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Abstract
We study the parameterized complexity of algorithmic problems whose input is an integer set A in
terms of the doubling constant C := |A + A|/|A|, a fundamental measure of additive structure. We
present evidence that this new parameterization is algorithmically useful in the form of new results
for two difficult, well-studied problems: Integer Programming and Subset Sum.

First, we show that determining the feasibility of bounded Integer Programs is a tractable
problem when parameterized in the doubling constant. Specifically, we prove that the feasibility of
an integer program I with n polynomially-bounded variables and m constraints can be determined
in time nOC(1) · poly(|I|) when the column set of the constraint matrix has doubling constant C.

Second, we show that the Subset Sum and Unbounded Subset Sum problems can be solved in
time nOC (1) and nOC(log log log n), respectively, where the OC notation hides functions that depend
only on the doubling constant C. We also show the equivalence of achieving an FPT algorithm
for Subset Sum with bounded doubling and achieving a milestone result for the parameterized
complexity of Box ILP. Finally, we design near-linear time algorithms for k-SUM as well as tight
lower bounds for 4-SUM and nearly tight lower bounds for k-SUM, under the k-SUM conjecture.

Several of our results rely on a new proof that Freiman’s Theorem, a central result in additive
combinatorics, can be made efficiently constructive. This result may be of independent interest.
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1 Introduction

Given a subset X of a group, the doubling constant

C := C(X) = |X + X|
|X|

is one measure used to capture the amount of “additive structure” in X. (Here, X + X

denotes the sumset {a+ b : a, b ∈ X}.) This value ranges (on integer sets) from 2−on(1) for
arithmetic progressions to n

2 + on(1) when all sums are distinct, and is central to the study
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96:2 Parameterized Algorithms on Integer Sets with Small Doubling

of additive combinatorics. If the doubling constant C is truly constant (that is, independent
of the set cardinality |X|), this indicates that X is a “highly structured” set with respect to
addition: for example, the statements that

X has constant doubling (|X + X| ≤ c1|X|), that
the iterated sumset sX := X + X + X · · · + X︸ ︷︷ ︸

s times

is at most c2 := c2(s) times |X|, and that

X (likewise X + X and sX) can be contained in a generalized arithmetic progression of
dimension c3 and volume c4|X|,

are all equivalent up to the choice of constants c1, c2, c3, and c4 (c.f. [34] Proposition 2.26).
The many fruitful applications of the doubling constant illustrate its significance as a robust
measurement of additive structure (for an overview, see [34], especially Chapter 2).

In this work, we consider the parameterized complexity of problems on integer sets with
respect to the doubling constant. Specifically, we focus on two problems for which additive
structure is particularly helpful: Integer Programming and Subset Sum.

1.1 Related Work
Integer Programming and Subset Sum are not only problems in which additive structure
plays an important role: they are also both well-studied and stubbornly difficult, to the
point where significant work has gone into analysing their parameterized complexity and
demarcating classes of tractable instances.

Integer Linear Programming

Many problems in combinatorial optimization can be formulated as an integer linear program
(ILP). An ILP is an optimization problem of the following form:

max
{

cT x | Ax = b, x ∈ Zn
≥0

}
,

where A ∈ Zm×n, c ∈ Zn and b ∈ Zm. (ILPs of the form Ax ≥ b can be converted to this
form using slack variables.) Unlike linear programming, integer programming is NP-complete.
Due to its generality and both practical and theoretical importance, the complexity of ILP has
been rigorously studied through the lens of parameterized complexity. Lenstra [27] has shown
that an integer linear program with a fixed number of variables can be solved in polynomial
time. His algorithm was subsequently improved, and the current record is (log n)O(n) [32].
The question of whether this can be brought down to 2O(n) is one of the most prominent
open questions in the theory of algorithms.

ILP can also be parameterized in the number of constraints m and the maximum absolute
value of any coefficient in the constraint matrix, ∆ := ∥A∥∞. In 1981, Papadimitriou [30]
presented an (m∆)O(m2)-time algorithm, and the best algorithms for ILP parameterized in
m and ∆ continue to improve: see [22, 17] for recent progress. Another class of tractable
instances of ILP rely on structural properties of the constraint matrix (see [14, 24, 12, 13]).

Subset Sum

Along with the closely related Knapsack problem, the Subset Sum problem is the canonical
NP-complete problem concerning addition in integer sets. In addition to NP-completeness,
the problem appears difficult from the standpoint of exact algorithms: despite significant
attention (see, e.g., [37, 4, 29]), solving Subset Sum in time 2(1/2−c)n for some constant c > 0
remains a major open problem. Except for “log shaving” results that improve runtime by
subexponential factors [11], the exact runtime has not been improved in 50 years [21]. The
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lack of progress in exact algorithms motivates parameterized approaches, including a long
line of pseudopolynomial-time algorithms parameterized by the size of the target [6, 26, 2]
and the largest input integer [17, 8, 31, 10].

However, these parameterized results do not take advantage of structural properties of the
input when the input numbers are very large. Therefore, we complement the parameterization
based on the input size by considering the parameterized complexity of Subset Sum with
respect to the doubling constant. This choice is natural not only because the doubling
constant is essential to the study of integer sets under addition, but also because existing
results from additive combinatorics give strong bounds on the search space: Freiman’s
Theorem bounds the number of distinct subset sums of an n-element input set by nf(C),
where f is a function that depends only on C.

The parameterization of Subset Sum in the cardinality of the solution k, otherwise known
as k-SUM, has an entire literature of its own. Simple “meet-in-the-middle” algorithms that
run in time O(n⌈k/2⌉) are conjectured to be optimal up to polynomial factors. The results of
Abboud, Bringmann, and Fischer, and of Jin and Xu, suggest that the hardest instances of
k-SUM are those with very little additive structure, such as Sidon sets [1, 23]. Parameterizing
k-SUM in the doubling constant allows us to make analogous conclusions for the more general
case of k-SUM: we can now prove results of the form, “k-SUM instances with strong additive
structure (i.e., small doubling constant) are easy”.

Algorithms and Additive Combinatorics

This paper is also motivated by an emerging trend in fine-grained complexity and algorithms:
“importing” results from additive combinatorics. In several recent works, researchers have
achieved breakthroughs by taking existential results from the field of additive combinatorics
and modifying their proofs to make them explicitly and efficiently constructive.

For example, in 2015 Chan and Lewenstein proved a version of the Balog-Szemeredi-
Gowers (BSG) theorem that allows certain sets guaranteed by the theorem to be constructed
algorithmically [9]. They then leveraged this result to solve the (min, +)-convolution and
3-SUM problems on monotone sets of small integers. Recently, the constructive BSG theorem
found new applications. In 2022, Abboud, Bringmann and Fischer used this result, as well as
a constructive version of Ruzsa’s covering lemma, as a key ingredient in their proofs of lower
bounds for approximate distance oracles and listing 4-cycles [1]. In the same year, Jin and
Xu independently proved similar lower bounds and used the constructive BSG theorem to
reduce 3-SUM to 3-SUM on Sidon sets [23]. More broadly, these works reflect the increasing
role of additive combinatorics in algorithms over the last few decades; for general references,
see [35, 36, 5, 28].

1.2 Our Results

Contribution 1: A Constructive Freiman’s Theorem in Near-Linear FPT Time

We begin by unlocking a new tool to help us manipulate sets with significant additive structure.
Freiman’s Theorem, a cornerstone result in additive combinatorics, states that every integer
set with constant doubling is contained inside a small (generalized) arithmetic progression.
Naively constructing this generalized arithmetic progression takes XP-time. We make the
construction efficient by showing how an algorithm can obtain such an arithmetic progression
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in time ÕC(n)1 (Theorem 5). Later in the paper, we use this theorem to reduce Subset Sum
with constant doubling to a constrained integer programming problem (Contribution 3) and
to design efficient algorithms for Unbounded Subset Sum (Contribution 4). We hope that,
like the constructive BSG theorem discussed above, the constructive statement of Freiman’s
Theorem may find other independent applications.

Contribution 2: Integer Programming with Constant Doubling

An integer program specified by a constraint matrix A ∈ Zm×n and solution vector b ∈ Zm

is feasible if there exists a solution x ∈ Zn
≥0 such that Ax = b. The ILP is binary if the

variables are further restricted to x ∈ {0, 1}n.
In our setting, we consider integer programs in which the set of column vectors A :=

{A[·, j] | j ∈ [n]} has constant doubling: |A + A| ≤ C|A|, for a constant C. We prove:

▶ Theorem 1. An instance I of C-Binary ILP Feasibility on n variables can be solved in
time nOC(1) · poly(|I|).2

This follows from Freiman’s Theorem (without construction) and a dynamic programming
algorithm. The theorem also holds when the variables x1, x2, . . . , xn have upper and lower
bounds of magnitude poly(n).

Contribution 3: Subset Sum with Constant Doubling

Our result for integer programming with constant doubling implies an nOC(1)-algorithm for
Subset Sum (Corollary 9).

Assuming the Exponential Time Hypothesis (ETH), there is no 2o(n) time algorithm
for Subset Sum. Because C = O(n), this means that we cannot hope for a 2o(C)no(C/ log(C))

algorithm for C-Subset Sum under the ETH. However, this lower bound does not exclude
an 2O(C) · nO(1) algorithm. A natural question is thus whether our upper bound can be
improved to an Fixed-Parameter Tractable (FPT) result: can C-Subset Sum be solved in time
OC(poly(n))? We show that this result appears unlikely by way of an interesting connection
to the feasibility of integer programs with binary variables.

▶ Theorem 2. It is possible to solve C-Subset Sum in time OC(poly(n)) if and only if
Hyperplane-Constrained Binary ILP (HBILP) can be solved in time ∆O(m) · Om(poly(|I|)),
where |I| is the size of the instance.

HBILP considers a constraint matrix A ∈ Zm×n with entries bounded by ∆ := ∥A∥∞,
and asks whether there exists a solution x ∈ {0, 1}n such that ⟨Ax, s⟩ = t for a certain target
t and “step vector” s orthogonal to a hyperplane. The best existing algorithm solves HBILP
Feasibility in time Om(|I|) + ∆O(m2) ([15], Corollary 13).

We also prove a reduction from ILP Feasibility with bounded variables to HBILP feasibility
(Lemma 17). Thus Theorem 2 implies that an FPT algorithm for Subset Sum with constant
doubling would imply a ∆O(m) · poly(n) algorithm for ILP Feasibility with bounded variables

1 We use OC notation to indicate the suppression of terms that depend only on C. For example,
OC(n2) = f(C) ·O(n2) for some computable function f . Õ hides factors polylogarithmic in the argument,
in this case log(n).

2 We write |I| to denote the size of the ILP instance I. In the word RAM model (see Section 2), this is
poly(m, n).

3 Corollary 2 in the arXiv preprint, 2303.02474.
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(Corollary 16). As previously noted in [15], reducing the exponent of ∆ from O(m2) to O(m)
would be analogous to the recent improvement achieved by Eisenbrand and Weismantel for
integer programs with unbounded variables [17].

Such an algorithm for ILP Feasibility would resolve the feasibility portion of one of the
most significant open questions in the parameterized complexity of integer programming:
whether the (∆O(m) · Om(|I|))-time algorithm for ILPs with unbounded variables can be
extended to ILPs with bounded variables [17, 22, 25]. This would be a breakthrough in the
area [22, 25]; accordingly, finding an FPT algorithm for C-Subset Sum is at least as difficult.

Contribution 4: Unbounded Subset Sum with Constant Doubling

We can reduce an instance of Unbounded Subset Sum with constant doubling to an ILP
with m constraints, n binary variables, and entries of A bounded by ∆ = nO(1/d(C)) using
our constructive Freiman’s theorem. Because solvable ILPs with bounded ∆ admit solutions
with small support, this allows us to solve Unbounded Subset Sum in time nOC(log log log n),
or nOC(1) under the hypothesis that a v-variable ILP I can be solved in time 2O(v)poly(I)
(Theorem 21).

Contribution 5: k-SUM with Constant Doubling

The application of recent algorithms for sparse nonnegative convolution [7] allow us to
efficiently solve k-SUM with constant doubling in time Õ(C⌈k/2⌉ · 2O(k) · n) (see Theorem 23).

Because the k-SUM conjecture implies a lower bound of Ω(C⌈k/2⌉−1n), this leaves a C-
factor gap. Part of the gap can be explained by the fact that the Plünnecke-Ruzsa inequality,
which we use to derive the upper bound, does not give the optimal exponent for C; applying
recent improvements to the inequality narrows the gap slightly. In the specific case of (C, 4)-
SUM, our algorithm achieves a runtime of Õ(Cn), which is optimal up to polylogarithmic
factors under the k-SUM conjecture.

1.3 Organization
We begin with mathematical preliminaries in Section 2 In Section 4, we present our algorithms
for ILP feasibility with bounded doubling. Finally, we present our bounds for Subset Sum in
Section 5, Unbounded Subset Sum in Section 6, and k-SUM in Section 7.

2 Preliminaries

RAM Model. Throughout the paper, we use the standard word RAM model, in which input
integers fit into a single machine word and logical and arithmetic operations on machine
words take time O(1). If we make the weaker assumption that operations on b-bit words take
polylog(b) time, this adds a polylog(b) factor to Theorem 5 and the results that rely on it.

Big-O Notation. We use OC notation to indicate we have suppressed terms that depend
only on C. For example, OC(n2) = f(C) · O(n2) for some computable function f . Õ notation
suppresses polylogarithmic factors of n and ∆: for instance, n log2(n) = Õ(n).

Sets. We write [n] for the integer set {1, 2, . . . , n} and [a : b] (with a ≤ b) for the integer set
[a, a + 1, a + 2, . . . , b]. The diameter of an integer set A, denoted diam(A), is maxa,b∈A |a − b|.
We write Σ(X) as shorthand for the sum of elements

∑
x∈X x, and Σ(2X) as shorthand for

the set of subset sums {Σ(X ′) : X ′ ⊆ X}.

ESA 2024
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Vectors. Given a vector x ∈ Zn, supp(x) ⊆ [n] denotes the set of non-zero coordinates of x.
For a, b ∈ Zn

≥0 we say that a is lexicographically prior to b, denoted a ≺lex b, if and only
if there exists k ∈ [n] such that a[k] < b[k] and for every 1 ≤ i < k it holds that ai = bi.
Observe that ≺lex is a total order and that every set of vectors S ⊆ Zn

≥0 contains a unique
element that is lexicographically minimal.

Matrices. Given a m × n matrix A, we write A[i, j] to denote the component of A at row i,
column j. We write A[i, ·] and A[·, j] to denote the ith row and jth column of A, respectively.

We write Jm×n to denote the m × n matrix in which each entry is 1.

Group Theory and Linear Algebra. Given an integer m, we write Zm to denote the cyclic
group of order m (under addition). When p is prime, every element of Zp is a generator
except for 0.

A lattice in Rd is defined by d linearly independent vectors v1, v2, . . . , vd ∈ Rd, collectively
referred to as the basis of the lattice. The lattice itself is the set

Λ =

∑
i∈[d]

aivi

∣∣∣∣∣∣ ai ∈ Z


of all integer linear combinations of v1, v2, . . . , vd. Each point in Λ is a lattice vector.

The determinant of a lattice, denoted det(Λ), is the determinant of the matrix whose
columns are the lattice basis. Geometrically, det(Λ) is the volume of the fundamental
parallelepiped spanned by the lattice basis. In general, if T is a convex body, we write vol(T )
to denote the volume of T .

Given two m-dimensional vectors x and y, ⟨x, y⟩ denotes the dot product x1y1+· · ·+xmym.

Norms. Given a real number r, we write ∥r∥R/Z to denote distance from the nearest integer.
Given a finite-dimensional vector v, the norm ∥v∥∞ denotes the largest absolute value of any
coordinate.

Additive Combinatorics. Given an integer set X, X + X denotes the sumset {a + b :
a, b ∈ X}. We write sX, where s is a positive integer, as shorthand for the iterated sumset
X + . . . + X︸ ︷︷ ︸

s times

.

A generalized arithmetic progression (GAP) P is an integer set

P = {ℓ1y1 + ℓ2y2 + · · · + ℓdyd : 0 ≤ ℓi < Li, ∀i ∈ [d]},

defined by the integer vector y = {y1, y2, . . . , yd} and the dimension bounds L1, L2, . . . , Ld.
We say that P has dimension d and volume

∏
i∈[d] Li. When we write that an algorithm

“explicitly constructs” or “returns” P , we mean specifically that the algorithm computes yi

and Li for all i ∈ [d]. We can think of P as a projection of a d-dimensional parallelepiped
onto the line. P is proper if |P | = L1L2 . . . Ld, that is, if each point in the parallelepiped
projects to a unique point on the line.

The Plünnecke-Ruzsa Inequality bounds the size of sumsets using the doubling constant.

▶ Lemma 3 (Plünnecke-Ruzsa Inequality). If X is a finite subset of an abelian group and
|X + X| ≤ C|X| for a constant C, then for all nonnegative integers s and t, |sX − tX| ≤
Cs+t|X|.
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3 Freiman’s Theorem Made Constructive in FPT Time

Freiman’s Theorem states that any integer set X with constant doubling is contained inside
a GAP of constant dimension and volume at most |X| times a constant.

▶ Theorem 4 (Freiman’s Theorem, [19], see [38] for a modern presentation). Any finite integer
set X with |X + X| ≤ C|X| is contained in a GAP P of dimension d(C) and volume v(C)|X|,
where d and v are computable functions that depend only on C.

We make this statement constructive by showing an algorithm that, given X, can explicitly
construct the progression P in FPT time. In fact, the construction is near-linear, losing only
a polylog(n) factor and a (large) function of C.

▶ Theorem 5 (FPT Freiman’s Theorem). Let A be a set of n integers satisfying |A+A| ≤ C|A|.
There exists an ÕC(n) algorithm that, with probability 1−n−γ for an arbitrarily large constant
γ > 0, returns4 an arithmetic progression

P = {x1ℓ1 + x2ℓ2 + · · · + xd(C)ℓd(C) : ∀i, ℓi ∈ [Li]} ⊇ A

with dimension d(C) and volume v(C) · |A|, where d and v are computable functions that
depend only on C.5

The following observation further simplifies Theorem 5.

▶ Observation 6. In the GAP P guaranteed by Theorem 5, without loss of generality we can
assume Li ≤ n2/d(C) for all i ∈ [d(C)], where d(C) denotes the dimension of P .

We defer the proofs of Theorem 5 and Observation 6 to the full version of the paper.

4 Integer Programming with Constant Doubling

For an integer program, we consider the doubling constant of the column set of the constraint
matrix A as our parameter. This is because the column is the smallest unit affected by
each variable xi when we compute the product Ax; as a result, duplicate columns in A

play a similar role to duplicate elements in a Subset Sum instance, and indeed can often be
eliminated without loss of generality. This formulation allows A to contain duplicate entries
(for example, multiple 0’s and 1’s) as long as all columns are distinct.

Given a matrix A, we use the shorthand A := A(A) = {A[·, j] | j ∈ [n]} to denote the
set of column vectors of A. Vector set addition (that is, A + A) is defined in the natural way,
using vector instead of integer addition.

Problem 1: C-Integer Linear Programming (ILP) Feasibility

In: An integer linear program specified by an integer matrix A ∈ Zm×n with n distinct
columns and an integer target b ∈ Zm, such that the column set A := A(A) satisfies
|A + A| ≤ C|A| for a constant C independent of m and n.
Out: Vector x ∈ Zn

≥0 such that Ax = b, or “NO” if no solution exists.

4 Specifically, we compute the values x1, x2, . . . , xd(C) and L1, L2, . . . , Ld(C).
5 We make the standard assumption that arithmetic operations on integers require O(1) time.
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If each variable xi is constrained to satisfy xi ∈ [ℓi : ui], where ℓi and ui indicate the
lower and upper bounds of a range of valid variable assignments, we refer to the problem
as C-Bounded ILP Feasibility. Further restricting the variables to x ∈ {0, 1}n yields
C-Binary ILP Feasibility.
▶ Remark 7. Bounded ILPs with n variables and |ℓi|, |ui| = O(poly(n)) for i ∈ [n] can be
converted into equivalent binary ILPs with poly(n) variables by duplicating columns of A.

4.1 C-Binary ILP Feasibility
Given a constraint matrix with constant doubling, Freiman’s Theorem bounds the number
of possible values for Ax corresponding to any variable assignment if the variables are binary
or bounded. This allows us to solve the problem efficiently via dynamic programming, and
does not actually require constructing the GAP guaranteed by Freiman’s Theorem.6

▶ Theorem 1. An instance I of C-Binary ILP Feasibility on n variables can be solved in
time nOC(1) · poly(|I|).7

Proof. Fix an instance of C-Binary ILP feasibility specified by A ∈ Zm×n and b ∈ Zm, with
the column set A satisfying |A + A| ≤ C|A|.

Let L := Σ(2A) denote the list of all (vector) sums that can be attained by adding
together any subset of the columns of A. Equivalently, this is the set of possible outputs Ax

for any x ∈ {0, 1}n. Our first goal is to bound |L|.
First, we observe that there exists a GAP P of dimension d(C) and volume v(C)n with

A ⊆ P = {x1k1 + x2k2 + · · · + xd(C)kd(C) : ∀i, ki ∈ [Ki]},

where xi ∈ Zm for all i ∈ [d(C)]. This is true even though A is a set of integer vectors, as
Freiman’s Theorem holds for torsion-free8 commutative groups ([33], Theorem 8.1).

Thus L is contained in the GAP

P ′ = {x1k1 + x2k2 + · · · + xd(C)kd(C) : ∀i, ki ∈ [n · Ki]},

which implies

|L| ≤ |P ′| ≤ nd(C)|P | = nd(C)v(C)n = nOC(1). (1)

To complete the proof, we claim that we can enumerate L efficiently via dynamic
programming, using the following procedure: Initially, we set L1 = A[1, ·]. Then, we iterate
i = 2, 3, . . . , n. In the ith iteration, we construct the sorted list Li, defined as:

Li := Li−1 ∪ {a + A[i, ·] | a ∈ Li−1}.

Finally, we return list L = Ln. Correctness of the above algorithm follows immediately
by a construction. For the running time, observe that Li can be constructed in O(|Li|) time.
Because each of the n iterations of the subprocedure takes time O(|Li|) = O(|L|), the total
runtime is, by (1), at most n · O(|L|) = nOC(1). ◀

6 The constructive Freiman’s theorem will be required later, specifically in Lemma 11 and Theorem 21.
The current result emphasizes the usefulness of parameterization in the doubling constant.

7 We write |I| to denote the size of the ILP instance I. In the word RAM model (see Section 2), this is
poly(m, n).

8 That is, groups in which only the identity element has finite order.
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4.2 C-Bounded ILP Feasibility
In general, ILPs with polynomially bounded variables can be converted to ILPs with binary
variables (see Remark 7); however, the straightforward reduction can create many duplicate
columns in the resulting Binary ILP. Although it is possible to get rid of the duplicate
columns, it is easier to extend the previous result to C-Bounded ILP Feasibility directly:

▶ Corollary 8. An instance I of C-Bounded ILP Feasibility such that ℓi ≤ xi ≤ ui and
|ℓi|, |ui| = poly(n) for i ∈ [n] can be solved in time nOC(1) · poly(|I|).

Proof. Modify the proof of Theorem 1 by considering the list L′ of all possible outputs Ax

for each valid assignment of variables x, using the variable bounds xi ∈ [ℓi : ui] for i ∈ [n]
instead of x ∈ {0, 1}n. As before, we bound |L′|.

Observe that L′ is contained in the GAP P ′′ obtained by scaling each range bound Li of P

by a factor of nO(1), where the hidden constant is determined by the bounds on the variables.
It follows that |L′| = nOC(1). We can enumerate L′ by modifying the procedure given above
so that Step 2 merges a polynomial number of lists, one for each variable assignment. ◀

5 Subset Sum with Constant Doubling

We now consider the useful applications of parameterization in the doubling constant to
Subset Sum. Formally, we consider the following problem:

Problem 2: C-Subset Sum

In: An integer set Z = {z1, z2, . . . , zn} such that |Z + Z| ≤ C|Z| and an integer target
t.
Out: S ⊆ Z such that Σ(S) = t, or “NO” if no solution exists.

C-Subset Sum is equivalent to C-Binary ILP with a single constraint. As a result,
Theorem 1 yields the following corollary for Subset Sum with n variables:

▶ Corollary 9 (C-Subset Sum is in XP). C-Subset Sum can be solved in time nOC(1).

At this point, it is natural to wonder whether C-Subset Sum can be solved in time
OC(1) · nO(1): that is, whether Subset Sum is in FPTwith respect to the doubling constant.
While we cannot yet prove or disprove this statement, we can show that it is equivalent to
an open problem in the parameterized complexity of integer programming. The remainder of
this section proves this reduction in both directions.

5.1 Reduction from C-Subset Sum to Hyperplane-Constrained Binary
ILP Feasibility

Recent generalizations of Integer Programming consider the problem of optimizing the value
g(Ax) in place of Ax, where g : Rm → R is a low-dimensional objective function [15]. The
mapping given by Freiman’s Theorem provides a natural reduction from Subset Sum with
constant doubling to a problem of this form. Specifically, C-Subset Sum reduces to a Binary
ILP feasibility problem in which the constraint matrix A has bounded entries and a feasible
solution is any x satisfying ⟨Ax, s⟩ = t for a specific “step vector” s.

ESA 2024
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Problem 3: Hyperplane-Constrained Binary ILP (HBILP) Feasibility

In: An integer matrix A ∈ Zm×n, a step vector s ∈ Zm, and a target integer t. We let
∆ := ∥A∥∞, the magnitude of A’s largest entry.
Out: A vector x ∈ {0, 1}n such that ⟨Ax, s⟩ = t, or “NO” if no solution exists.

The reduction from C-Subset Sum to HBILP Feasibility (Lemma 11) is straightforward
but relies crucially on our constructive Freiman’s Theorem.

▶ Lemma 10. For any fixed instance (Z, t) of C-Subset Sum, there exists a HBILP Feasibility
instance given by A ∈ Zd(C)×n, s ∈ Zd(C), and t for some function d(C) such that a vector
x ∈ {0, 1}n satisfies

Ax = t if and only if
∑

i : xi=1
zi = t.

Moreover, ∆ := ∥A∥∞ ≤ n2/d(C), and the reduction can be computed in time ÕC(n) with
success probability 1 − n−γ for an arbitrarily small constant γ.

Proof. Fix an instance of C-Subset Sum given by an integer set Z satisfying |Z + Z| ≤ C|Z|
and an integer target t. Apply Theorem 5, which fails with probability n−γ and otherwise
produces a GAP P = {y1ℓ1 + y2ℓ2 + · · · + ydℓd : ∀i, ℓi ∈ [Li]} of dimension d := d(C) and
volume v(C)n containing Z.

For each zi ∈ Z, let v(zi) = (v1, v2, . . . , vd) be an arbitrary d(C)-dimensional integer
vector satisfying

y1v1 + y2v2 + . . . ydvd = zi and ∀i ∈ [d], vi ∈ [Li].

We can think of v(zi) as the d-dimensional “GAP coordinates” of the input element zi. v(zi)
is guaranteed to exist by Freiman’s theorem, and we can recover it in time O(|P |) = OC(n)
via exhaustive search of P . (However, v(zi) is not guaranteed to be unique.)

To complete the reduction, set

A ∈ Zd(C)×n with ∀j ∈ [n], A[·, j] = v(zj),

set s := (y1, y2, . . . , yd) and preserve the same target t. Note that ∥A∥∞ ≤ n2/d(C) without
loss of generality by Observation 6.

We claim that for any binary vector x = (x1, x2, . . . , xn) ∈ {0, 1}n,

⟨Ax, s⟩ =
∑

i : xi=1
zi. (2)

To see this, observe that

⟨Ax, s⟩ =
∑
i∈[d]

yi

∑
xj=1

A[i, j] =
∑

xj=1
y1A[1, j] + y2A[2, j] + . . . ydA[d, j]

=
∑

xj=1
⟨y, v(zj)⟩ =

∑
j : xj=1

zj .

Thus ⟨Ax, s⟩ = t if and only if
∑

i : xi=1 zi = t, and there is a one-to-one correspondence
between solutions to our C-Subset Sum instance and our HBILP feasibility instance. ◀
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5.2 Equivalence Between HBILP Feasibility and Subset Sum
▶ Theorem 2. It is possible to solve C-Subset Sum in time OC(poly(n)) if and only if
Hyperplane-Constrained Binary ILP (HBILP) can be solved in time ∆O(m) · Om(poly(|I|)),
where |I| is the size of the instance.

Theorem 2 follows immediately from the next two lemmas, which show reductions in
both directions. The first is a consequence of the reduction in Section 5.1:

▶ Lemma 11. If HBILP Feasibility can be solved in time ∆O(m) ·Om(poly(n)), then C-Subset
Sum can be solved in time OC(poly(n)) with success probability 1 − n−γ for an arbitrarily
large constant γ > 0.

Proof. In polynomial time (in the size of the input), we can preprocess an instance of Subset
Sum and produce an equivalent one such that all integers are bounded by 2poly(n) (see, e.g.,
[18, 20]).9 Next, we use the reduction given in Lemma 10, which takes time ÕC(n) and
succeeds with probability 1 − n−γ , and solve the resulting HBILP instance in time

∆O(m) · Om(poly(n)) = (n2/d(C))O(d(C)) · OC(poly(n)) = OC(poly(n)). ◀

Moreover, we can assume that each entry of A is non-negative and that any solution
vector x has fixed support exactly q for some q = Θ(n):

▶ Observation 12. Let I be an instance of HBILP feasibility given by the constraint matrix
A ∈ Zm×n, the step vector s ∈ Zm, and the target t ∈ Z. Without loss of generality, we can
assume that entries of A are non-negative and that every solution x has fixed support size q

for some q = Θ(n).

The proof of this observation is in the full version of the paper.

▶ Lemma 13. If C-Subset Sum admits an OC(poly(n))-time algorithm, HBILP Feasibility
can be solved in time ∆O(m) · Om(poly(n)).

Proof. Fix an instance of HBILP Feasibility given by the matrix A ∈ Zm×n, the vector
s ∈ Zm, and the integer target t. Let ∆ := ∥A∥∞.

We perform the reduction in two steps. First, we self-reduce our HBILP instance to
another HBILP instance A′, s′, t′ with the property that every column A′[·, j] of A′ has a
unique dot product ⟨A′[·, j], s′⟩. We then reduce A′, s′, t′ to C-Subset Sum.

If A contains any column with only zeroes, then the value of the corresponding entry of x

does not matter, and we can safely delete it. Thus we can assume without loss of generality
that each column of A has at least one nonzero entry.

By Observation 12, we can assume that each entry of A is non-negative and that any
solution vector x has fixed support exactly q for some q = Θ(n).

Step 1: Self-reduction. In order to construct the instance A′, s′, t′, define M := nm∆∥s∥∞+
1, which satisfies M > ⟨Ax, s⟩ for any x ∈ {0, 1}n by construction. Moreover, let k :=
⌈log∆(n)⌉.

Let R ∈ [∆]k×n be the matrix whose columns are vectors in [0 : ∆−1]k in lexicographically
increasing order. Because the number of such vectors is at least n, every column of R is
different. Recall that Jk×n denotes the k × n matrix containing only 1’s and let R be
∆ · Jk×n − R.

9 See discussion about the computational model in Section 2.
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Create the block matrix A′ ∈ Z(m+k)×2n
≥0 as follows. The top-left block is A, the bottom-

left block is R, the bottom-right block is R and each entry in the top-right block is 0. Observe
that every column in Ã is distinct because each column in R is distinct and no column in A

is all 0’s.
Create s′ ∈ Zm+k

≥0 as follows. The first m entries of s′ are s, and the remaining k entries
are the vector v = (M∆0, M∆1, . . . , M∆k−1). Finally, set t′ := t + q∆∥v∥1 to complete the
reduction.

A′ :=


A 0

R R

 s′ :=


s

v


▷ Claim 14. For every distinct pair of indices i, j ∈ [2n], ⟨A′[·, i], s′⟩ ≠ ⟨A′[·, j], s′⟩.

Proof. Begin with the first n columns. For all i ∈ [n], we can break down the relevant dot
product into two pieces corresponding to the top and bottom portions of A′:

⟨A′[·, i], s′⟩ = ⟨A[·, i], s⟩ + ⟨R[·, i] · v⟩.

First, observe that ⟨R[·, i], v⟩ is distinct for every i ∈ [n] by construction and the
components of v increase by factors of ∆.

Second, because 0 < ⟨A[·, i], s⟩ ≤ M , the ⟨A[·, i], s⟩ term of the dot product ⟨A′[·, i], s′⟩ is
not large enough to interfere with the ⟨R[·, i], v⟩ term, and thus the first n columns of A′

have distinct dot products with s′.
Because R = ∆ · Jk×n − R, and because no column of A consists of all 0’s by assumption,

similar arguments show that the value ⟨A′[·, i], s′⟩ is distinct for every column i ∈ [2n]. ◁

▷ Claim 15. The ILP instance (A′, s′, t′) has a solution if and only if the instance (A, s, t)
has a solution (and the solution to A, s, t can be recovered efficiently from the solution of
A′, s′, t′).

Proof. Suppose x satisfies ⟨Ax, s⟩ = t. Recall that x has support exactly q by Observation 12
without loss of generality. Thus the vector x′ created by concatenating two copies of x

satisfies

⟨A′x′, s′⟩ = t + q∆∥v∥1 = t′.

Moreover, any vector y′ ∈ {0, 1}2n that satisfies ⟨A′y′, s′⟩ = t′ must satisfy

⟨A(y′
1, y′

2, . . . , y′
n), s⟩ = t

by construction. This is because the [R | R] submatrix of A′ can contribute to t′ only in
multiples of M . Because M > ⟨Ax, s⟩, we know that ⟨A(y′

1, y′
2, . . . , y′

n), s⟩ < M , and thus
this product evaluates to t. ◁

Step 2: Reduction to C-Subset Sum. Consider the integer vector

z := (⟨s′, A′[·, 1]⟩, ⟨s′, A′[·, 2]⟩, . . . , ⟨s′, A′[·, 2n]⟩) (3)

and let Z = {z1, z2, . . . , z2n} denote the set containing the components of z. (Note that Z is
a proper set and contains no duplicates, by Claim 14.) We proceed to consider Z, t as an
instance of Subset Sum.
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Because ⟨A′x, s′⟩ = t′ if and only if ⟨x, z⟩ = t′ by construction (3), we have a one-to-one
correspondence between solutions to our Subset Sum and HBILP Feasibility instances: any
subset of Z that adds to t′ corresponds to a binary vector x ∈ {0, 1}2n such that ⟨A′x, s′⟩ = t′,
which can be used to recover a solution for the original instance A, s, t by Claim 15. It
remains to show that an OC(poly(n)) algorithm for C-Subset Sum will allow us to solve the
problem in the claimed time.

We begin by bounding the doubling constant C of Z. By the definition of z, we have that
zj = ⟨s, A′[·, j]⟩ for all j ∈ [n], and thus Z is a subset of the GAP

Y := {y1s1 + y2s2 + · · · + ymsm + ym+1M : −∆ ≤ yi ≤ ∆, ∀i ∈ [m]; 0 < ym+1 < ∆k−1}.

Note here that the dimension of Y is m + 1 instead of m + k, as we have chosen to represent
the component of each zj ∈ Z divisible by M into a single large dimension.

We claim that we can assume |Z| = Ω(|Y |) without loss of generality. To see this, observe
that we can inflate |Z| by adding up to |Y | dummy elements from the translated GAP t + Y .
Because every such element is greater than t, and each is contained in a translation of Y , we
create no additional solutions and increase |Y + Y | by at most a factor of 2.

We have that

|Z + Z| ≤ |Y + Y | ≤ 2m+1 · |Y | = Om(1) · |Z|,

where the first inequality follows from the fact that Z ⊆ Y , the second follows from the fact
that |Y | has dimension m + 1, and the third follows from the fact that |Z| = Ω(|Y |).

Thus Z, t is an instance of Om(1)-Subset Sum whose solutions correspond directly to
solutions of our original HBILP feasibility instance. Also, |Z| = O(|Y |) = ∆O(m)+k. Because
∆k = O(n) by the definition of k, an algorithm for Subset Sum that runs in time OC(poly(n))
solves Z, t in time Om(poly(∆m · n)) = ∆O(m) · Om(poly(n)) as claimed. ◀

5.2.1 Reduction from BILP Feasibility to HBILP Feasibility
An FPT algorithm for C-Subset Sum further implies a ∆O(m) · Om(poly(n)) algorithm for
Bounded ILP feasibility, i.e., an extension of Eisenbrand and Weismantel’s improvement for
Unbounded ILPs to determining feasibility for Bounded ILPs.

▶ Corollary 16. If C-Subset Sum can be solved in OC(poly(n)), then Bounded ILPs defined by
A ∈ Zm×n, b ∈ Zm with ∆ := ∥A∥∞ and each variable xi bounded by poly(n) can be solved
in time ∆O(m) · Om(poly(n)).

Corollary 16 is a straightforward corollary of Lemma 17, which reduces ILP Feasibility
with binary variables to HBILP feasibility, and the fact that ILPs with bounded variables can
be reduced to binary ILPs (Remark 7). We defer the proof of Lemma 17 to the full paper.

▶ Lemma 17. If HBILP Feasibility can be solved in time ∆O(m) · Om(poly(n)), Binary ILP
Feasibility can be solved in time ∆O(m) · Om(poly(n)).

6 Unbounded Subset Sum with Constant Doubling

C-Unbounded Subset Sum is equivalent to an unbounded integer program with a single
constraint. In this section, we prove a near-XP algorithm for C-Unbounded Subset Sum by
first using the constructive Freiman’s theorem to map instances to integer programs with
small coefficients, then using existing methods to find small-support solutions to the integer
programs. The proof of the lemma uses techniques that are standard in the literature (see,
e.g., [16]); nevertheless, we are not aware of a prior proof of the following statement.
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▶ Lemma 18 (ILP Solutions with small support). Let A ∈ Zm×n with ∆ := ∥A∥∞. In
(n∆)O(m) time we can find a set X ⊆ {0, 1}n with the following property: For any target
vector b ∈ Zm corresponding to at least one solution x ∈ Zn

≥0 with Ax = b, there exists a
small-support solution y ∈ Zn

≥0 satisfying

Ay = b, supp(y) ∈ X and |supp(y)| ≤ m log2(2n∆ + 1).

Proof. We begin with a bound on the support of lexicographically minimal solutions that
follows standard arguments.

▷ Claim 19. Let A ∈ Zm×n with ∆ = ∥A∥∞, and let y ∈ Zn
≥0 be the lexicographically

minimal vector such that Ay = b for some b ∈ Zm. Then |supp(y)| ≤ m log2(2n∆ + 1).

Proof. Assume for contradiction that 2|supp(y)| > (2n∆ + 1)m. Because Ax ≤ (2n∆ + 1)m

for any x ∈ {0, 1}n, there must exist two different vectors v, w ∈ {0, 1}n such that (i)
supp(v), supp(w) ⊆ supp(y), and (ii) Av = Aw, by the pigeonhole principle.

Let y1 = y − w + v and y2 = y + w − v. Observe that Ay1 = Ay2 and y1, y2 ∈ Zn
≥0

because supp(v), supp(w) ⊆ supp(y). Moreover, because v ̸= w we have that y1 or y2 is
lexicographically smaller than y, contradicting the assumption that y is lexicographically
minimal. ◁

Let X ⊆ {0, 1}n be the set of lexicographically minimal solutions to Ax = b for every
b ∈ Zn

≥0 with ∥b∥∞ < n∆. Clearly, |X | ≤ (2n∆ + 1)m as this is the number of suitable b’s.
To construct X it remains to iterate over every b ∈ Zn

≥0 with ∥b∥∞ < n∆ and solve the
following Integer Linear Program:

max
{

n∑
i=1

xi · M i | Ax = b, x ∈ Zn
≥0

}
,

where M = 4n∆. Note that this can be solved in (n∆)O(m) time by [17, Theorem 2.3] for
each b. Hence, the set X can be constructed in the claimed time. Finally, it remains to show
that for any feasible b, there exists a solution y with small support in X .

▷ Claim 20. Let b ∈ Zm be any vector for which there exists x ∈ Zn
≥0 with Ax = b. Then

there also exists y ∈ Zn
≥0 such that Ay = b and supp(y) ∈ X .

Proof. Let z ∈ Zn
≥0 be the lexicographically minimum vector such that Az = b. Let

ẑ ∈ {0, 1}n be such that ẑi = 1 iff zi ̸= 0 and ẑi = 0 otherwise. Let b̂ be such that Aẑ = b̂.
Observe that ∥b̂∥∞ < n∆.

Hence it remains to show that ẑ is the lexicographically minimal vector for which Aẑ = b̂.
Assume for contradiction that there exists ŷ ∈ Zn

≥0 such that Aŷ = b̂ and ŷ is lexicographically
smaller than ẑ. Consider a vector y = z − ẑ + ŷ. Note, that supp(ẑ) ⊆ supp(z) so y ∈ Zn

≥0.
Clearly Ay = Az = b. Moreover, because ŷ is lexicographically smaller than ẑ, y is
lexicographically smaller than z, contradicting our assumption that z is lexicographically
minimal. ◁

Thus the set X satisfies the property stated in Lemma 18, concluding the proof. ◀

With Lemma 18 in hand, let us present our algorithm for C-Unbounded Subset Sum.

▶ Theorem 21 (Near-XP algorithm for C-Unbounded Subset Sum). C-Unbounded Subset Sum
can be solved in time nOC(1) if an ILP instance I on v variables can be solved in time
2O(v)poly(|I|).

As a result, the current best algorithm for ILP [32] solves C-Unbounded Subset Sum in
time nOC(1) log log log(n).
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Proof. Following the steps of our reduction from C-Subset Sum to HBILP feasibility
(Lemma 10), we can use the constructive Freiman’s theorem10 (Theorem 4) to encode
the C-Unbounded Subset Sum instance as an Unbounded Hyperplane-Constrained ILP Feas-
ibility instance given by A ∈ Zd(C)×n

≥0 with ∆ = ∥A∥∞ = nO(1/d(C)), step vector ℓ, and target
t.

We then use Lemma 18 to construct a set X of candidate supports in (n∆)O(m) = nOC(1)

time. For each support vector x∗ ∈ X , we reduce the ILP to variables in x∗. This gives us a
program with |x∗| = O(m log2(n∆)) = OC(log(n)) variables. Now, we encode this problem
as the ILPx ∈ Zn

≥0

∣∣∣∣∣∣
d∑

j=1
ℓj

∑
i∈x∗

ai,jxi = t

 .

Observe that this is equivalent to an instance of Unbounded Subset Sum with OC(log(n))
items. Thus any algorithm for Unbounded Subset Sum (or, more generally, any algorithm for
unbounded ILP) that runs in time 2O(v) on instances with v variables would automatically
yield an nOC(1) time algorithm for C-Unbounded Subset Sum. Using the best-known algorithm
for unbounded ILPs, which runs in time (log v)O(v) [32], we get an nOC(1) log log log(n)-time
algorithm. ◀

7 k-SUM with Constant Doubling

Our final contribution concerns the analogous problem of k-SUM with bounded doubling
constant, which we refer to as (C, k)-SUM. We prove Theorem 23 and observe that the same
approach gives an algorithm for 4-SUM that is tight up to subpolynomial factors, assuming
the k-SUM conjecture.

Problem 4: (C, k)-SUM

In: An integer set X = {x1, x2, . . . , xn} such that |X + X| ≤ C|X| and a target t.
Out: S ⊆ X with |S| = k such that Σ(S) = t, or “NO” if no solution exists.

We note that [1] and [23] also present algorithms for 3-SUM in cases where additive
structure in the input is controlled by the doubling constant, and also make use of fast
algorithms for sparse convolution. In both cases, these authors focus on the setting of
tripartite 3-SUM under the condition that at least one of the three input sets A, B, and C is
guaranteed to have a small doubling.

Before we continue, let us recall the standard “color-coding” technique that allows us to
ensure that each integer in the solution is taken at most once.

▶ Lemma 22. Let A be a set of n integers. There exists a set family P ⊆ {(A1, . . . , Ak)
such that A1 ⊎ . . . ⊎ Ak is partition of A} with the following properties:
1. For any S ⊆ A of cardinality |S| = k, there exists (A1, . . . , Ak) ∈ P with |S ∩ Ai| = 1 for

all i ∈ [k].
2. |P| = 2O(k) · log(n).
P can be constructed deterministically in 2O(k)n log(n) time.

10We remark that because the construction of the GAP guaranteed by Freiman’s theorem is not the
runtime bottleneck, a slower constructive algorithm might suffice for this step.
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The proof of Lemma 22 is a reformulation of a standard construction of an (n, k)-perfect
hash family (see [3], Section 4). For completeness, we include a standalone proof in the full
version of the paper. We now commence with the proof of Theorem 23.

▶ Theorem 23. Given an integer set X such that |X + X| ≤ C · |X| and an integer t, we
can decide if there exists a set {x1, . . . , xk} ⊆ X such that x1 + . . . + xk = t in deterministic
time Õ(C⌈k/2⌉ · 2O(k) · n).

Proof. Let X be an integer set of size n, and let {x1, . . . , xk} ⊆ X denote a set of k integers
that sum to t. We commence by constructing the family P from Lemma 22 and guessing a
partition (X1, . . . , Xk) ∈ P of X such that xi ∈ Xi for all i ∈ [k]. Observe that by Lemma 22
this incurs only an additional 2O(k) log(n) factor in the running time.

Now, we use the sparse convolution algorithm of Bringmann et al. [7].

▶ Lemma 24 (Theorem 1 in [7]). Given two sets A, B ⊆ [∆], the set A + B := {a + b | a ∈
A, b ∈ B} can be constructed deterministically in Õ(|A + B| · polylog(∆)) time.

We use Lemma 24 to enumerate two sets:

L := X1 + . . . + X⌊k/2⌋ and R := X⌊k/2⌋+1 + . . . + Xk.

Both L and R can be computed deterministically in Õ(k · (|L| + |R|)) time by repeatedly
applying Lemma 24. Next, with both L and R in hand, we apply the meet-in-the-middle
approach to recover a solution if one exists. This can be implemented in Õ(|L| + |R|) time
by first sorting L and R, and then for every element a ∈ L using binary search to decide if
t − a ∈ R. Finally, if for at least one a ∈ L we find an accompanying element in R, we know
that the instance has a solution.

As stated, the algorithm decides k-SUM without recovering a solution. However, given
that a solution exists we can recover a solution via binary search at the cost of an additional
Ok(log(n)) factor. This concludes the description of the algorithm.

Correctness of the algorithm follows from the fact that Lemma 22 returns a valid partition,
and from the definition of the sets L and R. It remains to bound the runtime. Since the
other steps of the algorithm take time Õk(n), the bottleneck occurs in the meet-in-the-middle
step, which takes time Õk(|L| + |R|). Therefore it remains to bound the sizes of L and R.
Without loss of generality, consider |R|, and observe

|R| = |X1 + . . . + X⌈k/2⌉| ≤ |⌈k/2⌉X| = C⌈k/2⌉|X|,

where the final step applies Plünnecke-Ruzsa (Lemma 3). ◀

In the specific case of k = 4, using the doubling constant directly gives a slightly better
bound. The resulting algorithm for (C, 4)-SUM is optimal up to subpolynomial factors under
the 4-SUM conjecture.

▶ Corollary 25. (C, 4)-SUM can be solved in expected time Õ(Cn). Moreover, for any constant
ε > 0, (C, 4)-SUM cannot be solved in O(C1−εn) time unless 4-SUM can be solved in time
O(n2−ε) for ε > 0.

Proof. The upper bound follows by analysis of the proof of Theorem 23. Recall that the
bottleneck is |R|, which in the case when k = 4 is |X + X| ≤ C · |X|.

For the lower bound, observe that |X + X| ≤ |X|2 and therefore C ≤ |X|. Thus, any
algorithm for (C, 4)-SUM with runtime O(C1−εn) would yield an algorithm for 4-SUM that
runs in O(n2−ε) time. ◀
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