when
B < b(G) and an upper bound less than |V | for the objective function (2) is determined.
This shows that PRYM can be particularly more expedient than GDCA in these cases by saving
valuable computing time.
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Another important time-saving strategy is that PRYM computes, on demand, only distances
between pairs of vertices of G known to be necessary instead of GDCA’s |V |2 such computations.
As we show in Section 4, memory space becomes a limiting factor for GDCA for graphs with
upwards of 14,000 vertices, while PRYM is able to handle instances with millions of vertices
before memory space starts to become a limitation. Also, in practice, for most of the instances
used in Section 4 with at least 10,000 vertices, the asymptotic polynomial complexity of
computing all distances far exceeded the actual time PRYM spent in attaining optimal solutions.

Lastly, the major advantage stems from the row generation approach whose separation
algorithm is able to discover a small number of decisive covering constraints that are often
sufficient for the solver to find a feasible solution or to prove the infeasibility of GBP-IP for
a given value of the parameter B. Moreover, since covering constraints tend to involve a
substantial number of variables for large graphs, loading a small subset of these constraints
ultimately speeds up the resolution of the linear relaxation.

In the next section, we report a series of experiments comparing the efficiency and efficacy
of PRYM and GDCA on a large benchmark of instances.

4 Computational Experiments

We now describe the experiments we carried out to empirically evaluate PRYM. For this
purpose, we used a machine equipped with an Intel® Xeon® E5-2630 v4 processor, 64 GB of
RAM, and the Ubuntu 22.04.1 LTS operating system. For IP solver, we used Gurobi v10.0.3
running on a single thread of execution. The benchmark of instances employed here extends
the one used in the experiments reported in [12] to a total of 78 real-world networks obtained
from the Network Repository [24] and the Stanford Large Network Dataset Collection [17].
We refer the reader to a publicly available repository [9] that accompanies this paper and
includes the source code, problem instances, and the solutions obtained.

The instances were divided into three sets according to the number of vertices: ∆10K is
the set of instances with at most 10K vertices, ∆100K comprises the instances with more
than 10K vertices and at most 100K vertices, and ∆4M consists of the instances with more
than 100K vertices and less than 4M vertices.

The results for ∆10K, ∆100K and ∆4M are presented in Tables 1, 2 and 3, respectively.
The first three columns describe the instances while the two subsequent ones display the
lower and upper bounds for b(G), L and U , obtained via BFF-d. The “Opt” column shows
the optimal value, b(G), while the following two columns display the running times (rounded
up to the nearest second) spent by GDCA and PRYM to find provably optimal solutions. The
last two columns show the number of covering constraints (of type (8)) loaded by PRYM while
solving GBP-IP for B = b(G)− 1 and for B = b(G).

Recall that when B = b(G) − 1, GBP-IP is infeasible and B is a lower bound for b(G).
On the other hand, when B = b(G), GBP-IP admits a feasible solution and B is an upper
bound for b(G). We highlight that according to Tables 1, 2 and 3, the number of covering
constraints used by PRYM for these cases falls significantly short of the number of vertices in
each graph. In fact, when B = b(G)− 1 and B = b(G), PRYM had to load, on average, only
4.69% and 6.43% of the whole set of possible covering constraints, respectively.

Also, the burning numbers that appear in bold in Tables 2 and 3 are newly obtained
results. In the running time columns, the entries containing “–” indicate that the execution
was halted due to memory overflow. Also, in the last column, whenever the initial upper
bound U was equal to the burning number, “–” is used to reflect that there was no need for
PRYM to solve GBP-IP for B = U = b(G).
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Table 1 Quantifying the empirical results obtained for ∆10K.

Instance Bounds Opt Time (sec) #Cov. Constr. for:
Name |V | |E| L U b(G) GDCA PRYM b(G)− 1 b(G)
karate 34 78 2 4 3 1 1 4 7
chesapeake 39 170 2 3 3 1 1 7 –
dolphins 62 159 3 6 4 1 1 7 12
rt-retweet 96 117 3 5 5 1 1 9 –
polbooks 105 441 3 5 4 1 1 10 9
adjnoun 112 425 2 4 4 1 1 6 –
ia-infect-hyper 113 2196 2 3 3 1 1 9 –
C125-9 125 6963 2 3 3 1 1 42 –
ia-enron-only 143 623 3 5 4 1 1 7 12
c-fat200-1 200 1534 3 7 7 1 1 37 –
c-fat200-2 200 3235 3 5 5 1 1 16 –
c-fat200-5 200 8473 2 3 3 1 1 5 –
sphere 258 1026 4 9 7 2 1 44 33
DD244 291 822 4 10 7 1 1 19 41
ca-netscience 379 914 4 8 6 1 1 11 25
infect-dublin 410 2765 3 6 5 1 1 12 8
c-fat500-1 500 4459 5 11 9 1 1 33 72
c-fat500-2 500 9139 4 8 7 1 1 36 13
c-fat500-5 500 23191 3 5 5 1 1 32 –
bio-diseasome 516 1188 4 10 7 1 1 13 15
web-polblogs 643 2280 3 7 5 2 1 7 15
DD687 725 2600 4 9 7 21 2 17 85
rt-twitter-copen 761 1029 4 8 7 2 1 9 13
DD68 775 2093 5 12 9 7 2 28 85
ia-crime-moreno 829 1475 3 7 7 21 1 58 –
DD199 841 1902 7 18 12 9 6 96 87
soc-wiki-Vote 889 2914 3 6 6 4 1 15 –
DD349 897 2087 6 16 12 7 13 113 110
DD497 903 2453 6 15 10 14 14 30 146
socfb-Reed98 962 18812 2 4 4 4 1 7 –
lattice3D 1000 2700 5 12 10 1767 1091 295 103
bal-bin-tree-9 1023 1022 5 11 10 1 7 513 16
delaunay-n10 1024 3056 5 11 9 42 9 58 140
stufe 1036 1868 6 15 12 424 147 204 163
lattice2D 1089 2112 7 19 13 1424 95 107 264
bal-ter-tree-6 1093 1092 4 8 7 1 1 44 21
email-univ 1133 5451 3 6 5 7 1 9 18
econ-mahindas 1258 7513 3 6 5 32 1 10 15
ia-fb-messages 1266 6451 3 5 5 9 1 9 –
bio-yeast 1458 1948 5 11 9 23 1 14 27
tech-routers-rf 2113 6632 3 7 6 30 1 9 21
chameleon 2277 36101 3 6 6 36 1 12 –
tvshow 3892 17262 4 10 9 302 2 14 18
facebook 4039 88234 3 5 4 26 1 5 5
DD6 4152 10320 9 24 16 716 189 135 221
squirrel 5201 198493 3 6 6 405 1 9 –
politician 5908 41729 4 8 7 452 2 11 14
government 7057 89455 3 6 6 749 1 10 –
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Table 2 Quantifying the empirical results obtained for ∆100K.

Instance Bounds Opt Time (sec) #Cov. Constr. for:

Name |V | |E| L U b(G) GDCA PRYM b(G)− 1 b(G)

crocodile 11631 170918 3 6 6 1982 1 10 –
athletes 13866 86858 3 7 7 5263 2 19 –
company 14113 52310 4 9 9 – 6 21 –
musae-facebook 22470 171002 4 9 8 – 7 13 22
new-sites 27917 206259 4 8 8 – 4 15 –
deezer-europe 28281 92752 5 12 10 – 24 16 18
RO-gemsec-deezer 41773 125826 4 10 10 – 10 16 –
HU-gemsec-deezer 47538 222887 4 9 8 – 30 14 39
artist 50515 819306 3 7 6 – 10 8 11
HR-gemsec-deezer 54573 498202 3 7 7 – 8 12 –
soc-brightkite 56739 212945 4 9 9 – 17 15 –
socfb-OR 63392 816886 4 8 8 – 11 13 –
soc-slashdot 70068 358647 3 7 7 – 8 9 –
soc-BlogCatalog 88784 2093195 3 5 5 – 4 9 –

Table 3 Quantifying the empirical results obtained for ∆4M.

Instance Bounds Opt Time (sec) #Cov. Constr. for:

Name |V | |E| L U b(G) GDCA PRYM b(G)− 1 b(G)

soc-buzznet 101163 2763066 2 4 4 – 21 40 –
soc-LiveMocha 104103 2193083 3 5 5 – 23 29 –
soc-douban 154908 327162 3 6 6 – 34 30 –
soc-gowalla 196591 950327 4 8 8 – 31 10 –
soc-twitter-follows 404719 713319 3 6 6 – 93 30 –
soc-youtube 495957 1936748 4 10 10 – 104 12 –
soc-flickr 513969 3190452 4 10 10 – 269 18 –
soc-delicious 536108 1365961 4 9 8 – 90 14 17
soc-FourSquare 639014 3214986 2 3 3 – 47 6 –
soc-digg 770799 5907132 4 9 9 – 177 11 –
soc-youtube-snap 1134890 2987624 5 12 11 – 652 15 17
soc-lastfm 1191805 4519330 3 6 6 – 165 12 –
soc-pokec 1632803 22301964 4 8 8 – 533 16 –
soc-flixster 2523386 7918801 4 8 5 – 218 13 8
socfb-B-anon 2937612 20959854 4 8 8 – 1111 25 –
socfb-A-anon 3097165 23667394 4 8 7 – 774 10 15
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Considering the 50 instances, 48 from ∆10K and 2 from ∆100K, for which both PRYM
and GDCA obtained provably optimal solutions, for 27 instances PRYM was on average 236.7
times faster than GDCA; they attained the same running times for 21 instances, considering
the granularity of the time measurements presented (sec); and PRYM only performed slower
than GDCA by a few seconds on two instances: DD349 and bal-bin-tree-9. Among these 50
instances, the most remarkable result occurred for the athletes instance, which was solved
by PRYM in 2 seconds, in contrast to the 5263 seconds spent by GDCA.

The remaining 28 instances, 12 from ∆100K and 16 from ∆4M, were only solved by PRYM,
which spent a maximum of 18.6 minutes per instance. Remarkably, despite the large sizes
of these graphs, which have up to 3.09 million vertices, PRYM required just a few dozen
covering constraints to solve GBP-IP. Nevertheless, for graphs with more than 4 million of
vertices, space becomes the limiting factor for PRYM due to the size of GBP-IP even without
Constraints (8).

We now report some additional results for PRYM. In Section 3, we stated that although
Constraints (6) are not necessary for GBP-IP’s correctness, they reduce the search space by
cutting integer solutions that correspond to burning sequences with repeated vertices. In our
tests, lattice3D and stufe were the instances that benefited the most from the inclusion of
those constraints, resulting in a reduction of 18% in the running times for these graphs.

Moreover, to confirm the efficacy of the greedy criteria employed in PRYM for selecting
the covering constraints that are initially loaded into the model as well as the ones that are
added by the separation procedure (see Section 3), we tested a variation of PRYM in which
the covering constraints were selected at random. In our tests, the original PRYM performed
three times faster than its randomized version, on average, for the majority of instances in
our benchmark.

We also tested loading extra covering constraints a priori, in addition to the constraints
that cover the vertices from the burning sequence returned by BFF-d. Since the average
number of covering constraints used by PRYM (see Tables 1, 2 and 3) was ∼50, the alternative
algorithm was set to initially load exactly min(50, |V |) covering constraints for which the
respective covered vertices were selected under the same greedy criteria applied by BFF-d.
For 15 instances, the running times were reduced by 27.24%, on average, but for 25 other
instances, the running times increased by 53, 38%, on average. Thus, we were unable to reach
a consistent outcome and decided to discard this alternative.

4.1 Results for Grid Graphs
Lastly, we evaluated the performance of PRYM on graphs that are square grids since these
instances are known to be quite challenging to solve in practice [12].

For these experiments, we set a time limit of 1800 seconds for the IP solver to decide
each query in which GBP-IP is solved during the binary search. Besides, we set the Threads
parameter of Gurobi to its default configuration. Whenever the time limit was exceed for a
given B = k, we interrupted the binary search and invoked the IP solver for the B = k − 1
and B = k + 1 cases, provided that they had not been solved earlier. Due to this approach,
we were able to determine, for several instances, an optimality gap of just 1 unit on the
length of an optimal burning sequence.

Results for n× n grids, with 3 ≤ n ≤ 70, are presented in Tables 4 and 5. The first three
columns describe the instances and the next two columns report the initial lower and upper
bounds for b(G), L and U , obtained via BFF-d. The two subsequent columns display the
best bounds found by PRYM. The next two columns report the optimal value, when it could
be determined (i.e., “Lower”=“Upper”), and the total time spent by PRYM. The bounds and
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burning numbers that appear in bold are new results not previously reported in the literature.
The last two columns show the number of covering constraints (of type (8)) loaded by PRYM
while solving GBP-IP for B = b(G) − 1 and for B = b(G). For these columns, “⋆” is used
whenever b(G) could not be determined. Also, in the last column, if the initial upper bound
U was equal to the burning number, “–” is used to reflect that there was no need for PRYM to
solve GBP-IP for B = U = b(G).

Table 4 Results obtained by PRYM when solving n-grids for 3 ≤ n ≤ 31.

Instance BFF-d Best Bounds
b(G) Time (sec)

#Cov. Constr. for:

Name |V | |E| L U Lower Upper b(G)− 1 b(G)

grid_003 9 12 2 3 3 3 3 1 4 –
grid_004 16 24 2 4 4 4 4 1 8 –
grid_005 25 40 2 4 4 4 4 1 7 –
grid_006 36 60 3 5 5 5 5 1 14 –
grid_007 49 84 3 6 5 5 5 1 10 21
grid_008 64 112 3 7 6 6 6 1 32 11
grid_009 81 144 4 8 6 6 6 1 20 21
grid_010 100 180 4 9 6 6 6 1 12 57
grid_011 121 220 4 10 7 7 7 1 36 28
grid_012 144 264 4 10 7 7 7 1 23 43
grid_013 169 312 5 11 7 7 7 1 19 78
grid_014 196 364 5 11 8 8 8 1 51 83
grid_015 225 420 5 12 8 8 8 1 35 96
grid_016 256 480 5 12 8 8 8 1 26 118
grid_017 289 544 5 12 9 9 9 2 65 106
grid_018 324 612 5 13 9 9 9 1 53 88
grid_019 361 684 5 13 9 9 9 2 35 137
grid_020 400 760 6 14 10 10 10 3 107 95
grid_021 441 840 5 13 10 10 10 4 70 156
grid_022 484 924 6 15 10 10 10 5 53 231
grid_023 529 1012 6 14 11 11 11 10 240 152
grid_024 576 1104 6 16 11 11 11 7 100 161
grid_025 625 1200 6 15 11 11 11 8 72 255
grid_026 676 1300 7 17 11 11 11 11 59 259
grid_027 729 1404 6 16 12 12 12 19 179 177
grid_028 784 1512 7 18 12 12 12 16 115 277
grid_029 841 1624 7 17 12 12 12 8 78 173
grid_030 900 1740 7 19 12 12 12 22 70 300
grid_031 961 1860 7 18 13 13 13 48 223 260
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Table 5 Results obtained by PRYM when solving n-grids for 32 ≤ n ≤ 70.

Instance BFF-d Best Bounds
b(G) Time (sec)

#Cov. Constr. for:

Name |V | |E| L U Lower Upper b(G)− 1 b(G)

grid_032 1024 1984 7 19 13 13 13 33 149 349
grid_033 1089 2112 7 19 13 13 13 36 114 335
grid_034 1156 2244 8 20 13 13 13 54 89 384
grid_035 1225 2380 8 20 14 14 14 190 258 317
grid_036 1296 2520 8 20 14 14 14 94 186 375
grid_037 1369 2664 8 21 14 14 14 119 132 542
grid_038 1444 2812 8 21 14 14 14 90 109 397
grid_039 1521 2964 8 21 15 15 15 934 394 370
grid_040 1600 3120 8 22 15 15 15 330 225 528
grid_041 1681 3280 8 22 15 15 15 322 177 549
grid_042 1764 3444 8 22 15 15 15 351 149 575
grid_043 1849 3612 8 22 15 16 – 1868 ∗ ∗
grid_044 1936 3784 9 23 16 16 16 1214 341 571
grid_045 2025 3960 9 23 16 16 16 789 236 659
grid_046 2116 4140 9 23 16 16 16 556 181 776
grid_047 2209 4324 9 23 16 16 16 1918 151 880
grid_048 2304 4512 9 24 16 17 – 1950 ∗ ∗
grid_049 2401 4704 9 24 16 17 – 2001 ∗ ∗
grid_050 2500 4900 9 24 17 17 17 1565 251 762
grid_051 2601 5100 9 24 17 17 17 1405 199 797
grid_052 2704 5304 9 25 17 18 – 2526 ∗ ∗
grid_053 2809 5512 9 25 17 18 – 2420 ∗ ∗
grid_054 2916 5724 9 25 17 18 – 2181 ∗ ∗
grid_055 3025 5940 9 25 17 18 – 2362 ∗ ∗
grid_056 3136 6160 10 26 17 18 – 2673 ∗ ∗
grid_057 3249 6384 10 26 18 19 – 3021 ∗ ∗
grid_058 3364 6612 10 26 18 19 – 2805 ∗ ∗
grid_059 3481 6844 10 26 18 19 – 2877 ∗ ∗
grid_060 3600 7080 10 27 18 19 – 2599 ∗ ∗
grid_061 3721 7320 10 27 18 19 – 3770 ∗ ∗
grid_062 3844 7564 10 27 18 27 – 3647 ∗ ∗
grid_063 3969 7812 10 27 19 20 – 5013 ∗ ∗
grid_064 4096 8064 10 28 19 20 – 3827 ∗ ∗
grid_065 4225 8320 10 28 19 20 – 3971 ∗ ∗
grid_066 4356 8580 10 28 19 28 – 3966 ∗ ∗
grid_067 4489 8844 10 28 19 28 – 3820 ∗ ∗
grid_068 4624 9112 11 29 11 21 – 4460 ∗ ∗
grid_069 4761 9384 11 29 11 21 – 4963 ∗ ∗
grid_070 4900 9660 11 29 11 21 – 5086 ∗ ∗
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For the 58 n × n grids with 3 ≤ n ≤ 60, we solved 46 instances within one hour of
execution per grid, and for the remaining 12 grids, we determined a very tight optimality
gap of exactly 1 unit on the length of an optimal burning sequence.

Notice that for n ≤ 60, we have 0 ≤ (Upper−Lower) ≤ 1, as well as for n ∈ {61, 63, 64, 65}.
Moreover, since each n× n square grid is fully contained in the n + 1× n + 1 grid, we can
conclude that the upper bound value 20 for grid_063 implies that grid_062 also has an upper
bound 20 (instead of just the value Upper = 27 directly found by PRYM), which establishes a
gap of 2 for the 62-grid. In a similar fashion, we can infer that Upper = 21 (established for
grid_068) is an upper bound for grid_066 and grid_067.

Although it may appear that solving the GBP on grid graphs is more difficult than on
social networks solely because the burning number is typically larger, the high symmetry of
grids, compared to social networks, also significantly contributes to this complexity.

5 Concluding Remarks and Future Work

In this paper, we propose an exact algorithm for the GBP, namely PRYM. For a given arbitrary
graph, PRYM finds an optimal burning sequence by means of solving multiple decision problems
formulated as set covering IP models, while it generates essential covering constraints on
demand. The algorithm takes advantage of the fact that a very small number of covering
constraints is often sufficient for solving those decision problems, as was confirmed in practice.

Via computational experiments, we demonstrate that PRYM far outperforms the previously
best known exact algorithm for GBP, and it is able to solve real-world instances with up to 3.09
million vertices in less than 19 minutes. For a collection of challenging instances composed
of grid graphs with up to 5,000 vertices, PRYM was able to obtain newly provably optimal
solutions and tight optimality gaps that were not previously reported in the literature.

We underscore that, while the overall success of PRYM relies on the combination of various
techniques, the row generation method plays a crucial role, significantly impacting the results.
The other techniques, including the computation of distances on demand and the branching
rule, serve a secondary duty.

As for future research, we intend to analyze whether a column generation approach can
also be successfully applied to the proposed IP formulation, extending PRYM to a branch-and-
price algorithm and potentially increasing the suitability of the algorithm for solving the GBP
for even larger graphs.

On top of that, we acknowledge that solving GBP-IP can be a bottleneck for PRYM,
particularly as instance sizes grow. In future work, we plan to investigate advanced techniques
for solving IP models, such as cutting planes, decomposition, reformulations with composite
variables, and hybridization with constraint programming or decision diagrams.

Lastly, we aim to extend PRYM to solve variants of the GBP such as the k-Graph Burning
Problem [21], in which k fire-souces are chosen to be set on fire in each round, and the GBP for
edge-weighted graphs, where the weight of an edge {u, v} determines the number of rounds
the fire takes to spread from u to v and vice-versa.
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