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Abstract
Alpha-beta pruning is an efficient search strategy for two-player game trees. It was invented in the
late 1950s and is at the heart of most implementations of combinatorial game playing programs. We
have formalized and verified a number of variations of alpha-beta pruning, in particular fail-hard and
fail-soft, and valuations into linear orders, distributive lattices and domains with negative values.
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1 Introduction

In this article, we sketch the results of our formalization [9] of a number of variants of
alpha-beta pruning in the proof assistant Isabelle [12, 11]. A more detailed presentation can
be found in a (forthcoming) book [10]. We restrict ourselves to functional correctness and do
not cover quantitative results

We consider two-player games with the usual notion of game trees. Let val(t) denote
the value of a game tree t. Alpha-beta pruning is an efficient strategy for determining the
value of a tree. In this extended abstract we assume that the reader is familiar with the
basic idea underlying alpha-beta pruning. We do not show any code but all our variants f of
alpha-beta pruning follow the calling convention f a b t where (a, b) is the search window
and t the game tree.

2 Linear Orders

In the literature it is often assumed that values are numbers extended with −∞ and ∞. In
this section we merely assume that the type of values is a bounded linear order with ⊥ and
⊤.

The first thorough mathematical analysis of alpha-beta pruning is due to Knuth and
Moore [6]. They employ the relation x ∼= y (a, b) defined as follows:

(y ≤ a −→ x ≤ a) ∧ (a < y < b −→ x = y) ∧ (y ≥ b −→ x ≥ b)

The notation x ∼= y (a, b) is ours and emphasizes the fact that the relation is symmetric
if a < b. Knuth and Moore consider the so-called fail-hard variant of alpha-beta pruning,
which we denote by hard a b t, and prove that val(t) ∼= hard a b t (a, b) which implies overall
correctness: hard ⊥ ⊤ t = val(t).

Fishburn [3] suggested the fail-soft variant and states that it searches the same part of
the tree as fail-hard and satisfies the relation soft a b t ≤ val(t) (a, b) (the notation is again
ours) where y ≤ x (a, b) is defined as follows:

(y ≤ a −→ x ≤ y) ∧ (a < y < b −→ x = y) ∧ (y ≥ b −→ x ≥ y)
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We verified both that the search space is the same and that soft a b t ≤ val(t) (a, b). Because
y ≤ x (a, b) implies x ∼= y (a, b) (but not the other way around), it appears that soft satisfies
a stronger property than hard. However, we could also prove hard a b t ≤ val(t) (a, b),
which begs the question in what sense soft is better than hard. The answer: we could also
prove hard a b t ≤ soft a b t (a, b). In summary: soft is as least as close to val as hard (and
sometimes closer).

2.1 Negative Values
In the literature, it is often assumed that values are positive and negative numbers and that
the value v for one player is −v for the other player. In this situation the definition of val

and of alpha-beta pruning can be streamlined: instead of having one function for each player,
now one function in total is needed. We found that this works for arbitrary linear orders
with unary negation under these two assumptions:

−min x y = max (−x)(−y) − (−x) = x

3 Lattices

Bird and Hughes [1] were the first to generalize alpha-beta pruning from linear orders to
lattices. The generalization of the code, including game tree evaluation, is easy: simply
replace min and max by ⊓ and ⊔. It turns out that this version of alpha-beta pruning works
for bounded distributive lattices (Bird and Hughes confusingly talk about Boolean algebra).
In order to prove this, Bird and Hughes invent the following relation (the notation ≃ is ours)

x ≃ y (a, b) ⇐⇒ a ⊔ (x ⊓ b) = a ⊔ (y ⊓ b)

and prove

bh a b t ≃ val(t) (a, b)

where bh is their variation of fail-hard. Top-level correctness bh ⊥ ⊤ t = val(t) follows
immediately.

For linear orders (but not for distributive lattices) ∼= and ≃ coincide if a < b:

x ∼= y (a, b) ⇐⇒ x ≃ y (a, b)

It is also possible to rephrase Fishburn’s predicate ≤ with min and max (for linear orders)
if a < b:

y ≤ x (a, b) ⇐⇒ min x b ≤ y ≤ max x a

We rephrase the r.h.s. for disttributive lattices and define

y ⊑ x (a, b) ⇐⇒ x ⊓ b ≤ y ≤ x ⊔ a

It coincides with ≤ for linear orders (but not for distributive lattices) if a < b

y ≤ x (a, b) ⇐⇒ y ⊑ x (a, b)

In distributive lattices ⊑ implies ≃

y ⊑ x (a, b) =⇒ x ≃ y (a, b)

but the opposite direction does not hold.
Fail-hard and fail-soft carry over to distributive lattices (mutadis mutandis) and satisfy

the stronger ⊑

f a b t ⊑ val(t) (a, b)

where f can be fail-hard, fail-soft, and bh (Bird and Hughes’ version),



T. Nipkow 1:3

3.1 Negative Values
The same extension to negative values that we sketched in Section 2.1 also works for
distributive lattices. Now we assume that unary negation satisfies

−(x ⊓ y) = (−x) ⊔ (−y) − (−x) = x

The result is a so-called de Morgan algebra [8]. Again, the definitions of val and the variants
of alpha-beta pruning can be streamlined as sketched before.

4 Related Work

Ginsburg and Jaffray [4] rediscover (independently of Bird and Hughes) that pruning also
works for distributive lattices but stop short of formulating and proving an actual algorithm.
Li et al. [7] build on the work of Ginsburg and Jaffray, formulate and prove an actual
algorithm correct (rediscovering the correctness notion ≃ by Bird and Hughes) and extend
the algorithm to also cache and reuse earlier calls, an aspect not covered above.

In our formalization of variants of alpha-beta pruning we also considered the program
that Hughes (in a much cited paper [5]) derived from a specification of val. Because his
program looks simpler than alpha-beta pruning, we suspected that it may not prune enough.
Hughes (private communication) used Haskell’s Quickcheck [2] to compare the search space
of his program with that of our implementation (which is the canonical alpha-beta algorithm)
and confirmed our suspicion.

5 Conclusion

We have formally verified a number of variants of alpha-beta pruning, both for linear orders
and distributive lattices, have clarified the relationship between different correctness notions,
have expressed precisely (and proved) in what sense fail-soft is better than fail-hard, and
discovered a “suboptimal” version of alpha-beta pruning in a much cited paper.
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