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Abstract
We bound the smoothed running time of the FLIP algorithm for local Max-Cut as a function of
α, the arboricity of the input graph. We show that, with high probability and in expectation, the
following holds (where n is the number of nodes and ϕ is the smoothing parameter):
1. When α = O(log1−δ n) FLIP terminates in ϕpoly(n) iterations, where δ ∈ (0, 1] is an arbitrarily

small constant. Previous to our results the only graph families for which FLIP was known to
achieve a smoothed polynomial running time were complete graphs and graphs with logarithmic
maximum degree.

2. For arbitrary values of α we get a running time of ϕn
O( α

log n
+log α). This improves over the best

known running time for general graphs of ϕnO(
√

log n) for α = o(log1.5 n). Specifically, when
α = O(log n) we get a significantly faster running time of ϕnO(log log n).
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1 Introduction

Local Max-Cut. Let us start by introducing the problem of local Max-Cut and the FLIP
algorithm. Our input is a weighted graph G(V, E), with |V | = n, |E| = m. The local Max-Cut
problem asks us to find a cut (C ⊂ V ) that is locally maximal – where the weight of the cut
cannot be improved by moving any one vertex to the other side of the cut (throughout the
paper we use the terms “move” and “flip” interchangeably). This is a very natural problem
in the context of local search, where it is known to be PLS-complete (PLS is the complexity
class Polynomial Local Search) [12]. It also appears in the context of the party affiliation
game [9] where it corresponds to a Nash equilibrium, and in the context of finding a stable
configuration of Hopfield networks [10].

FLIP. A simple algorithm for the problem is the following local search approach, called
FLIP. Starting from any initial cut, pick an arbitrary vertex and move it to the other side of
the cut as long as this results in an improvement to the weight of the cut. It is clear that
once FLIP terminates, we have arrived at a locally maximal cut. It is known that there
exist weight assignments to the edges such that this algorithm takes exponential time to
terminate [11]. Nevertheless, empirical evidence suggests that the algorithm terminates in
reasonable time [1]. To bridge this gap, we are interested in the smoothed complexity of the
problem.

Smoothed analysis. Smoothed analysis was introduced by [13] in an attempt to explain
the fast running time of the Simplex algorithm in practice, despite its exponential worst-case
runtime. In the smoothed analysis framework, an algorithm is provided with an adversarial
input that is perturbed by some random noise. We are then interested in bounding the
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running time of the algorithm in expectation or with high probability (w.h.p)1 over the noise
added to the input. Spielman and Teng show that the smoothed runtime of the simplex
algorithm is polynomial. This approach is motivated by the fact that real-world inputs are
not completely adversarial nor completely random, and can be seen as a middle ground
between worst-case and average-case analysis.

Smoothed local Max-Cut. Let us now define the smoothed version of the local Max-Cut
problem. Instead of assuming that G has arbitrary edge weights, let the set of edge weights,
{we}e∈E , be independent random variables taking real values in [−1, 1]. Note that they
need not be identically distributed. Each we is chosen from a distribution whose probability
density function is fe : [−1, 1] → [0, ϕ]. Where ϕ > 1/2 is a smoothing parameter, upper
bounding the density of the distribution for any specific value. This parameter determines
the strength of the adversary – setting ϕ = 1/2 implies a uniform distribution of weights over
[−1, 1], while allowing ϕ → ∞ makes the adversary as strong as in the classical worst-case
analysis paradigm.

Smoothed analysis of FLIP. The first to provide a quasi-polynomial bound for the smoothed
runtime of FLIP on general graphs were [8]. Prior to their work, it was only known that
FLIP achieves a polynomial running time on graphs with logarithmic degree [7]. It was first
proved in [1] that FLIP has smoothed polynomial running time on complete graphs. They
provide a bound of O(ϕ5n15.1) w.h.p. The current state-of-the-art result for general graphs
is due to [4], achieving a bound of ϕnO(

√
log n). The best-known result for complete graphs

is due to [3], where they provide a bound of O(ϕn7.83) w.h.p.

Our results. Proving that FLIP has a polynomial smoothed running time in general graphs
is a major open problem in the field of smoothed analysis. A natural approach to attack this
problem is to consider the problem on various graph classes of increasing complexity. Prior
to our results, FLIP was only known to achieve a smoothed polynomial running time on two
graph classes: complete graphs [1, 3] and graphs with logarithmic maximum degree [7]2. In
this paper, we focus on graphs with bounded arboricity.

The arboricity of a graph is a measure of its sparsity. It is defined to be the minimum
number of forests into which the edges can be partitioned. The arboricity is equal, up to a
factor of 2, to the maximum average degree in any subgraph. Low arboricity graphs can be
seen as being “sparse everywhere”. Graphs with low arboricity are a very natural family of
graphs which includes many important graph classes, such as minor closed graphs (e.g., planar
graphs, bounded treewidth graphs), and randomly generated preferential attachment graphs
(e.g., Barabasi-Albert [2]). For an excellent exposition on the importance of low-arboricity
graphs we refer the reader to [5, 6]. We prove the following theorem:

▶ Theorem 1. Let G be a graph with arboricity α where edge weights are independent random
variables with density bounded by ϕ, for any β ∈ [2, n] it holds in expectation and w.h.p that
FLIP terminates within ϕnO( βα

log n +logβ α) iterations.

1 In this paper we take w.h.p to mean with probability of at least 1 − 1/n. However, our results can
be made to hold with probability 1 − 1/nc for an arbitrarily large constant c without affecting the
asymptotic running times.

2 Strictly speaking, the analysis provided in [7] is for Gaussian perturbations. However, we believe that it
can be easily generalized to general perturbations.
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Setting β = logδ n, α = log1−δ n we get the following running time:

ϕnO( βα
log n +logβ α) = ϕnO( log n

log n +loglogδ n
log1−δ n) = ϕn

O(1+ log log1−δ n

log logδ n
)

= ϕnO(1+ (1−δ) log log n
δ log log n ) = ϕnO(1+ (1−δ)

δ ) = ϕnO(1/δ)

The above implies that as long as 1/δ = O(1) (i.e., δ is a constant), for any graph with
arboricity O(log1−δ n) FLIP terminates in polynomial time in expectation and w.h.p. 3

Setting β = O(1), for arbitrary values of α we get a running time of ϕnO( α
log n +log α).

This improves over the best known running time for general graphs of ϕnO(
√

log n) [4] for
α = o(log1.5 n). Specifically, when α = O(log n) we get a significantly faster running time of
ϕnO(log log n).

Analysis outline. Our analysis draws inspiration from both [7] and [8]. In [7] it is shown
that w.h.p any node movement (i.e., every step of FLIP) increases the cut weight by at least
an additive 1/ϕpoly(n) factor, which immediately implies a running time of ϕpoly(n) (as the
cut weight cannot exceed n2). It is crucial for their analysis that the degree of all nodes does
not exceed O(log n) as otherwise we cannot get the guarantee to hold for all node movements.
In [8] longer sequences of movements (linear size) are considered. Specifically, they focus
on consecutive movements of the same node in the sequence. They show that w.h.p any
sufficiently long sequence of flips results in an additive improvement of at least 1/ϕnO(log n).

Our analysis makes use of the bounded arboricity of the graph to construct a hierarchical
partition4 of the node set, V = ∪τ

i=1Vi with the following property: every v ∈ Vi has at
most O(α) neighbors in ∪τ

j=iVj . We use an argument similar to that of [7] to guarantee that
any 2 consecutive movements of v ∈ Vi, with no movements of any neighbors in Vj , j < i

in between them, significantly increase the cut weight (when α is sufficiently small). We
then show that such “good” sequences of movements must appear in any sufficiently long
(super-polynomial) sequence of movements. Our analysis is clean and simple, and, to the
best of our knowledge, it is the first to make use of structural properties of the input graph.

2 FLIP on bounded arboricity graphs

Vertex partition. We consider an input graph G(V, E) with arboricity α. Therefore, all
induced subgraphs of G have average degree at most 2α. We use this fact to create a partition
of V . Let β ∈ [2, n] be a parameter. Starting with G1 = G, it has average degree at most 2α,
therefore, it must be the case that at most n/β vertices have degree larger than 2βα. Let
V1 be the vertices with degree ≤ 2βα. Let us consider the induced graph G2 = G[V \ V1].
It has average degree at most 2α and at most ⌈n/β⌉ vertices. We take V2 to be the nodes
with degree ≤ 2βα in G2. Generally, we consider Gi = G[V \ ∪i−1

j=1Vj ] and take Vi to be the
vertices with degree ≤ 2βα in Gi. As every such step decreases the number of nodes in Gi

by a β factor this process terminates in ⌈logβ n⌉ (going forward we omit the ceiling for ease
of notation). This partitions V into V1, . . . , Vlogβ n.

Let us denote by N(v) the set of all neighbors of v in G and let E(v) be the set of all
edges adjacent to v. Let V +

i = ∪logβ n

j=i Vj and for v ∈ Vi let N∗(v) = N(v) ∩ V +
i . Similarly,

let E∗(v) = {(v, u) ∈ E(v) | u ∈ N∗(v)}. Note that it holds that ∀v ∈ V, |N∗(v)| ≤ 2βα.

3 In a previous version of the manuscript we set α = β = O(
√

log n) which leads to sub-optimal results.
This improved choice of α, β is due to Bruce Reed.

4 We would like to emphasize that the partition is only used for the sake of analysis and the algorithm is
oblivious to it.

ESA 2024



98:4 Local Max-Cut on Sparse Graphs

Good movements. Using the above decomposition we can now characterize specific “good”
sequences of movements that always lead to a significant improvement in the cut weight.

Let us consider some node v ∈ V , any movement of v during the execution of FLIP
results in an increase of the form

∑
e∈E(v) λewe where λe ∈ {−1, 1}. As long as {we}e∈E(v)

are independent, it is known that for every assignment of values to {λe}e∈E(v) it holds that
Pr[

∑
v∈e λewe ∈ [0, ϵ]] ≤ ϵϕ (i.e., the linear combination also has density bounded by ϕ), this

holds even if {λe}e∈E(v) take values in Z [1]. If we could show that for any configuration of
{λe}e∈E(v) it holds that

∑
e∈E(v) λewe /∈ [0, ϵ] then we could guarantee that any movement of

v during the execution of FLIP results in an increase of at least ϵ to the cut weight, regardless
of the current cut configuration.

Unfortunately, to achieve such a result, we must union bound over 2d(v) possible configur-
ations. This is the approach taken by [7] to achieve their results for graphs with logarithmic
maximum degree. However, for graphs with bounded arboricity, we need a new approach.

Similar to the analysis of [8] we are interested in two consecutive movements of some node.
However, we make use of our decomposition and focus on movements of v ∈ Vi that happen
before any nodes in N(v) \ N∗(v) move. Summing the two increases, we get

∑
e∈E∗(v) λewe,

where λe ∈ {−2, 0, 2}. We provide an illustration in Figure 1. This approach has the benefit

Figure 1 We consider the gain in the cut weight when v is flipped for the first time plus the gain
when it is flipped for the second time. We note that weights of edges to nodes that were flipped an
even number of times between the two movement of v get cancelled out and do not appear in the
sum, while nodes that were flipped an odd number of times have a coefficient in {−2, 2}.

of only considering linear combinations of at most 2βα elements (instead of d(v)). This
means that when applying a union bound it is sufficient to sum over only 32βα configurations.
We state the following lemma:

▶ Lemma 2. For any c ≥ 1, with probability at least 1 − 1/nc for all cut configurations and
all nodes, for every two consecutive moves of v ∈ Vi during the execution of FLIP such that
no node in N(v) \ N∗(v) moved in between them, the weight of the cut increases by at least
ϕ−13−2βαn−c.

Proof. We know that for every assignment of values in {−2, 0, 2} to {λe}e∈E∗(v) it holds
that Pr[

∑
e∈E∗(v) λewe ∈ [0, ϵ]] ≤ ϵϕ. Setting ϵ = ϕ−13−2βαn−c and taking a union bound

over all nodes and all possible 32βα values of {λe}e∈E∗(v) we get that with probability at
least 1 − 1/nc for all nodes and all possible linear combinations with coefficients in {−2, 0, 2}
it holds that

∑
e∈E∗(v) λewe /∈ [0, ϕ−13−2βαn−c]. ◀
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It is also worth noting that as we only consider linear combinations of the form∑
e∈E∗(v) λewe in the above Lemma, our results still hold under a weaker independence

guarantee. It is sufficient that only {we}e∈E∗(v) are independent for every v ∈ V .

Prevalence of good movements. Lemma 2 guarantees the existence of certain types of
good movement sequences (parameterized by c). However, it is not clear how often these
sequences must occur for executions of FLIP starting from an arbitrary cut configuration.
We show that after a sufficiently long sequence of steps of FLIP the cut weight must increase
by at least ϕ−13−2βαn−c. We state the following lemma.

▶ Lemma 3. For any c ≥ 1, with probability at least 1 − 1/nc, FLIP terminates within
τc = nc · nO( βα

log n +logβ α) iterations.

Proof. Starting from an arbitrary cut configuration, we note that if some node v moves twice
and no node u ∈ N(v) \ N∗(v) moves in between, due to Lemma 2, we are done. Therefore,
we must bound the number of steps FLIP can make without allowing the above situation.
Consider some execution of FLIP in which the above situation does not happen. It must be
the case that if v moves, then some node u ∈ N(v) \ N∗(v) must move before v moves again.
Let us introduce some notation. Initially, all nodes are active, after a node v is flipped it
becomes inactive until a node u ∈ N(v) \ N∗(v) is flipped (i.e., when u is flipped, all nodes in
N∗(u) become active). Note that in a sequence without good movements, no inactive node
will be flipped. We show that eventually all nodes must become inactive.

Let us denote by ai(t) the number of active nodes in Vi after the t-th step of the algorithm.
Let us define the following potential function

φ(t) =
logβ n∑

i=1
ai(t)(logβ n − i)(2βα)(logβ n)−i

Say that a node v ∈ Vi is flipped at step t. Then ai is decreased by 1, and at most 2βα other
aj ’s (j > i) are incremented by 1. The largest possible increment is when all newly activated
nodes are in Vi+1. This allows us to bound the change in the potential as follows:

(logβ n − (i + 1))2βα · (2βα)(logβ n)−(i+1) − (logβ n − i)(2βα)(logβ n)−i = −α(logβ n)−i < −1

When the potential is 0 we conclude that there are no active nodes and either the
algorithm is done, or the next flip will increase the cut weight significantly. As initially all
nodes are active, the potential is upper bounded by:

logβ n∑
i=1

|Vi| (logβ n − i)(2βα)(logβ n)−i ≤
logβ n∑

i=1
|Vi| (logβ n)(2βα)logβ n

= (2βα)logβ nn logβ n = nO(logβ α)

We conclude that in every nO(logβ α) steps of FLIP we are guaranteed that the cut weight
increases by at least ϕ−13−2βαn−c = ϕ−1n−c · n−Ω( βα

log n ). As the cut weight cannot exceed
n2, the algorithm terminates within

τc = ϕn−c · nO( βα
log n ) · nO(logβ α) = ϕn−c · nO( βα

log n +logβ α)

steps with probability at least 1 − 1/nc. ◀

Using the above, we state our main theorem.

ESA 2024
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▶ Theorem 1. Let G be a graph with arboricity α where edge weights are independent random
variables with density bounded by ϕ, for any β ∈ [2, n] it holds in expectation and w.h.p that
FLIP terminates within ϕnO( βα

log n +logβ α) iterations.

Proof. The guarantee w.h.p follows directly from Lemma 3 by setting c to be any constant
larger than 1. Let us now bound the expected running time.

For ease of notation let us define τ0 = 0. Let T be the random variable denoting the
smoothed running time of FLIP. Using the law of total expectation we may express E[T ] as a
sum of terms of the form E[T | T ∈ [τc−1, τc)] · Pr[T ∈ [τc−1, τc)]. As the cut weight strictly
increases throughout the execution of FLIP, and there are at most 2n cut configurations,
it holds that T ≤ 2n (with probability 1). Therefore, it is sufficient to sum the conditional
expectations only up to c = n (this is quite loose, but will not affect the asymptotics of the
final solution). We get:

E[T ] =
n∑

c=1
E[T | T ∈ [τc−1, τc)] · Pr[T ∈ [τc−1, τc)] ≤

n∑
c=1

τc

nc−1 =
n∑

c=1
ϕnO( βα

log n +logβ α)

= ϕnO( βα
log n +logβ α)

This completes the proof. ◀
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