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Abstract
In this paper, we consider the parameterized quantum query complexity for graph problems. We
design parameterized quantum query algorithms for k-vertex cover and k-matching problems,
and present lower bounds on the parameterized quantum query complexity. Then, we show that our
quantum query algorithms are optimal up to a constant factor when the parameters are small. Our
main results are as follows.

Parameterized quantum query complexity of vertex cover. In the k-vertex cover problem,
we are given an undirected graph G with n vertices and an integer k, and the objective is to determine
whether G has a vertex cover of size at most k. We show that the quantum query complexity of the
k-vertex cover problem is O(

√
kn + k3/2√

n) in the adjacency matrix model. For the design of
the quantum query algorithm, we use the method of kernelization, a well-known tool for the design
of parameterized classical algorithms, combined with Grover’s search.

Parameterized quantum query complexity of matching. In the k-matching problem, we are
given an undirected graph G with n vertices and an integer k, and the objective is to determine
whether G has a matching of size at least k. We show that the quantum query complexity of the
k-matching problem is O(

√
kn + k2) in the adjacency matrix model. We obtain this upper bound

by using Grover’s search carefully and analyzing the number of Grover’s searches by making use of
potential functions. We also show that the quantum query complexity of the maximum matching
problem is O(√pn + p2) where p is the size of the maximum matching. For small p, it improves
known bounds Õ(n3/2) for bipartite graphs [Blikstad–v.d.Brand–Efron–Mukhopadhyay–Nanongkai,
FOCS 2022] and O(n7/4) for general graphs [Kimmel–Witter, WADS 2021].

Lower bounds on parameterized quantum query complexity. We also present lower bounds
on the quantum query complexities of the k-vertex cover and k-matching problems. The lower
bounds prove the optimality of the above parameterized quantum query algorithms up to a constant
factor when k is small. Indeed, the quantum query complexities of the k-vertex cover and
k-matching problems are both Θ(

√
kn) when k = O(

√
n) and k = O(n2/3), respectively.
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1 Introduction

The query complexity for Boolean functions has been studied much both on the classical and
quantum settings. In contrast to the circuit complexity, the quantum advantages on the query
complexity have been rigorously proved for several problems [11, 41]. While the classical
query complexities are trivial for many graph problems, the quantum query complexities are
non-trivially small for many graph problems [4–9,12,14, 15, 17, 18, 22, 23, 27, 28, 35, 36, 38, 45–
47,49,51,52,54,55,57,62–64].

In this paper, we consider the parameterized quantum query complexity for graph
problems. In terms of the classical time complexity, the theory of parameterized time
complexity classifies NP-hard problems on a finer scale. Some graph problems can be solved
in polynomial time, e.g., the maximum matching problem. On the other hand, several graph
problems are NP-hard, e.g., the minimum vertex cover problem, which can not be solved in
polynomial time unless P = NP. For the detailed analysis of the NP-hard problems, we have
studied the parameterized complexity, where we design and analyze algorithms for problems
with fixed parameters. Then, our goal is to design algorithms that perform efficiently when
the parameters are small. Formally, the definition of a parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a fixed finite alphabet. For an instance (x, k) ∈ Σ∗ × N, we call k

the parameter. The main focus in the field of the parameterized complexity is whether there
exists an algorithm to solve the parameterized problem in f(k) · |x|O(1) time, where f is an
arbitrary computable function and |x| is the size of x. A parameterized problem is called
Fixed Parameter Tractable (FPT) if such an algorithm exists. The running time of the FPT
algorithms is polynomial in the input size |x| with a constant exponent independent of the
parameter k if the parameter k is constant. This parameter is typically taken to be the size
of the solution. Then, we consider the problem of deciding whether there is a solution of size
bounded by k. For example, the k-vertex cover problem, which asks whether a given graph
has a vertex cover of size at most k, can be solved in O(2k · n) time. This means that the
k-vertex cover problem is FPT.

For the adjacency matrix model, the quantum query complexity for graph problems is
trivially O(n2), where n is the number of vertices. For the parameterized graph problems,
our objective is to design quantum query algorithms with the query complexity f(k) · nc,
where c is some constant smaller than 2. We will introduce a class of quantum query
algorithms called Fixed Parameter Improved (FPI) algorithms. For the definition of FPI,
we consider an unparameterized problem of the parameterized problem. For example, the
unparameterized problems of the k-vertex cover and k-matching problems are the minimum
vertex cover and the maximum matching problems, respectively. If the query complexity
of the unparameterized problem is Ω(ne), the parameterized problem is FPI if its query
complexity is at most f(k) · nc for some constant c < e independent of k. When we can take
f(k) as a polynomial, we say that the parameterized problem is polynomial FPI.

For the minimum vertex cover problem and the maximum matching problem, the quantum
query complexity is Ω(n3/2) [63]. In this work, we prove that the quantum query complexities
of the k-vertex cover problem and k-matching problem are O(

√
kn+k3/2√

n) and O(
√

kn+k2),
respectively. Hence, the k-vertex cover and k-matching problems are polynomial FPI.

We also prove lower bounds Ω(
√

kn) of the quantum query complexities of the k-vertex
cover and k-matching problems using the adversary method. Hence, the quantum query
algorithms in this paper are optimal up to a constant factor for small k.

Note that no non-trivial quantum query complexity O(n2−ϵ) has been obtained for the
minimum vertex cover problem. The best known upper bound on the quantum query
complexity of the maximum matching problem is O(n7/4) [49].
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In summary, this work considers the parameterized quantum query complexity for graph
problems, introduces FPI algorithms, and presents quantum query algorithms for the k-vertex
cover and k-matching problems that are polynomial FPI and optimal for small k.

1.1 Our Contribution

1.1.1 Parameterized Quantum Query Complexity of Vertex Cover
In this paper, we consider the quantum query complexity of the k-vertex cover problem,
which is one of the central problems in the study of parameterized computation. This problem
is also one of Karp’s 21 NP-complete problems [48]. A vertex set S ⊆ V (G) is a vertex
cover if every edge of the graph has at least one endpoint in S. In the k-vertex cover
problem, we are given an undirected graph G = (V, E) and an integer k, and the objective is
to determine whether G has a vertex cover of size at most k.

Here, we mention some known results related to our work. There have been many
studies to improve the running time of an FPT algorithm for the k-vertex cover in
the literature [10, 21, 24–26, 37, 43, 58, 59, 61]. The state-of-the-art algorithm, given by
Harris–Narayanaswamy [43], has the time complexity O(1.2575k · poly(n)).

The minimum vertex cover problem is the optimization version of the k-vertex cover
problem. In this problem, the objective is to find the smallest vertex cover of G. The trivial
upper bound O(n2) on the quantum query complexity of the minimum vertex cover problem
in the adjacency matrix model has not been improved. The largest known lower bound
on the quantum query complexity of the minimum vertex cover problem is Ω(n3/2) in the
adjacency matrix model [63].1

The first main contributions of this paper is to obtain an upper bound on the quantum
query complexity of the k-vertex cover problem.

▶ Theorem 1. The quantum query complexity for finding a vertex cover of size at most k or
determining that there does not exist a vertex cover of size at most k with bounded error is
O(

√
kn + k3/2√

n) in the adjacency matrix model.

We also provide a lower bound on the quantum query complexity of the k-vertex cover
problem.

▶ Theorem 2. For any constant ϵ > 0, given a graph G with n vertices in the adjacency
matrix model and an integer k ≤ (1 − ϵ)n, the quantum query complexity of deciding whether
G has a vertex cover of size at most k with bounded error is Ω(

√
kn).

The upper and lower bounds on the quantum query complexity of the k-vertex cover
problem are summarized in Figure 1. From Theorems 1 and 2, we obtain the following
corollary.

▶ Corollary 3. The quantum query complexity of deciding whether G has a vertex cover
of size at most k with bounded error is Θ(

√
kn) when k = O(

√
n) in the adjacency matrix

model.

1 Zhang [63] showed that the quantum query complexity of the maximum matching problem is Ω(n3/2).
For bipartite graphs, the minimum vertex cover has the same cardinality as the maximum matching by
well-known König’s theorem (see e.g., [60, Theorem 16.2]). Thus, we can easily obtain an Ω(n3/2) lower
bound for the minimum vertex cover problem.

ESA 2024
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Figure 1 The quantum query complexity of the k-vertex cover problem.

A graph G has a vertex cover of size at most k if and only if the complement graph G

has a clique of size at least n − k. Hence, our result given in Corollary 3 implies new bounds
on the quantum query complexity of the k-clique problem, which is a well-studied problem
in the quantum query model [14,23,27, 47,51, 52,54,55, 57,64]. In the k-clique problem, the
objective is to find a clique of size at least k. The best known upper bound on the quantum
query complexity of the k-clique problem in the adjacency matrix model is O(n2−2/k−g(k))
where g(k) = O(1/k3) is a strictly positive function [54,64]. Note that only the trivial Ω(n)
lower bound is known. While non-trivial optimal query complexity of the k-clique problem
has not been known for any k, Corollary 3 establishes non-trivial optimal query complexity
Θ(

√
kn) of detecting cliques of size at least n − k for any k = O(

√
n).

We also provide a lower bound on the randomized query complexity of the k-vertex
cover problem.

▶ Proposition 4. Given a graph G with n vertices in the adjacency matrix model and an
integer k < n − 1,2 the randomized query complexity of deciding whether G has a vertex cover
of size at most k with bounded error is Ω(n2).

1.1.2 Parameterized Quantum Query Complexity of Matching
We also consider the quantum query complexity of the k-matching problem, which is the
parameterized version of the maximum matching problem. An edge set M ⊆ E(G) is a
matching if each vertex in V (G) appears in at most one edge in M . In the k-matching
problem, we are given an undirected graph G = (V, E) and an integer k, and the objective is
to determine whether G has a matching of size at least k.

We obtain an upper bound on the quantum query complexity of the k-matching problem.

▶ Theorem 5. The quantum query complexity of finding a matching of size at least k or
determining that there does not exist a matching of size at least k with bounded error is
O(

√
kn + k2) in the adjacency matrix model.

We also provide a lower bound on the quantum query complexity of the k-matching
problem.

2 We consider only the setting where k < n − 1, since an input instance is always a yes-instance in the
setting where k ≥ n − 1.
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Figure 2 The quantum query complexity of the k-matching problem.

▶ Theorem 6. Given a graph G with n vertices in the adjacency matrix model and an integer
k ≤ n/2, the quantum query complexity of deciding whether G has a matching of size at least
k with bounded error is Ω(

√
kn).

Zhang [63] showed that the quantum query complexity of deciding whether G has a
perfect matching is Ω(n3/2). Then, Theorem 6 is a generalization of the result of Zhang.

The upper and lower bounds on the quantum query complexity of the k-matching
problem are summarized in Figure 2. From Theorems 5 and 6, we obtain the following
corollary.

▶ Corollary 7. The quantum query complexity for deciding whether G has a matching of size
at least k with bounded error is Θ(

√
kn) when k = O(n2/3) in the adjacency matrix model.

We also provide a lower bound on the randomized query complexity of the k-matching
problem.

▶ Proposition 8. Given a graph G with n vertices in the adjacency matrix model and an
integer k ≤ n/2, the randomized query complexity of deciding whether G has a matching of
size at least k with bounded error is Ω(n2).

By using Theorem 5, we also obtain the quantum query complexity of the maximum
matching problem. Here, let p denote the size of the maximum matching.

▶ Theorem 9. The quantum query complexity for finding a maximum matching with bounded
error is O(√pn + p2) in the adjacency matrix model.

This query complexity improves upon known results when p is small. Lin–Lin [56]
obtained an O(p1/4n3/2) upper bound on the quantum query complexity of the maximum
matching problem for bipartite graphs in the adjacency matrix model3, which is the first
nontrivial upper bound. By using the method developed by Lin–Lin, Kimmel–Witter [49]

3 Their paper only states that the quantum query complexity of the bipartite maximum matching problem
is O(n7/4) in the adjacency matrix model. We see that this upper bound can be easily improved to
O(p1/4n3/2). Their quantum query algorithm relies on the classical algorithm by Hopcroft–Karp [44].
In the algorithm of Hopcroft–Karp, they repeatedly find a maximal set of vertex disjoint shortest
augmenting paths. To obtain an O(n7/4) upper bound, Lin–Lin use the fact that O(

√
n) iterations of

these processes suffice. It is known that only O(√p) iterations suffice; see [44, Theorem 3]. Then, we
can obtain an O(p1/4n3/2) upper bound for the bipartite maximum matching problem.

ESA 2024
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obtained an O(p1/4n3/2) upper bound for general graphs. Moreover, Blikstad–v.d.Brand–
Efron–Mukhopadhyay–Nanongkai [18] showed that the quantum query complexity of the
bipartite maximum matching problem is Õ(n3/2) in the adjacency matrix model4.

1.1.3 Fixed Parameter Improved Algorithms

For a better understanding of the main results of this work, we introduce a new class of query
algorithms for graph problems, which we call fixed parameter improved (FPI) algorithms.
First, we define parameterized graph problems.

▶ Definition 10 (Parameterized graph problem). In a parameterized graph problem, inputs are
the number of vertices n, an oracle for a n-vertex graph G, typically in the adjacency matrix
model, and a nonnegative integer k as a parameter. Here, the parameter k is polynomially
bounded in n. The output of the problem is some property of the graph G parameterized by k.

Then, we introduce unparameterized graph problems of parameterized graph problems.

▶ Definition 11 (Unparameterized graph problem). In an unparameterized graph problem of
a parameterized graph problem P, inputs are the number of vertices n, and an oracle for
a n-vertex graph G. The output of the unparameterized problem is a list of outputs of the
parameterized problem P for all possible parameters k.

▶ Remark 12. In many cases, a parameterized graph problem P is binary, i.e., the output is
YES or NO, and monotone, i.e., if the output for (G, k) is YES or NO, then the output for
(G, k + 1) is also YES or NO, respectively. In this case, the unparameterized graph problem
Q for P is essentially an optimization problem that asks the minimum k for which (G, k) is
a YES or NO instance of P.

Now, we define the fixed parameter improved algorithms.

▶ Definition 13 (Fixed parameter improved algorithms). Let P and Q be a parameterized
graph problem and its unparameterized graph problem, respectively. Let

C(Q) := inf {c | The query complexity of Q is O(nc)} .

A query algorithm A for P is said to be fixed parameter improved if there exists a constant
c < C(Q) and a function f(k) such that the query complexity of A is at most f(k)nc. When
f(k) is a polynomial, A is said to be polynomial FPI.

The concept of FPI can be regarded as a natural generalization of FPT. The correspond-
ence between FPI and FPT is summarized in Table 1. The quantum query algorithms in
Theorems 1 and 5 are polynomial FPI since C(Q) ≥ 3/2 for both the problems [63]. On the
other hand, the quantum query algorithms for the k-clique problem in [54, 57, 64] with query
complexity n2−O(1/k) are not FPI.

Note that the quantum algorithms in this paper are fixed parameter linear (FPL), which
means that the query complexity is at most f(k)n for some function f . Since we can take
f(k) as a polynomial, the quantum algorithms in this paper are polynomial FPL.

4 The Õ notation hides factors polynomial in log n.
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Table 1 The correspondence between FPI and FPT.

Unparameterized
complexity Not FPT/FPI FPT/FPI

Time complexity nω(1) nωk(1) ∃c < ∞ f(k)nc

Query complexity O
(
nC(Q)+ϵ

)
∀ϵ > 0 nC(Q)−ok(1) ∃c < C(Q) f(k)nc

1.2 Overview of Our Upper Bounds

1.2.1 Grover’s Search Algorithm
To obtain our quantum query algorithms for the k-vertex cover and k-matching problems,
we only use some variants of Grover’s search algorithm [41], which is a fundamental tool for
quantum query algorithms.

In Grover’s search algorithm, we are given oracle access to a function f : [N ] → {0, 1}
where K := |f−1(1)| is positive. Grover’s search algorithm finds some x ∈ f−1(1) with
Θ(

√
N/K) expected number of queries [19]. This algorithm does not require prior knowledge

of K.
As a simple application of Grover’s search algorithm, for given 1 ≤ R ≤ N , we can

compute some subset S ⊆ f−1(1) of size min{R, K} with probability at least 2/3 with query
complexity O(

√
RN) queries (see e.g., [20], [38, Fact 2.1], and [8, Theorem 13]).

In our quantum query algorithms, we use Grover’s search algorithm to find some edges
in G. Note that, in the adjacency matrix model, we are given query access to a function
EG :

(
V (G)

2
)

→ {0, 1} where EG(v, u) = 1 if and only if (v, u) ∈ E(G).

1.2.2 Overview of Our Parameterized Quantum Query Algorithm for
Vertex Cover

The parameterized quantum query algorithm for the k-vertex cover. It is easy to obtain
a bounded error quantum algorithm for the k-vertex cover problem with O(

√
kn3/2)

queries. To obtain this algorithm, we use the following easy observation: if there are more
than k(n − 1) edges in the input graph G, G does not have a vertex cover of size at most k.
In the algorithm, we check whether there are at most k(n − 1) edges in G, and if so, we find
all edges in G. By Grover’s search algorithm, this requires O(

√
k(n − 1) · n2) = O(

√
kn3/2)

queries. After finding all edges in G, we simply apply a known classical algorithm for the
k-vertex cover problem. Then, the quantum query complexity of the k-vertex cover
problem is O(

√
kn3/2). However, this upper bound is far from the optimal.

Kernelization. For the improvement of the query complexity, we use the technique of
kernelization, which is a important tool for designing parameterized algorithms [40,42]. A
kernelization is an efficient preprocessing algorithm that transforms a given instance to a
smaller instance called a kernel. Here, we formally define a kernelization for a parameterized
problem L ⊆ Σ∗ × N, where Σ is a fixed finite alphabet. A kernelization is an algorithm that
maps an instance (x, k) of L to another instance (x′, k′) of L with running time polynomial
in |x| and k, requiring that |x′| + k′ is bounded by a function of k. Here, we also require
that (x, k) ∈ L if and only if (x′, k′) ∈ L. Then, it is sufficient to check whether (x′, k′) ∈ L.
The output (x′, k′) is called a kernel of (x, k).

Typically, for graph problems, a kernel (G′, k′) of an instance (G, k) satisfies V (G′) ⊆ V (G)
and E(G′) ⊆ E(G), i.e., G′ is a subgraph of G. In this work, we consider a quantum query
algorithm that outputs a kernel (G′, k′) directly from k and the given oracle for G. Since

ESA 2024
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the size of kernels is bounded by a function of k, the number of edges in G′ is bounded by a
function of k. This observation suggests that the kernelization technique may yield low-query
quantum algorithms for parameterized problems. In this paper, we demonstrate, for the
first time, the utility of the kernelization technique in the context of parameterized quantum
query complexity.

Quantum query algorithm for kernelization. We introduce a new framework, called
quantum query kernelization, to obtain better quantum query complexity. A quantum query
kernelization algorithm outputs a kernel (G′, k′) as a bit string. In the quantum query setting,
the input graph G is provided as a quantum oracle, through which quantum algorithms
access G. Once we obtain a kernel (G′, k′), we do not require more queries since we can
decide whether (G′, k′) is a yes-instance by an arbitrary classical algorithm for (G′, k′).

Our quantum query kernelization algorithm is based on a known classical kernelization
algorithm. However, not all classical efficient kernelization algorithms give efficient quantum
query kernelization algorithms since they are not necessarily suitable for Grover’s search
algorithm. Hence, we have to choose appropriate kernels to derive better upper bounds.

Classical kernelization algorithm for the k-vertex cover problem. In this section, we
introduce the classical kernelization algorithm for the k-vertex cover problem which will be
used for designing the quantum query algorithm in Theorem 1. We first find a maximal
matching M of G. Note that a maximal matching is a matching that is not a subset of any
other matching. If the size of M is at least k + 1, then we conclude that the input instance
(G, k) is a no-instance. Let V (M) ⊆ V denote the set of all endpoints of edges in M . We
initially set (G′, k′) = (G, k). For each vertex v ∈ V (M), if v has degree at least k + 1, then
we update (G′, k′) to (G′ − v, k′ − 1).5 Then, we return the instance (G′, k′).

Now, the instance (G′, k′) obtained by the above procedure is a yes-instance if and only
if (G, k) is a yes-instance. This follows from the following simple observation.

▶ Observation 14 ( [21]; see also [32, Section 2.2.1]). If G has a vertex v of degree at least
k + 1, then v must be in every vertex cover of size at most k.

This is because if a vertex v is not in a vertex cover, then the vertex cover must contain all
neighbors of v to cover all edges incident to v.

Furthermore, (G′, k′) obtained by the above procedure has size depending only on k and
not on n. Let S ⊆ V (M) be a subset of V (M) that are contained in G′. Then, G′ is a
subgraph of G induced by S and it’s neighborhoods in G since M is a maximal matching of
G. Note that any v ∈ S has degree at most k in G′. This fact implies that G′ has at most
k · |S| ≤ k · |V (M)| ≤ 2k2 edges. Note that G′ consists of the maximal matching M (with
some missing vertices due to the deletion procedure) and a independent set V \ V (M) as in
Figure 3.

A similar idea was used in a parameterized streaming algorithm for the vertex cover
problem [31].

The optimal quantum query complexity of the k-vertex cover for small k. Now, we
present a quantum query kernelization algorithm based on the above classical kernelization
algorithm. In the above classical kernelization algorithm, there are multiple possible choices

5 For a vertex v ∈ V (G), let G − v denote the subgraph of G induced by V (G) \ {v}.
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Figure 3 The kernel for the k-vertex cover problem consists of maximal matching (with some
missing vertices) and independent set. The size of the maximal matching is at most k. All non-
missing vertices in the maximal matching have degree at most k.

of the maximal matching and the order of the vertex eliminations of degrees greater than k.
Let Ivc

(G,k) denote the set of all possible instances that can be returned by the above classical
kernelization algorithm for an input instance (G, k). In our quantum query kernelization
algorithm, we obtain a kernel (G′, k′) ∈ Ivc

(G,k) as a bit string with a small number of queries.

▶ Theorem 15. Given a graph G with n vertices in the adjacency matrix model and an
integer k, there is a bounded error quantum algorithm with O(

√
kn + k3/2√

n) queries that
outputs an instance (G′, k′) ∈ Ivc

(G,k), or otherwise determines that the instance (G, k) is a
no-instance of the k-vertex cover problem.

Obviously, Theorem 15 implies Theorem 1. In our quantum query kernelization algorithm,
we first find a matching of size at least k + 1 or a maximal matching. Grover’s search
algorithm yields a quantum algorithm with O(

√
kn) queries. If we find a matching of size

at least k + 1, we conclude that the input instance (G, k) is a no-instance. Assume that we
obtain a maximal matching M of size at most k. We initialize sets V ′ = V (G), E′ = ∅ and
an integer k′ = k. For each vertex v ∈ V (M), we find all edges incident to v if v has degree
at most k or, otherwise determine that v has degree at least k + 1. If v has degree at most k,
we add all edges incident to v to E′. If v has degree at least k + 1, then we remove v from
V ′ and update k′ to k′ − 1. For each v ∈ V (M), Grover’s search algorithm finds at most
k + 1 edges incident to v from n − 1 candidates with O(

√
kn) queries. Hence, in total, we

need O(k3/2√
n) queries. Then, we obtain a kernel (G′ = (V ′, E′), k′) ∈ Ivc

(G,k). The total
number of queries in the above quantum query kernelization algorithm is O(

√
kn + k3/2√

n).

1.2.3 Overview of Our Parameterized Quantum Query Algorithm for
Matching

In our algorithm for the k-matching problem, we first find a matching of size at least k

or a maximal matching by Grover’s search with O(
√

kn) queries. If we find a matching
of size at least k, we conclude that the input instance (G, k) is a yes-instance. Now, we
assume that we obtain a maximal matching M of size at most k − 1. Then, our algorithm
relies on the theory of the augmenting path, a widely used approach for computing the
maximum matching problem. We repeatedly find an M -augmenting path and update the
current maximal matching M until the size of M is equal to k or there is no M -augmenting
path, which means that M is a largest matching.

ESA 2024
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For a matching M , a path P on G is an M -augmenting path if the both endpoints of P

does not appear in M , and P contains edges from M and E \ M , alternatively. It is easy to
see that the symmetric difference M △ E(P ) = (M \ E(P )) ∪ (E(P ) \ M) is a matching of
size |M | + 1. It is well known that the size of a matching M is largest if and only if there is
no M -augmenting path (see e.g., [50, Theorem 10.7]).

In the each step of the algorithm, we have a maximal matching M and all edges between
vertices in M . Then, we can classically find a candidate path that may be extended to an
M -augmenting path by adding both endpoints. Then, we check whether or not the candidate
path can be extended to an M -augmenting path by applying Grover’s search algorithm for
finding neighborhoods of both the endpoints of the candidate path. Hence, each step requires
O(

√
n) queries. For estimating the number of steps, we introduce the types of vertices and a

potential function.
For each v ∈ V (M), let NM (v) denote {u ∈ V (G) \ V (M) | {v, u} ∈ E(G)}. In the

algorithm, we classify each vertex v in V (M) into the following three types:
type0 We have determined that NM (v) = ∅.
type1 We have determined that |NM (v)| = 1.
type2 No information about NM (v).

At the beginning of the algorithm with some maximal matching M , all vertices in V (M)
are type2. In the algorithms, the types of vertices in V (M) are stored and updated. For
each vertex v of type1, the unique neighborhood in NM (v) is stored as well. Let G[S] denote
the subgraph of G induced by S ⊆ V (G). For a maximal matching M of graph G, a path Q

on G[V (M)] is a candidate path if Q satisfies the following conditions:
1. The both ends of Q are type1 or type2. If the both are type1, their neighbors in

V (G) \ V (M) are different.
2. Q contains edges from M and E(G[V (M)]) \ M , alternatively.
3. Q contains edges from M at the both ends.
It is obvious that for any M -augmenting path P , the path Q obtained by deleting the vertices
at the both ends of P is a candidate path. In each step of the algorithm, we have a maximal
matching M , the induced graph G[V (M)] and the types of the vertices in V (M), and search
for a candidate path. If there is no candidate path, we can conclude that the maximal
matching M is a maximum matching since there is no M -augmenting path. In this case, the
algorithm outputs NO and terminates. Assume that there exists a candidate path Q. If the
both ends of Q are type1, then Q can be extended to an M -augmenting path. If at least one
of the ends of Q is type2, we apply Grover’s search algorithm for finding the neighbors in
V (G) \ V (M) of the vertices of type2. If we find the different neighbors of the end vertices
of Q, the candidate path Q can be extended to a M -augmenting path. If not, we can update
the type of one of the type2 vertex to type0 or type1. If an M -augmenting path P is found,
the maximal matching M is updated to M △ E(P ) of size |M | + 1. In this case, the types of
the two new vertices in the maximal matching are set to type0 since V (G) \ V (M) is an
independent set. We update the type of type1 vertices that connect to either of the two new
vertices to type0. Finally, we queries classically for all the new pairs in V (M) for obtaining
the graph G[V (M)]. This is the single step of the algorithm. If the size of maximal matching
M achieves k, then the algorithm outputs YES, and terminates.

For each step, the size of maximal matching increases by one, or the number of vertices
of type2 decreases by one. From this observation, we define the potential function Φ :=
k − |M | + N2 where N2 is the number of vertices of type2. Then, it is easy to see that
0 ≤ Φ ≤ k − |M | + 2|M | ≤ 2k. The above observation implies that the value of the potential
function decreases by one at each step. Hence, the number of iterations is at most 2k.
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Finally, we estimate the query complexity of the quantum algorithm. The query complexity
for finding a maximal matching is O(

√
kn). The query complexity for finding neighbors of

the both ends of a candidate path is Õ(
√

n) at each step. The number of classical queries
for obtaining all edges in G[V (M)] is O(k2) in total. Hence, the query complexity of the
algorithm is O(

√
kn) + Õ(k

√
n) + O(k2) = O(

√
kn + k2).

1.3 Overview of Our Lower Bounds
Our lower bound is based on the adversary method introduced by Ambainis [1]. Although
the technique is standard for proving lower bounds of quantum query complexity, we adapt
this technique for the parameterized setting, and prove the lower bounds which matches to
the upper bounds obtained in this paper for small k.

To obtain the lower bound for the k-vertex cover problem, we consider the problem
of distinguishing graphs that consist of k disjoint edges and graphs that consist of k + 1
disjoint edges. Any quantum algorithm for the k-vertex cover problem must distinguish
the above two classes of graphs. By applying the adversary method for this problem, we
obtain a lower bound Ω(

√
kn) when k ≤ n/3.

To prove a lower bound Ω(
√

kn) for any k ≤ (1 − ϵ)n, we consider generalized version
of the problem. In the problem, we distinguish graphs that consist of ⌊ k

t−1 ⌋ cliques of size
t and graphs that consist of ⌈ k+1

t−1 ⌉ cliques of size t. The proof of our lower bound for the
k-matching problem is similar to that for the k-vertex cover problem.

1.4 Additional Related Work
Ambainis-Balodis-Iraids-Kokainis-Prūsis-Vihrovs [2] and Le Gall-Seddighin [53] combine
known standard quantum algorithms, such as Grover’s algorithm, with classical techniques
to design quantum algorithms with low time-complexities.

There are few previous works on the parameterized quantum query complexity. For the
graph collision problem, we are given an undirected graph G as a bit string and oracle access
to Boolean variables {xv ∈ {0, 1} | v ∈ V (G)} and, the objective is to decide whether there
are two vertices v and u connected by an edge in G such that xv = xu = 1. Belovs [13]
showed that the quantum query complexity of this problem is O(

√
nα1/6), where α is the

size of the largest independent set of G. Ambainis–Balodis–Iraids–Ozols–Smotrovs–Juris [3]
also showed that the quantum query complexity is O(

√
nt1/6), where t is the treewidth of G.

The only trivial Ω(
√

n) lower bound is known for this problem. We note that these studies
did not use kernelization.

The usefulness of the concept of the parameterized complexity has been successfully
demonstrated in other computational models, such as streaming model [29–31, 39] and
distributed model [16], as well. The study of parameterized streaming algorithms initiated
by Fafianie–Kratsch [39] and Chitnis–Cormode–Hajiaghayi–Monemizadeh [31] has been
developed further by several authors. In parameterized streaming algorithms, by analogy of
FPT, Chitnis–Cormode [29] introduced a hierarchy of space complexity classes and tight
classification for several graph problems.

There have also been many studies of the quantum query complexity of graph problems
in the adjacency matrix model. Dürr–Heiligman–Høyer–Mhalla [38] showed the quantum
query complexity of testing connectivity is Θ(n3/2). Ambainis–Iwama–Nakanishi–Nishimura–
Raymond–Tani–Yamashita [5] showed that the quantum query complexity of testing the
planarity is also Θ(n3/2). Belovs–Reichardt [15] presented a quantum algorithm that uses
O(

√
dn) queries to decide whether vertices s and t are connected, under the promise that they

ESA 2024
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are connected by a path of length at most d, or are disconnected. Apers–Lee [8] presented a
quantum algorithm to solve the weighted minimum cut problem using O(n3/2√

τ) queries
and time in the adjacency matrix model, where each edge weight is at least 1 and at most τ .

Now, we will mention some known results closely related to our work. For bipartite
graphs, the minimum vertex cover has the same cardinality as the maximum matching
by König’s theorem (see e.g., [60, Theorem 16.2]). Moreover, Blikstad–v.d.Brand–Efron–
Mukhopadhyay–Nanongkai [18] showed that the quantum query complexity of the bipartite
maximum matching problem is Õ(n3/2). Then, for bipartite graphs, the quantum query
complexity of the minimum vertex cover problem is Õ(n3/2), which is almost optimal.

Childs–Kothari [28] showed that any non-trivial minor-closed property that can not be
described by a finite set of forbidden subgraphs has quantum query complexity Θ(n3/2). On
the other hand, they also show that any minor-closed properties that can be characterized
by finitely many forbidden subgraphs can be solved in O(nα) queries for some α < 3/2. To
show this, they proved that, for any constant c > 0, a graph property that a graph either has
more than cn edges or contains a given subgraph H can be decided in Õ(n3/2−1/(vc(H)+1))
queries, where vc(H) denote the size of minimum vertex cover of H.

Here, it is easy to verify that the property of having a vertex cover of size at most k is
minor-closed. Dinneen–Lai [34, Corollary 2.5] showed that the property of having a vertex
cover of size at most k can be characterized by finitely many forbidden subgraphs. Then,
the result of Childs–Kothari implies that the quantum query complexity of the k-vertex
cover problem is Õ(n3/2−1/(k+2)) when k is constant.

2 Concluding Remarks

In this paper, we consider the parameterized quantum query complexities of the k-vertex
cover and k-matching problems. We obtain the optimal query complexities for the
k-vertex cover and k-matching problems for small k.

For the k-vertex cover problem, our key observation in this paper is that the method
of kernelization is useful for designing quantum query algorithms for parameterized problems.
We emphasize that this paper is the first work to demonstrate the usefulness of kernelization
for the parameterized quantum query complexity. On the other hand, there is a limitation
of the techniques based on the method of kernelization. We defined a quantum query
kernelization algorithm as an algorithm that converts an input graph given as a quantum
oracle into a kernel as a bit string. Here, we observe that on the basis of our quantum query
kernelization approach, it is impossible to show that the quantum query complexity of the
k-vertex cover problem is k2−Ω(1) since there is no kernel (G′, k′) consisting of O(k2−ϵ)
edges unless the polynomial hierarchy collapses [33].

It would be interesting to consider quantum-to-quantum kernelization algorithms, which
convert an instance given as a quantum oracle into a smaller instance expressed by a quantum
oracle.

For the k-matching problem, we designed a quantum query algorithm, which iteratively
finds an augmenting path or a vertex with at most one neighbor outside of the current maximal
matching. While our k-matching algorithm is optimal for small k, its query complexity is
Θ(n2) for k = Ω(n). On the other hand, the currently known best non-parameterized upper
bound is O(n7/4) [49]. We would be able to improve the parameterized quantum query
complexity for the k-matching problem for large k by combining our approach with existing
or new approaches.
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