
Engineering Edge Orientation Algorithms
Henrik Reinstädtler #

Heidelberg University, Germany

Christian Schulz #

Heidelberg University, Germany

Bora Uçar # Ñ

CNRS and LIP, ENS de Lyon, France
UMR5668 (CNRS, ENS de Lyon, Inria, UCBL1), France

Abstract
Given an undirected graph G, the edge orientation problem asks for assigning a direction to each
edge to convert G into a directed graph. The aim is to minimize the maximum out-degree of a vertex
in the resulting directed graph. This problem, which is solvable in polynomial time, arises in many
applications. An ongoing challenge in edge orientation algorithms is their scalability, particularly
in handling large-scale networks with millions or billions of edges efficiently. We propose a novel
algorithmic framework based on finding and manipulating simple paths to face this challenge. Our
framework is based on an existing algorithm and allows many algorithmic choices. By carefully
exploring these choices and engineering the underlying algorithms, we obtain an implementation
which is more efficient and scalable than the current state-of-the-art. Our experiments demonstrate
significant performance improvements compared to state-of-the-art solvers. On average our algorithm
is 6.59 times faster when compared to the state-of-the-art.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases edge orientation, pseudoarboricity, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.97

Related Version Full Version: https://arxiv.org/abs/2404.13997 [29]

Supplementary Material Software (Source Code): https://github.com/HeiOrient/HeiOrient [28]
archived at swh:1:dir:be7317d125554a54dfd1c9d17521c500c4e1ebc3

Funding We acknowledge support by DFG grant SCHU 2567/3-1. The authors acknowledge support
by the state of Baden-Württemberg through bwHPC.

1 Introduction

Graphs and networks play a vital role in our connected society for modelling and understanding
complex problems. A graph consists of a set of vertices connected by edges, which may
be directed or undirected, depending on the specific modeling requirements. For some
applications, such as stabilizing telecommunication networks [31], it is necessary to orient each
edge of an undirected graph, thereby converting it into a directed graph. In telecommunication
networks a lower number of outgoing edges equates to a higher fault tolerance, as not too
many connections would be affected by a fault in one of the connection hubs modelled as
vertex. One frequently used quality metric for an orientation is the maximum out-degree of
a vertex. Given an undirected graph G, the edge orientation problem asks for an orientation
of G in which the maximum out-degree of a vertex is minimized.

The edge orientation problem has a wide range of applications [19]. Besides stabilizing
telecommunication networks, other applications include storing optimal graphs [1] or analysis
of structural rigidity [32]. In map labeling [23] dense areas of maps can only have one
label. In order to formalize this concept, one related task is to identify the densest sub-

© Henrik Reinstädtler, Christian Schulz, and Bora Uçar;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 97; pp. 97:1–97:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henrik.reinstaedtler@informatik.uni-heidelberg.de
https://orcid.org/0009-0003-4245-0966
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:bora.ucar@ens-lyon.fr
http://perso.ens-lyon.fr/bora.ucar
https://orcid.org/0000-0002-4960-3545
https://doi.org/10.4230/LIPIcs.ESA.2024.97
https://arxiv.org/abs/2404.13997
https://github.com/HeiOrient/HeiOrient
https://archive.softwareheritage.org/swh:1:dir:be7317d125554a54dfd1c9d17521c500c4e1ebc3;origin=https://github.com/HeiOrient/HeiOrient;visit=swh:1:snp:ad428689c405e27808a6eac12433782b1de2166e;anchor=swh:1:rev:830c983f61d5199a6b6b0daab77fddf55d158cfd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

97:2 Engineering Edge Orientation Algorithms

graph, which is the set of vertices, that has the highest edge to vertex ratio. This task is
called the max-density task and has further applications in bioinformatics, web analysis and
scheduling [19]. For more applications and their details we refer the reader to Georgakopoulos
and Politopoulos [19].

There are different approaches to solve the edge orientation problem exactly. One of the
simplest algorithms is by Venkateswaran [31] which solves the problem in O(m2) time. The
core idea of this algorithm is to repeatedly find paths with a breadth-first search from a
vertex having high out-degree to a vertex having low out-degree. Once such a path is found,
the orientation of each of the edges on the path is reversed. Thus by this operation the degree
of the high out-degree vertex is reduced and conversely, the degree of the low-degree vertex
is increased. Other approaches solve the problem by using a flow based formulation [2, 24].
Kowalik [24] gives an approximation scheme for this problem. These approaches analyse the
theoretical aspects, without in depth practical study. The current best complexity bounds
and the only implementation in Java of an exact version of Kowalik’s flow based solution are
presented by Blumenstock [6]. However, an ongoing challenge in edge orientation algorithms
is their scalability, particularly in handling large-scale networks with millions or billions of
edges efficiently. As real-world networks continue to expand in size and complexity, there is
a need for algorithms capable of scaling effectively to such massive datasets.

Contribution. We introduce a novel framework of algorithms inspired by Venkateswaran
work [31] of improving paths to tackle the edge orientation problem. Our experimental
results show the advantages of this approach over conventional flow-based formulations.
Additionally, we offer an alternative proof of correctness for this framework. In addition to
a verbatim implementation of the original algorithm, we provide an accelerated version in
which we engineer all components of the algorithm. This includes efficient pruning of the
search space, batch search of improving paths and better initialization routines that are used
as starting point of the algorithm. Experiments show that our algorithm can scale to huge
instances and that the performance improvements of our algorithm over the state-of-the-art
are very large. For example our fastest algorithm is on average 6.59 times faster than our
(faster) C++ reimplementation of the state-of-the-art solver.

This paper is organized as follows: We first introduce basic concepts and provide an
extensive review of related work in Section 2 and 3. Section 4 provides an alternative
proof of correctness using a flow-based formulation on a bipartite representation of the
graph for the algorithm by Venkateswaran. We then proceed to discuss several speed-up
techniques, including eager depth-first search, and explore various variations of breadth-first
and depth-first search in Section 4. These new approaches are extensively benchmarked in
Section 5, followed by our conclusions in Section 6.

2 Preliminaries

Orientation Problem. An undirected graph G = (V, E) consists of a vertex set V containing
n vertices and an edge set E ⊆

(
V
2
)

of m edges. An orientation O assigns a direction to
each edge in G and results in a directed graph. We denote the direction of an edge by
O(e) = u → v, if e is oriented from u to v. For an edge e = {u, v} oriented as u → v,
we say that e is an outgoing edge of u and incoming edge of v. The out-degree d(O, v)
of a vertex v in an orientation O is defined as the number of outgoing edges of v, that is,
d(O, v) = |{u : v → u ∈ O}|. If the orientation is clear from the context, we write d(v).
Similarly, the in-degree of a vertex is the number of its incoming edges. We call the vertices

H. Reinstädtler, C. Schulz, and B. Uçar 97:3

with the largest out-degree in an orientation peak vertices. A path in an orientation is a
finite sequence of vertices u1, . . . , uk, where there is an edge oriented ui → ui+1. We call
a path simple if no vertex is contained twice in the path. In an orientation, changing the
orientation of an edge from v → u to u → v is called flipping. A path can be flipped by
flipping all edges contained in it once. For a given graph G, the edge orientation problem
asks for an orientation O such that d⋆ = maxv∈V d(O, v) is minimized.

(Pseudo-)arboricity. A forest is a collection of edges, where each vertex is only connected
by one path. The edges of an undirected graph can be partitioned into disjoint forests and
the minimum number of forests is known as the arboricity. A more relaxed version of this
problem is to decompose the graph into pseudoforests, where in every connected component
there can be at most one cycle. The minimum number of pseudoforests partitioning the edges
is called pseudoarboricity. The pseudoarboricity is known to be equivalent to the maximum
out-degree of an optimal edge orientation [31]. The average density of a graph is defined as
the ratio of edges to vertices. A sub-graph contains only edges between a subset of vertices.
The maximum average density of any sub-graph is closely related to the pseudoarboricity. As
shown by Picard and Queyranne [26] and Venkateswaran [31] the pseudoarboricity is equal
the ceiling of the maximum average density of any sub-graph. Picard and Queyranne [26]
show the arboricity is equal to either the pseudoarboricity or the pseudoarboricity plus one.

Integral Flows. Given a directed graph G = (V, E), a source vertex s ∈ V , a target vertex
t ∈ V , and an edge capacity function c : E → N, a flow is a function f : E → N that satisfies
two conditions: (i) the flow does not exceed the capacity in any edge; (ii) and the inflow in
every vertex equals the outflow, except for s and t, which have respectively positive out- and
inflows. Given a flow, one can define a residual capacity for each edge, which is equal to
edge’s original capacity minus the current flow. A residual network for a given flow consists
of all edges with a positive residual capacity. If the flow on an edge is equal its capacity, the
edge is called saturated. When changing the capacity of an edge, an edge can become under-
or oversaturated and the flow needs to be updated.

Bipartite b-Matching. In a bipartite graph the vertex set can be partitioned in disjoint sets
S, T such that all edges contain one vertex from S and T each. A matching M is a set of
edges, no two of which share a vertex. A maximum matching is a matching with the largest
number of edges. For a given positive integer b(v) for each vertex v, the b-matching problem
asks for a set F of edges with the largest cardinality such that the vertex v is included in at
most b(v) in F . A b-matching in a bipartite graph (S ∪ T, E) can be found by modeling it as
a flow problem as follows. First, add a source vertex s and a sink t to the graph. Then add
edges between s every vertex in v in S with capacity b(v) as well as edges between each vertex
w in T with capacity b(w) from w to t. The original edges are assigned unit capacity. The
saturated edges of an integral max-flow from s to t are the edges in an optimal b-matching.

3 Related Work

Edge Orientation Task and Pseudoarboricity. There has been a wide variety of approaches
to solve the edge orientation task and the identical pseudoarboricity task. One algorithm is by
Venkateswaran [31] and underlies the algorithms proposed in this work. Venkateswaran gives
an algorithm for computing an extremal orientation to minimize the maximum in-degree.

ESA 2024

97:4 Engineering Edge Orientation Algorithms

Algorithm 1 Algorithm by Venkateswaran [31].
1: procedure Venkateswaran(G = (V, E))
2: O ← an arbitrary orientation of G

3: k ← maxv∈V d(O, v)
4: S ← {v ∈ V | d(O, v) = k}
5: T ← {v ∈ V | d(O, v) ≤ k − 2}
6: while BFS finds path P=s, . . . , t from S to T in O do
7: Flip P in O

8: Remove s from S

9: Remove t from T if d(O, t) = k − 1
10: if S empty then
11: k ← k − 1
12: S ← {v ∈ V | d(O, v) = k}
13: T ← {v ∈ V | d(O, v) ≤ k − 2}
14: return k

The algorithm can be easily translated to the out-degree setting, as shown in Algorithm 1.
After arbitrarily initializing an orientation, the algorithm starts to search for improvements
by finding paths between the set of vertices S with max out-degree k and the set of vertices T

with out-degree strictly lower than k − 1. If S is empty, then k is reduced by one, and the
sets S and T are reinitialized. If no path is found, the current k is returned as optimal.
The correctness of this algorithm follows from the density of the sub-graph induced by the
vertices visited by the failing BFS starting from S. These have a degree of at least k − 1
and there is at least one with degree k, totaling an average density greater than k − 1,
leading to a pseudoarboricity of k by the sub-graph density argument. It is proven that
the running time of this algorithm is O(m2), since each path can be found in O(m) and
the number of improvements can be bounded by m as well. The argument is that the total
number of paths for one vertex is bounded by its out-degree, which again is bounded by
the number of edges in total.

A 2-approximation of the pseudoarboricity or the maximum average density can be
found in linear time [10, 19] by repeatedly deleting min degree vertices. Georgakopoulos
and Politopoulos [19] provide an algorithm for finding the densest subset in a more general
setting of set systems, improving on ideas by Goldberg [20] by pruning the graph during
their binary search scheme. The algorithm can be used to compute the max out-degree, but
does not find a suitable orientation.

Asahiro et al. [2] give a solution with running time O(m3/2 log d⋆) based on flows for
the problem and offer more results for approximating the related weighted edge orientation
problem. Kowalik [24] gives an approximation scheme using flows that can be used to
calculate exact solutions as well. They construct a virtual graph with a source and a sink
vertex. Given an orientation O and a test value d′ they add an edge between the source
vertex and vertices with greater than d′ out-degree with capacity d(O, v)− d′. Each vertex
with lower than d′ out-degree is connected to the sink with capacity d′ − d(O, v). For each
oriented edge u→ v, there is an edge v to u with capacity 1. The flow is then computed and
all edges with a corresponding saturated edge are flipped. If there is an edge from the source
without flow, the test failed and the maximum out-degree must be higher. With a binary
search the optimal value d⋆ and a suitable orientation can be found in log d⋆ steps.

H. Reinstädtler, C. Schulz, and B. Uçar 97:5

Blumenstock [6] presents bounds for the aforementioned flow-based solution using Dinic’s
algorithm and almost unit capacity networks. The best general worst case bound for the
problem is O(m3/2√log log d⋆). Moreover, Blumenstock [6] also presents the first practical
evaluation of algorithms for the pseudoarboricity problem by implementing the flow based
algorithms by Kowalik [24] and Georgakopoulos and Politopoulos [19]. Experiments shows
that Georgakopoulos and Politopoulos’s method using unit capacity networks is faster than
other flow based solutions, including Kowalik’s algorithm. However, subsequent analysis
revealed a subtle implementation error in the implementation of the algorithm which caused
it to output incorrect results in rare cases. Once corrected, the performance advantage of
this method is no longer apparent. We use both of these algorithms as the state-of-the-art in
our experiments.

Bipartite Matching and Network Flows. Finding a b-matching can be done by transforming
the problem into an uncapacitated matching problem as described by Gabow [18]: vertices
(and their respective edges) are replicated according to their capacity. Bipartite matching is a
well-studied and understood part of computer science. The best known worst-case algorithm
for solving bipartite matching is Hopcroft-Karp [22] with a complexity of O(m ·

√
n). It can

be seen as a specialization of Dinic’s algorithm for general flows. For graphs with capacity
1 per vertex, like in the bipartite matching case, the complexity of Dinic’s algorithm is
O(n1/2m) according to Tarjan and Even [17] matching the bound from Hopcroft-Karp. For
general flows, Dinic’s algorithm has a complexity of O(n2m) and better alternatives like
Goldberg and Tarjans algorithm [21] are available in practice.

4 Edge Orientation Framework and Engineering Techniques

We give an interpretation of the working of Algorithm 1 using maximum flows and b-matchings
in bipartite graphs. This interpretation allows us to identify key aspects for engineering
to improve the practical running time of the algorithm. For a given graph G = (V, E),
we construct a bipartite graph BG = (L ∪ R, EB) with |E| + |V | vertices, and 2|E| edges.
Roughly speaking, L will represent the edges of the original graph and R will represent the
vertices of the original graph. For each edge e = {u, v} ∈ E, we have a vertex ℓ(e) ∈ L. For
each vertex v ∈ V , we have a vertex r(v) ∈ R. For each e = {u, v} ∈ E, we have two edges in
EB : one between ℓ(e) and r(u) and another between ℓ(e) and r(v). In this bipartite graph,
an edge orientation can be described by an assignment of each L vertex to one of its two
neighbors in R. Here, each L-vertex is assigned to a unique R-vertex, and each R-vertex can
have multiple R-vertices assigned to it. The edge orientation problem can thus be solved by
finding an assignment of L-vertices to R vertices which minimizes the maximum number of
L-vertices assigned to an R-vertex. This can be solved by a network flow formulation.

Our network flow formulation starts with BG and adds two special vertices s and t to BG.
The vertex s is connected to all L-vertices, and all R-vertices are connected to the vertex t.
Then, a capacity of 1 is attributed to all edges between s and L-vertices, and also to all
edges of BG; that is from a vertex ℓ(e) to the vertices r(u) and r(v) for e = {u, v} ∈ E. If
we attribute a capacity of d to edges (r, t) and have a feasible flow with a total flow value of
|E| (out of s), then all edges can be oriented while having an out-degree of at most d. For
an exemplary simple graph G of three vertices and three edges, the flow graph obtained by
adding s and t to BG can be found in Figure 1.

ESA 2024

97:6 Engineering Edge Orientation Algorithms

31

2

a

b

c

t

cba

321

s

capacity 1

capacity d

L

R

Figure 1 Example bipartite repr. transformation.

Due to the capacity of 1 for each (s, ℓ) edge, every edge in the original graph will be
oriented in only one direction. For an edge e = {u, v} in the original graph, the edge is
oriented from u→ v, if in BG there is a flow from ℓ(e) to r(u) and v → u, if there is a flow
from ℓ(e) to r(v). Each edge is assigned a direction, since we search for a flow in which
all |E| edges in the flow graph of the form (s, ℓ) with ℓ ∈ L are saturated. Clearly, the
smallest value of d allowing this will be the optimal d⋆. When a smaller value is tested and
the outflow in s is not equal |E|, some edges are not assigned a direction. Since this is a
classical capacitated network flow problem with integer capacities, an integer solution can
be found with augmenting path-based algorithms [12, Theorem 26.10]. A binary search for
the optimal d will have in the worst case log dG steps, where dG is the maximum degree
of a vertex in G. Instead of running a flow algorithm from scratch, the results of previous
searches can be reused. When increasing the value of d, the previous flow can be used as a
starting point. If we decrease the test value, the flow in oversaturated edges starting in R

must be balanced first by reducing the flow along a path starting in s to t. Afterwards any
augmenting path needs to be found.

Correspondence to Venkateswaran’s Algorithm. While our interpretation leads to a
more sophisticated framework than Venkateswaran’s original description, there is a faithful
correspondence. We explain this correspondence, which also establishes another correctness
proof for Venkateswaran’s algorithm. Given an arbitrary orientation for the out-degree, we
can construct the flow in the bipartite representation as follows: For each edge e = {u, v},
oriented u→ v we set the flow from ℓ(e) to r(u) to 1 and ℓ(e) to r(v) to 0. In the residual
network there is a residual capacity of 1 between r(v) and ℓ(e). The obtained flow network
is saturated in all edges (s, l), l ∈ L, since each edge is assigned a direction and therefore has
a flow from ℓ(e) to either u or v. The initial test value for the max out-degree is set to the
maximum out-degree of the orientation and repeatedly decreased, until some edges from s to
L become unsaturated.

In each decreasing step there is an oversaturated edge (r(v), t), that needs to be decreased
by one, at most for every v and along to a path to s the flow needs to be reduced by one. This
path has length 2, since one arbitrary edge (ℓ(e), r(v)) with flow greater zero will be chosen
and its flow as well as the flow on the single incoming edge (s, ℓ(e)) reduced. Afterwards an
augmenting path needs to be found. This path must include ℓ(e) as second vertex since all
other edges (s, L) are saturated. Instead of first reducing and then finding an augmenting
path, we can combine both steps. In other words, the flow algorithm needs to find distinct
paths in the residual network between all vertices in R with oversaturated edges to t and
vertices in R, that have edges towards edges with enough residual capacity. This can be

H. Reinstädtler, C. Schulz, and B. Uçar 97:7

Algorithm 2 Orientation by Exhaustive Search.
1: procedure ExhaustiveSearch(G = (V, E), O)
2: repeat
3: for v ∈ V with d(v, O) = maxw∈V d(O, w) do
4: if P = FindPath(G, O, v) exists then
5: Flip P

until no path has been flipped in last iteration
6: return O

done using breadth-first search algorithms. The vertices in R with oversaturated edges are
exactly the vertices in S, since we decreased the test value by one. Similarly, the last vertices
before t in augmenting paths need to be vertices r(v) ∈ R with residual capacity in (r(v), t)
and enough unsaturated incoming edges. These vertices are exactly those vertices T in
Venkateswaran algorithm. Due to the bipartite structure paths must include the vertices
in L. The edge vertices L in a residual network of BG can be only traversed in one direction
by the BFS, exactly like the BFS in Venkateswaran. The only difference, compared to
Venkateswaran, is that in our network, the path is twice as long, since each edge in G consists
out of two subedges in BG. When in our model a too low test value is set, augmenting paths
cease to exist.

4.1 The Proposed Framework
We now present our techniques and framework to improve the performance of Ven-

kateswaran’s algorithm in practice. We introduce data structures and algorithmic choices
inspired by the maximum cardinality matching problems [15, 16, 22, 27]. Engineering tech-
niques include a simple orientation improving algorithm with complexity O(m) that yields a
much better starting point for the path finding algorithm in practice. Moreover, we enhance
the efficiency of path searches by either reusing information or batching the searches and
exploring paths in reverse order.

Our general algorithm framework is shown in Algorithm 2. It is an adapted version of the
algorithm by Venkateswaran. Instead of constructing the sets S and T explicitly, we iterate
over all vertices that currently have the largest out-degree and try to find an improving path,
which is a path in the orientation from one of these vertices to a vertex with lower out-degree.
If such a path is found, it is flipped, resulting in a lower out-degree for the start vertex. The
algorithm continues this process until no such path exists. The correctness of this general
algorithm follows from Venkateswaran’s algorithm. It has an equivalent termination criterion
as the original algorithm, since when it finishes when no further improving path starting at
peak vertices can be found. Instead of searching from all peak vertices at the same time, we
search for every peak vertex separately. Like the algorithm by Venkateswaran, this algorithm
has a time complexity of O(m2) since we need to find at most m improvements by the
argument of Venkateswaran [31]. Furthermore, each improvement can be found with one
DFS or BFS in O(m), yielding its total complexity.

4.2 Engineering Techniques
We now discuss how we can improve the techniques to compute orientations. First, we discuss
the linear 2-approximation data reduction and come up with a fast initialization algorithm.
Secondly, we review different ways of finding improving paths and general ideas to optimize
this search.

ESA 2024

97:8 Engineering Edge Orientation Algorithms

Algorithm 3 FastImprove Algorithm.
1: procedure FastImprove(G = (V, E), O)
2: for v ∈ V do
3: for e = v → u ∈ O do
4: if d(O, u) < d(O, v)− 1 then
5: Flip(e)
6: for e = u→ v ∈ O do
7: if d(O, u)− 1 > d(O, v) then
8: Flip(e)
9: return O

4.2.1 Two Approximation Data Reduction
The linear 2-approximation proposed by Charikar [10] can be used as data reduction. It
computes a 2–approximation dapprox using a bucket priority queue and vertices with degree
dapprox

2 or less can be removed safely due to the densest sub-graph argument. In other
words, since the dapprox is a 2–approximation, the optimum out-degree must be at least
dapprox

2 . Vertices with a degree that is smaller or equal to this value can therefore be removed
iteratively. The edges of these vertices are oriented outwards. The approximation needs to
process every edge of the graph at least once and maintaining the needed priority queue
is not negligible. Therefore, running it always as a preprocessing step can be costly, if the
resulting guess is small and does not remove much of the graph. Instead, we propose to run
the 2-approximation conditionally on the density of a graph ρ = m

n . If the density is smaller
than some parameter c, we directly skip to find improving paths, instead of wasting time to
compute a low approximation. In experiments we tune this parameter.

4.2.2 Fast Initialization
Venkateswaran’s algorithm starts with an arbitrary orientation and thus has worst-case
complexity O(m2). However, it is evident that starting with a good orientation can lead to a
faster algorithm compared to an arbitrary initialization. The FastImprove-Algorithm in
Algorithm 3 makes one pass over an arbitrary orientation and flips an edge v → u, if such
a flipping improves the largest out-degree of v and u. Since only direct improvements are
found, the algorithm does not find the optimal solution. However, it can improve a given
orientation significantly. In our implementation, vertices are represented by their IDs which
are numbers in the range 0, . . . , n− 1. Our algorithm initializes an orientation with u→ v

for u > v and then applies the FastImprove algorithm to quickly improve it. The complexity
of one pass is O(m). In the experimental evaluation in Section 5, we show that this simple
algorithm can tremendously speed up computation time of the overall algorithm.

4.2.3 Path Finding Algorithms
There are two basic ways to find paths in a directed graph: either breadth- or depth-first
search. Breadth-first search works by using a queue and adding unvisited neighboring vertices
following first in first out order. Depth-first search is usually implemented using a stack and
a visited array. The visited array stores whether a vertex has been visited before, while the
stack keeps track of the current path. The next not visited neighboring vertex is always
added to the stack and marked as visited, the neighbors are explored recursively using the
stack, i. e., depth first. Once all neighbors are explored the previous vertex of the stack is
(re-)visited and its remaining neighbors are visited.

H. Reinstädtler, C. Schulz, and B. Uçar 97:9

d
d-1

d-2

Figure 2
Left: Layered example orientation in a graph with nine edges and vertices.
Right: Visualization of the onion-like structure of the orientation problem.

Batched BFS. The batched BFS approach finds improving paths similar to the original
idea by Venkateswaran of an adapted BFS. It does not fit the previously described framework
in Algorithm 2. Instead of starting a BFS from every vertex, we start the BFS by putting all
peak vertices in the queue and flip a path once we have found an improving path by breadth
first search. We continue the search until all vertices have been reached or, in case of success,
we found an improvement for all peak vertices. The search is continued until for none of
the vertices we find an improving path. This yields a correct result, since we inserted all
peak vertices at the start and thus will find a shortest improving path, if there exists one.
However, we will not always find a path for all peak vertices at once.

DFS. We now look at ways to improve depth-first-search. Our ideas include checking
neighboring vertices eagerly, ensuring independent paths by visiting peak vertices only as
starting vertices of paths, reusing the visited array and eagerly ordering path searches.

Early Check. The first improvement is to check the out-degree of all neighbors before
continuing exploring them in the recursion. This increases the overall complexity by a
constant factor, but in practice speeds up the exploration massively by preventing unneeded
recursion.

DFS with Independent Paths. We propose for the DFS to not continue traversal via
other peak vertices while searching for improving paths. There is no added benefit in adding
a peak vertex to a path during search as each peak vertex needs its own improving path.
More precisely, they have to be distinct, since flipping one of the paths would change the
orientation of the joint part of the two paths, effectively stopping the second path from being
valid. Hence, we need to find independent paths from both of the vertices regardless.

DFS with Shared Visited Array. A DFS can reuse information stored in the visited
array for multiple consecutive searches for improving paths. Here, we reset the visited
array used in a classical DFS only after one pass over all peak vertices and not after
every path search. Thus, we enhance efficiency by retaining the visited array’s state across
multiple consecutive searches to identify improving paths, rather than resetting it after
each search. This method strategically excludes previously explored and non-improving
sub-graphs from subsequent searches, significantly reducing computational redundancy. By
maintaining the visited array across searches, we ensure that once a path from a peak vertex
is improved, subsequent searches do not redundantly explore the same paths or sub-graphs
already deemed non-improving. Figure 2 (Left) gives a simple example orientation, where
not resetting the visited array is helpful: If the first path from the bottom left to the top
left vertex is found and flipped, we do not want the search starting in the middle vertex
to traverse via left tree that was already explored during the first DFS. Moreover, this

ESA 2024

97:10 Engineering Edge Orientation Algorithms

example orientation shows, why this DFS approach is better than the BFS described in the
earlier section. The BFS would find at most two improving paths, because it eagerly finds
predecessors. It would assign the middle vertices (yellow) only two distinct predecessors at
most due to the graph structure, leaving one peak vertex (purple) without successors and
leading to two paths for the bottom left vertex. However, we are only interested in one path
per peak vertex. Thus, this leads to more path searches than necessary.

Eager Path Search. The FastImprove algorithm only uses direct improvements and reduces
their number, leaving longer improving paths to be discovered. Therefore, our problem has
an onion-like structure, multiple layers of vertices with the same out-degree are surrounding
some core peak vertices after the initialization. By our classical approach we would find
improvements from core to the lower degree outer layers and slowly growing the number of
peak vertices. This leads to prolonged paths, as there will be multiple paths needed to be
found while decreasing the out-degree of a peak vertex by one at a time. An example for this
is shown in Figure 2 (Right), the vertices with out-degree d will need to be improved multiple
times via the vertices with out-degree d− 1. Instead of slowly searching consecutively, we
propose to first find paths for the outer layers of the problem. We define i as the number
of layers we reduce eagerly in the reverse order of their out-degree, i. e., d − i, d − i + 1,

and so on. Moreover, if only fewer vertices than some parameter c have an out-degree of
d − i + k in the orientation, we propose to repeatedly search up to k improvements with
a DFS. Intuitively, this reduces the number of times the algorithm needs to collect these
vertices and find paths.

As both ideas are combined with the idea of the reused visited array, this method does not
return an exact solution always: Suppose d is the current max out-degree, then it can occur,
that there is no improvement for d− 1, but there would exist some path from d out-degree
vertices to d − 2 out-degree vertices through d − 1 vertices. Since the d − 1 vertices are
checked first, there is no improving path found and the visited information is kept, leading
to all d− 1 vertices marked as visited. The searches started in d cannot traverse over these
vertices and the search is unsuccessful. Therefore, it requires to run either a DFS or a BFS
afterwards. We propose to decide based on the maximum size of the layers and the resulting
max out-degree whether to run a batched BFS or DFS.

Moreover, the choice of i and c is crucial, in Section 5 we test static values for c and i.
Additionally, we test for i a dynamic value of

√
max d− ρ with ρ = m

n as average density
of the graph and max d being the out-degree of the starting orientation. The maximum
out-degree of the starting orientation max d and ρ are the natural lower and upper bounds
for this problem. We chose the square root as a natural damping function in order to not
explore too many layers eagerly.

5 Experimental Evaluation

Methodology. We implemented our algorithms and data structures in C++ 20. We compiled
our program and all competitors using g++-12.1 with full optimization turned on (-O3 flag).
In our experiments, we use two types of machines provided by a cluster for our experiments.
Both machines are equipped with 20-core Intel Xeon Gold 6230 processors running at 2.10
GHz and having a cache of 27.5 MB. Machine type A has two sockets and 96 GB of RAM,
machine type B has four sockets with 3 TB of RAM. For the five graphs with more than
1 billion edges we use the machine type B. We run each algorithm on each instance five
times and use the arithmetic mean of the running time of these independent runs in the
experiments. Up to four experiments were run in parallel on machine type A and 6 on

H. Reinstädtler, C. Schulz, and B. Uçar 97:11

machine type B. The order of the experiments was random. The experiments that did not
finish within 5 hours were only repeated once. The running times reported include the setup
of data structure needed by the algorithms, but does not include the initial loading of the
graphs from the hard drive. For comparisons, we use performance profiles as proposed by
Dolan and Moré [14]. We plot which fraction of instances is solved by an algorithm within
τtopt, for τ ≥ 1 and topt being the best running time reported by any algorithm on a given
instance. A higher fraction at a lower τ means that more instances are solved within this τ ,
implicating a better performance.

Instances. We use graphs from the SuiteSparse Sparse Matrix Collection [13] with more
than 1 million vertices for benchmarking. The set contains 67 graphs from a wide range
of applications. Statistics on the instances, including the number of edges, the number of
vertices, the minimum and the maximum degree of a vertex, and the number of connected
components, can be found in the full version of the paper [29]. The largest graph in our set
has more than five billion edges. Based on the average density of the graphs, we chose nine
representative instances for evaluating different parameters for the proposed algorithms and
running preliminary experiments faster. These representative instances are called test set
in the following and are not included in the geometric means and performance profiles in the
final experiment.

State-of-the-art. Blumenstock [6] provided us with a Java code implementing Kowalik’s
exact algorithm. We ported that implementation with Dinic’s algorithm to C++ and validated
that our implementation is on average 1.42 times faster than the Java implementation
(compiled with OpenJDK 17 and run sequentially) on the instances used by Blumenstock [6].
A more detailed comparison of the running time of these implementations is reported in the
full version of the paper [29]. We have also implemented Georgakopoulos and Politopoulos’s
approach to be able to do a more conclusive comparison than what was available in [6]. We can
run this algorithm with Dinic’s algorithm or Push-Relabel algorithm for better performance.
We use a Push-Relabel implementation in our final experiments for comparison since it is 1.6
times faster than Dinic’s algorithm on our implementation. The algorithm by Georgakopoulos
and Politopoulos computes only the pseudoarboricity, i.e., the objective value of an orientation,
and not an orientation itself. As described by Blumenstock [6] our implementation computes
the pseudoarboricity and uses Kowalik’s reorientation scheme once to obtain an orientation.
In the following, we refer to our implementation of Georgakopoulos and Politopoulos [19]
by G&P and to our implementation of the exact Kowalik [24] by Kowalik. Preliminary
experiments on the test dataset showed that using the 2-approximation initialization before
Kowalik and G&P results in, respectively, 1.90 and 3.02 times faster running time than not
using this initialization. Therefore, we run the final experiment with 2-approximation for
both of the state-of-the-art methods. We note that our experiments with G&P and Kowalik
are more comprehensive and conclusive than what were available in earlier work [6].

Implemented Algorithms. For our main approaches we implemented a vanilla DFS (DfsNa-
ive) and the algorithms devised in Section 4.2. These include Fast Improvement (FastImprove),
DFS with improvements (Dfs), BFS (Bfs) and the eager path search (EPS). Our implementa-
tion of 2-approximation (TwoA) and the 2-approximation conditioned on the average density
(TwoADens) can be run before all algorithms considered here.

ESA 2024

97:12 Engineering Edge Orientation Algorithms

5.1 Parameter Study for the Proposed Algorithms
In the subsequent sections, we adjust our parameters and investigate the different algorithmic
components described in this paper using the nine graphs selected specifically for parameter
tuning.

Naive Methods. We conducted a comparative analysis of several DFS implementations:
one without any of the techniques outlined in Section 4.2.3 (DfsNaiveWithoutShared), one
that incorporates all the proposed techniques (Dfs), another that reuses the visited array
(DfsNaiveShared), and the batched BFS (Bfs). All these implementations utilized the
FastImprove approach, and we present only the average execution times. Our findings
indicate that the Dfs method is the most efficient, being significantly faster than the others.
Specifically, the DfsNaiveShared is 2.02 times slower, and the Bfs is notably slower by a
factor of 10.38. The slowest was the DfsNaiveWithoutShared, which was 206.443 times slower
than the optimized Dfs. Based on these results, we will exclusively use the optimized Dfs,
i.e. DFS with improvements, for the subsequent parameter tuning experiments.

Fast Improve. To demonstrate the effectiveness of the FastImprove technique, we conducted
experiments on the small dataset, running Dfs both with and without the technique. The
variant lacking FastImprove failed to complete within 5 hours on the instance from the
MAWI set, which notably has an extremely high maximum degree of approximately 63M.
In stark contrast, the FastImprove-enabled variant completed the same instance in just
18.84 seconds. Across the remaining eight instances, the non-FastImprove variant performed
consistently slower, averaging 27% longer processing times. Given that omitting FastImprove
led to a timeout on one instance and consistently slower performance on others, we use the
FastImprove algorithm for all instances.

Eager Path Search. We now optimize the parameters for our eager path search. In the
eager path search we search for improving paths not only for the peak vertices, but for layers
with lower out-degree. The parameters are the number of layers eagerly searched and the
maximum size of a layer that will be searched for even more eagerly. Furthermore, we probe
which method (Bfs or Dfs) should be used to finalize the orientation.

We tested the number of layers eagerly searched for values i ∈ {2, 5, 10,
√

max d− ρ} with
ρ = m

n
and max d being the current maximum out-degree of the starting orientation. We

used the optimized Dfs to compute the final orientation. For the sampled set the dynamic
approach i =

√
max d− ρ yields the best results on average. The static approach with i = 5

is only 2 % slower, while the approaches with i = 2 and 10 are 7.3 resp. 8.3 % slower. We
select the dynamic approach for our final experiment and now progress into the second
parameter the eager size. If a layer size is smaller than the eager size the algorithm tries to
find multiple improvements consecutively, instead of requiring the vertices to be collected
again. In this experiment we combined the dynamic approach and DFS with the eager size
parameter c ∈ {10, 100, 1000, 10000}. The best geometric mean we can report for c = 100,
for c = 10, 1000, 10000 we report a 1.5%, 0.6% resp. 0.16% higher geometric mean for the
running time. Therefore, we select c = 100 for our final experiment. Finally, we investigate
when to run either the Bfs or Dfs after the eager path search. Figure 3a shows the running
time divided by the optimal value plotted against the min max out-degree. We observe
that for lower out-degree (< 10) it is more beneficial to run the optimized Dfs. On one
instance with low out-degree using Bfs is 60 times slower. However, on instances with higher
out-degree the Bfs is consistently faster by a small relative margin. We run Dfs, if the
out-degree is less than 10, and otherwise Bfs.

H. Reinstädtler, C. Schulz, and B. Uçar 97:13

101 102 103

d

100

101

102

t r
el

EPS+Bfs
EPS+Dfs

(a) The running time of EPS+Dfs and EPS+Bfs
normalized by EPS+Dfs plotted against the resulting
min max out-degree. Low out-degree solutions are
solved faster by Dfs as finishing method.

100 101

ρ

100t r
el

EPS
TwoA+EPS

(b) The running time of EPS with or without
2-approximation plotted against the average density
ρ = m

n of the graph (normalized by EPS).

Figure 3

Two Approximation. We now look into the efficiency of the 2-approximation as outlined
in Section 4.2.1. Specifically, we investigate the effectiveness of not always executing the
two-approximation prior to the eager path search. The outcomes of this study are illustrated
in Figure 3b, where we plot the average density of the graphs against their average running
time. The experiment indicates that for graphs with low average density, pre-running the
two-approximation does not yield beneficial results. We run the 2-approximation exclusively
for graphs with an average density exceeding 10 to achieve reasonable reductions on such
graphs.

Final Algorithm. The final configuration of our algorithm RapidPathOrientation (RPO) is
as follows: After using the 2-approximation conditionally on the average density (m

n > 10)
and executing the FastImprove algorithm, it runs the EPS with dynamic layer count of√

(max d− ρ). If less than 100 vertices are in a layer they are searched for more eagerly.
Finally, in order to produce a correct result a Bfs is run for out-degree higher than 10 and
the specialized Dfs for lower degree.

5.2 Comparison with State-of-the-Art
We now compare our approach to the state-of-the-art on the whole dataset. In Figure 4 the
performance profile for our algorithm (RapidPathOrientation) is shown in comparison to
the algorithm by Kowalik [24] (TwoA+Kowalik) and Georgakopoulos & Politopoulos [19]
(TwoA+G&P) with combined with the 2–approximation on 58 problem instances. On
average our algorithm is 6.59 times faster than TwoA+Kowalik and 36.27 times faster than
TwoA+G&P; moreover on 88 % of instances it is the fastest approach. As seen in the right
plot of Figure 4, RapidPathOrientation solves all instances within a factor of τ < 1.56 of
the fastest algorithm (on an instance) and the competitor approaches solve around 50 % of
instances within a factor of τ = 6. Since the profile of RapidPathOrientation is higher than
both TwoA+Kowalik and TwoA+G&P for all values of τ , we conclude that the proposed
approach is faster than the reimplementation of the state-of-the-art methods. Moreover, as
shown in the preliminary experiment, the speed up over the Java implementations is even
more pronounced. We report detailed per instance results of the running times in Table 2.
Table 1 shows the running times averaged per sub dataset. We now give a more detailed
discussion of the performance of the different algorithms for the subgroups of our dataset.

ESA 2024

97:14 Engineering Edge Orientation Algorithms

100 101 102 103 104

τ

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

1 2 3 4 5 6
τ

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s RPO

TwoA+G&P (PR)
TwoA+Kowalik

Figure 4 Running time performance profile on 58 instances for state-of-the-art algorithms
TwoA+Kowalik, TwoA+G&P and our RapidPathOrientation (RPO) approach. On the right hand
side we present a detailed zoom to values up to 6.5.

In general, it can be observed that competing algorithms can solve instances from the
MAWI subset faster. Out of all the instances for which our approach is not the fastest,
our algorithm experiences the highest relative slowdown on the mawi_’130 instance. Here,
RapidPathOrientation needs 56% more time than both competing algorithms. This is due
to the fact that the 2-approximation is very effective on the MAWI dataset, however the
2-approximation is not run by our algorithm on these instances as they have a low average
density (m

n < 2). When running our approach on these instances with the 2-approximation
algorithm as a preprocessing algorithm, we achieve similar running times.

The performance differences are very big especially on the low density and low out-degree
instances of the flowipm22 set. For example, on the spielman_k600 instance TwoA+G&P
is 243.10 times and TwoA+Kowalik is 65.46 times slower than our new approach. In general,
this is due to the fact that the FlowIPM22 instances have a high maximum degree compared
to their optimum out-degree of 3. The competitors cannot limit their search space properly
and have to perform many reorientations using their flow algorithm.

Similarly, we can observe advantages of our approach on random generated graphs in
the dimacs10 set, like the delaunay_n24 instance. RapidPathOrientation is around 80
times faster than TwoA+Kowalik and 221 times faster than TwoA+G&P. Moreover, the
TwoA+G&P algorithm has issues with some instances from numerical backgrounds (huge*)
in the dimacs10 instances, resulting in a running time much higher than the other approaches
(up to 16393.74 times slower). The TwoA+G&P algorithm has to solve more flows to converge
according to its binary search scheme, while its pruning mechanism is not that efficient on
these instances. The pruning removes vertices with unsaturated edges connected to the
target vertex, when a new lower bound for the pseudoarboricity is accepted, which does not
happen often on those instances. In general, our new algorithm RapidPathOrientation solves
instances from numerical backgrounds and road networks, represented in the dimacs10 set,
significantly faster than the previous approaches.

On the first instance from the gap dataset, gap-urand, TwoA+G&P requires 81481.60
seconds to finish, 15.71-fold of what our new approach and 6.31-fold of what TwoA+Kowalik
require to finish. On the gap-kron instance, both competitors are 1.38 (TwoA+G&P)
resp. 1.34 (TwoA+Kowalik) times slower. On all five instances from genbank set, our new
approach is about 1.9 times faster than each of the competitors. There are no significant
deviations in this dataset. On the single instance from the law dataset we report that
RapidPathOrientation is 1.63 times faster than TwoA+Kowalik and 2.76 times faster than

H. Reinstädtler, C. Schulz, and B. Uçar 97:15

Table 1 Geometric mean running time in seconds grouped by sub data set and for all instances.

TwoA+G&P TwoA+Kowalik RPO

flowipm22 [9] 104.62 33.57 0.57

gap [4] 12 267.57 4808.19 2628.25

genbank [5] 70.14 70.63 36.69

law [8, 7] 5.02 2.97 1.82

mawi [11] 8.40 8.39 10.07

snap [25] 8.86 5.15 1.85

sybrandt [30] 5340.81 3064.19 2226.32

dimacs10 [3] 337.96 21.49 1.86

all 144.85 26.31 3.99

TwoA+G&P. The snap dataset contains social graphs and road networks. On the three road
networks our approach requires less than 1/10th of the running time in comparison to the
fastest competitor (TwoA+Kowalik). For two of the social graphs (com-youtube,as-skitter)
all approaches require nearly exactly the same time. The com-friendster instance is solved
by TwoA+G&P about 1.13 times faster than our approach. On the com-livejournal the
TwoA+Kowalik is faster by a factor of 1.08.

The sybrandt set contains the two biggest instances in our dataset. For the moliere’16
TwoA+Kowalik is the fastest algorithm, our approach is 14% slower. RapidPathOrientation
solves the agatha’15 instance 2.16 times faster than the fastest competitor TwoA+Kowalik.

6 Conclusion

We have proposed a new framework for algorithms solving the edge orientation problem based
on the ideas of Venkateswaran [31] and gave a new flow-based proof. We have investigated
a vast variety of engineering techniques for the problem. Our techniques include a fast
improvement heuristic, specialized depth-first-search, scheduling path searches more eagerly
as well as running a data reduction based on a 2-approximation algorithm. Experiments
have shown that our final algorithm outperforms the fastest exact state-of-art algorithm
by a factor of 6.59 on average. Especially on low density and low out-degree instances,
like road networks and instances from numerical backgrounds, our algorithm outperforms
its competitors. Only on low density, high out-degree instances the competitors have an
advantage and compute an orientation slightly faster.

There are multiple areas of future work. Most importantly, we think that an explicit
parallelism for the proposed algorithms is worthwhile as on massive instances we still observe
very large running times overall.

ESA 2024

97:16 Engineering Edge Orientation Algorithms

Table 2: Average running time per instance in seconds. Sorted
by d⋆. 5 repetitions.

d⋆ TwoA+G&P TwoA+Kowalik RPO

adaptive 2 5508.26 8.80 1.40

asia_osm 2 56.45 14.28 1.16

belgium_osm 2 7.17 1.72 0.17

europe_osm 2 288.53 88.28 6.65

germany_osm 2 61.71 13.60 1.62

g’b’_osm 2 33.52 7.72 0.96

hugebubbles’00 2 70 001.31 31.00 4.27

hugebubbles’10 2 31 454.70 44.19 8.66

hugebubbles’20 2 27 227.08 46.97 8.49

hugetrace’00 2 2901.07 7.22 0.98

hugetrace’10 2 8391.65 22.87 3.50

hugetrace’20 2 7916.97 31.78 5.27

hugetric’00 2 3568.83 9.04 1.22

hugetric’10 2 4805.79 13.60 2.46

hugetric’20 2 7161.24 14.68 2.67

italy_osm 2 31.45 8.07 0.76

n’l’_osm 2 10.50 2.15 0.22

roadnet-ca 2 11.33 3.44 0.25

roadnet-pa 2 5.71 1.72 0.14

road_central 2 92.38 26.98 4.60

road_usa 2 145.56 34.94 3.56

spielman_k200 2 14.16 5.42 0.08

spielman_k300 2 51.19 16.52 0.38

spielman_k400 2 123.57 39.95 0.64

spielman_k500 2 250.26 79.07 1.24

spielman_k600 2 559.14 150.55 2.30

333sp 3 2408.29 95.47 3.19

as365 3 2820.13 148.65 3.90

delaunay_n20 3 72.27 19.73 0.47

delaunay_n21 3 168.78 48.29 1.01

delaunay_n22 3 413.96 123.88 2.20

delaunay_n23 3 950.79 322.33 4.82

delaunay_n24 3 2275.57 816.72 10.28

m6 3 1415.00 132.64 4.08

naca0015 3 613.64 24.18 0.86

kmer_v1r 3 132.97 133.62 58.33

nlr 3 1500.28 176.09 4.70

roadnet-tx 3 7.13 2.26 0.15

venturilevel3 3 25.09 3.44 0.59

kmer_u1a 5 40.80 40.71 21.67

kmer_v2a 8 32.63 33.10 18.30

d⋆ TwoA+G&P TwoA+Kowalik RPO

channel-’b050 9 1031.67 10.47 0.66

packing-’b050 9 76.12 4.54 0.41

kmer_a2a 10 110.12 109.49 59.56

kmer_p1a 10 87.13 89.17 48.26

rgg_n_2_20_s0 12 0.88 0.77 0.25

rgg_n_2_21_s0 12 7.86 3.46 0.59

rgg_n_2_22_s0 13 9.89 6.09 1.11

rgg_n_2_23_s0 14 13.85 9.49 2.22

rgg_n_2_24_s0 14 22.65 18.12 5.24

gap-urand 17 81 481.60 12 910.44 5183.51

mawi’345 40 2.26 2.29 2.08

com-youtube 46 0.71 0.58 0.58

mawi’000 58 4.41 4.38 4.48

mawi’030 73 8.16 8.20 9.67

mawi’130 78 14.67 14.67 22.85

as-skitter 90 1.08 1.03 1.04

mawi’330 93 33.95 33.65 48.18

agatha’15 97 22 506.38 9267.07 4291.18

com-livejournal 194 4.26 4.14 4.51

com-orkut 228 27.61 14.00 9.18

moliere’16 232 1267.39 1013.19 1155.05

com-friendster 274 917.42 1056.45 1039.20

kron_g500-’20 908 13.62 5.73 2.65

hollywood-2009 1 104 5.02 2.97 1.82

kron_g500-’21 1 178 21.94 10.85 5.78

gap-kron 2 369 1846.96 1790.70 1332.63

H. Reinstädtler, C. Schulz, and B. Uçar 97:17

References
1 Oswin Aichholzer, Franz Aurenhammer, and Günter Rote. Optimal graph orientation with

storage applications. Universität Graz/Technische Universität Graz. SFB F003-Optimierung
und Kontrolle, 1995.

2 Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation algorithms
to minimize the maximum outdegree. Int. J. Found. Comput. Sci., 18(2):197–215, 2007.
doi:10.1142/S0129054107004644.

3 David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian Schulz, and
Dorothea Wagner. Benchmarking for graph clustering and partitioning. In Reda Alhajj and
Jon G. Rokne, editors, Encyclopedia of Social Network Analysis and Mining, 2nd Edition,
pages 73–82. Springer, 2018. doi:10.1007/978-1-4939-7131-2_23.

4 Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark suite. CoRR,
abs/1508.03619, 2015. doi:10.48550/arXiv.1508.03619.

5 Dennis A. Benson, Mark S. Boguski, David J. Lipman, and James Ostell. Genbank. Nucleic
Acids Research, 24(1):1–5, 1996. doi:10.1093/nar/24.1.1.

6 Markus Blumenstock. Fast algorithms for pseudoarboricity. In Michael T. Goodrich and Michael
Mitzenmacher, editors, Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016, pages 113–126.
SIAM, 2016. doi:10.1137/1.9781611974317.10.

7 Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation:
A multiresolution coordinate-free ordering for compressing social networks. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proc. of the 20th international conference on World Wide Web, pages 587–596.
ACM Press, 2011. doi:10.1145/1963405.1963488.

8 Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
Proc. of the 13th Int. World Wide Web Conference (WWW 2004), pages 595–601, Manhattan,
USA, 2004. ACM Press. doi:10.1145/988672.988752.

9 Léopold Cambier, Chao Chen, Erik G. Boman, Sivasankaran Rajamanickam, Raymond S.
Tuminaro, and Eric Darve. An algebraic sparsified nested dissection algorithm using low-rank
approximations. SIAM Journal on Matrix Analysis and Applications, 41(2):715–746, 2020.
doi:10.1137/19M123806X.

10 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial
Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, Septem-
ber 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84–95.
Springer, 2000. doi:10.1007/3-540-44436-X_10.

11 Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the WIDE project.
In Proceedings of the Freenix Track: 2000 USENIX Annual Technical Conference, June 18-23,
2000, San Diego, CA, USA, pages 263–270. USENIX, 2000. URL: http://www.usenix.org/
publications/library/proceedings/usenix2000/freenix/cho.html.

12 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, Cambridge, MA, 3rd edition, 2009. URL: http:
//mitpress.mit.edu/books/introduction-algorithms.

13 Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1), December 2011. doi:10.1145/2049662.2049663.

14 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002. doi:10.1007/s101070100263.

15 Iain S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw.,
7(3):315–330, 1981. doi:10.1145/355958.355963.

16 Iain S. Duff, Kamer Kaya, and Bora Uçar. Design, implementation, and analysis of maximum
transversal algorithms. ACM Transactions on Mathematical Software, 38:13:1–13:31, 2011.
doi:10.1145/2049673.2049677.

ESA 2024

https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1007/978-1-4939-7131-2_23
https://doi.org/10.48550/arXiv.1508.03619
https://doi.org/10.1093/nar/24.1.1
https://doi.org/10.1137/1.9781611974317.10
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1137/19M123806X
https://doi.org/10.1007/3-540-44436-X_10
http://www.usenix.org/publications/library/proceedings/usenix2000/freenix/cho.html
http://www.usenix.org/publications/library/proceedings/usenix2000/freenix/cho.html
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/355958.355963
https://doi.org/10.1145/2049673.2049677

97:18 Engineering Edge Orientation Algorithms

17 Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity. SIAM
J. Comput., 4(4):507–518, 1975. doi:10.1137/0204043.

18 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman,
David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,
Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium
on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 448–456.
ACM, 1983. doi:10.1145/800061.808776.

19 George F. Georgakopoulos and Kostas Politopoulos. MAX-DENSITY revisited: a generaliza-
tion and a more efficient algorithm. Comput. J., 50(3):348–356, 2007. doi:10.1093/comjnl/
bxl082.

20 Andrew V Goldberg. Finding a maximum density subgraph, 1984. URL: https://www2.eecs.
berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf.

21 Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988. doi:10.1145/48014.61051.

22 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

23 Konstantinos G. Kakoulis and Ioannis G. Tollis. On the multiple label placement problem. In
Proceedings of the 10th Canadian Conference on Computational Geometry, McGill University,
Montréal, Québec, Canada, August 10-12, 1998, 1998. URL: http://cgm.cs.mcgill.ca/
cccg98/proceedings/cccg98-kakoulis-multiple.ps.gz.

24 Łukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph density
measures. In Tetsuo Asano, editor, Algorithms and Computation, 17th International Sym-
posium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of
Lecture Notes in Computer Science, pages 557–566. Springer, 2006. doi:10.1007/11940128_56.

25 J. Leskovec. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.
html, June 2014.

26 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.
doi:10.1002/net.3230120206.

27 Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software, 16(4):303–324, December 1990. doi:10.1145/98267.
98287.

28 Henrik Reinstädtler, Christian Schulz, and Bora Uçar. HeiOrient. Software, DFG-SCHU
2567/3-1, swhId: swh:1:dir:be7317d125554a54dfd1c9d17521c500c4e1ebc3 (visited on 2024-
08-07). URL: https://github.com/HeiOrient/HeiOrient.

29 Henrik Reinstädtler, Christian Schulz, and Bora Uçar. Engineering edge orientation algorithms,
2024. doi:10.48550/arXiv.2404.13997.

30 Justin Sybrandt, Ilya Tyagin, Michael Shtutman, and Ilya Safro. AGATHA: automatic graph
mining and transformer based hypothesis generation approach. In Mathieu d’Aquin, Stefan
Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux, editors, CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, pages 2757–2764. ACM, 2020. doi:10.1145/3340531.
3412684.

31 Venkat Venkateswaran. Minimizing maximum indegree. Discret. Appl. Math., 143(1-3):374–378,
2004. doi:10.1016/j.dam.2003.07.007.

32 Walter Whiteley. The union of matroids and the rigidity of frameworks. SIAM Journal on
Discrete Mathematics, 1(2):237–255, 1988. doi:10.1137/0401025.

https://doi.org/10.1137/0204043
https://doi.org/10.1145/800061.808776
https://doi.org/10.1093/comjnl/bxl082
https://doi.org/10.1093/comjnl/bxl082
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://doi.org/10.1145/48014.61051
https://doi.org/10.1137/0202019
http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-kakoulis-multiple.ps.gz
http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-kakoulis-multiple.ps.gz
https://doi.org/10.1007/11940128_56
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://doi.org/10.1002/net.3230120206
https://doi.org/10.1145/98267.98287
https://doi.org/10.1145/98267.98287
https://archive.softwareheritage.org/swh:1:dir:be7317d125554a54dfd1c9d17521c500c4e1ebc3;origin=https://github.com/HeiOrient/HeiOrient;visit=swh:1:snp:ad428689c405e27808a6eac12433782b1de2166e;anchor=swh:1:rev:830c983f61d5199a6b6b0daab77fddf55d158cfd
https://github.com/HeiOrient/HeiOrient
https://doi.org/10.48550/arXiv.2404.13997
https://doi.org/10.1145/3340531.3412684
https://doi.org/10.1145/3340531.3412684
https://doi.org/10.1016/j.dam.2003.07.007
https://doi.org/10.1137/0401025

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Edge Orientation Framework and Engineering Techniques
	4.1 The Proposed Framework
	4.2 Engineering Techniques
	4.2.1 Two Approximation Data Reduction
	4.2.2 Fast Initialization
	4.2.3 Path Finding Algorithms

	5 Experimental Evaluation
	5.1 Parameter Study for the Proposed Algorithms
	5.2 Comparison with State-of-the-Art

	6 Conclusion

