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Abstract
We present Duper, a proof-producing theorem prover for Lean based on the superposition calculus.
Duper can be called directly as a terminal tactic in interactive Lean proofs, but is also designed
with proof reconstruction for a future Lean hammer in mind. In this paper, we describe Duper’s
underlying approach to proof search and proof reconstruction with a particular emphasis on the
challenges of working in a dependent type theory. We also compare Duper’s performance to Metis’
on pre-existing benchmarks to give evidence that Duper is performant enough to be useful for proof
reconstruction in a hammer.
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1 Introduction

Interactive and automated theorem proving offer complementary strengths. Push-button
automation is convenient but limited to small problems or restricted problem domains, and
generally it does not provide strong correctness guarantees. Interactive theorem provers make
it possible to verify just about any theorem with a high degree of confidence in the correctness
of the result, but the work required is often unpleasant or impracticable. Most modern proof
assistants therefore rely on multiple forms of supporting automation. Domain-specific tactics
polish off goals in linear or linear integer arithmetic [17, 37], carry out calculations in any
ring [19], and even perform inferences involving abstract geometric structures [39]. Term
rewriters carry out general equational simplification [33], and tools like Isabelle’s Auto [34],
HOL Light’s Meson [20], and Lean’s Aesop [26] implement general tableau search.

Isabelle’s celebrated Sledgehammer [31, 32, 35, 36] provides powerful domain-general
automation by exporting problems to external provers and then harvesting enough inform-
ation to reconstruct and verify the results. A proof-producing ordered resolution prover,
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Metis [21], is frequently used for the latter purpose. Similar hammers for proof assistants
based on first-order logic or simple type theory include HOL(y) Hammer [22], a hammer
for Mizar [23], and a hammer for Metamath [12]. (See also [9] for a survey overview.)
Dependently typed foundations like those of Coq [7], Agda [10], and Lean [15] offer better
support for algebraic reasoning, but the added expressivity comes at a cost, and developing
domain-general automation for dependently typed foundations is notoriously hard. Even
applying a single lemma can require complex unification and elaboration processes, including
definitional reductions, type class search, and other means of inferring implicit arguments.
There is a hammer for Coq, CoqHammer [14], which uses a custom-designed inhabitation
procedure for proof reconstruction [13], but that reconstruction procedure is tuned to Coq’s
intuitionistic framework. A prototype hammer for Agda [18] uses only equational reasoning
for reconstruction. There is currently no hammer for Lean.

This paper introduces Duper, a proof-producing theorem prover for Lean based on the
superposition calculus [3]. Duper is written in the Lean programming language and it directly
generates proofs as expressions in Lean’s axiomatic foundation. It can be called as a tactic
when writing proofs interactively in Lean, but it is also intended to serve as a means of
proof reconstruction for external automation. Most notably, Duper is designed to work in a
dependently typed setting. Some of the challenges of working in a dependent type theory,
such as the need to use type class inference to instantiate algebraic structures, are best
handled in a monomorphization and preprocessing phase. For that, we use a tool called
LeanAuto, developed by the second author, which will be described in detail elsewhere. Other
challenges, such as Skolemizing formulas in an axiomatic framework in which quantifiers can,
in principle, range over empty types, have to be handled natively. We deal with remaining
challenges, such as polymorphic reasoning over types, polymorphic reasoning over type
universes, and higher-order reasoning, using a flexible combination of preprocessing and
native handling. Duper uses methods inspired by the Zipperposition prover [45] to carry out
higher-order inferences, and the framework is flexible enough to accommodate, in the main
loop, inferences that are specific to dependent types.

Our contributions are as follows:
We have developed new ways of incorporating important aspects of dependently typed
reasoning in a superposition theorem prover.
We have developed ways of generating proofs directly in a dependently typed axiomatic
framework.
We make effective use of LeanAuto’s preprocessing to prove the kinds of goals that arise
in practice when working with Lean and its library, Mathlib.
We show that Duper’s performance is comparable to Metis’ on standard benchmarks in
the interactive theorem proving community, specifically the Seventeen provers [16] and
GRUNGE benchmarks [11].

Duper is available online at https://github.com/leanprover-community/duper.

2 Proof Search

Duper is a superposition theorem prover implemented in Lean. It accepts as input a goal
state of the form E(Γ ⊢ p : Prop) where Γ is a local context, or list of hypotheses with
corresponding types, E is a global environment, or list of declarations, and p is the target
proposition. Duper also accepts as input a list of lemmas from E that may be relevant to the
provided goal. Since Duper is not yet equipped with a relevance filter, these lemmas must
currently be supplied manually. Given a goal state and lemma list, Duper will attempt to
produce a proof term t such that E(Γ ⊢ t : p).

https://github.com/leanprover-community/duper
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Although Duper’s input and output formats are tailored for closing Lean goals, its
approach to proof search more closely resembles that of standalone automatic theorem
provers than other forms of Lean automation. In this section, we describe the core aspects of
this approach that are essential to Duper’s functioning as a superposition theorem prover.

2.1 Main Saturation Loop
Given a goal state E(Γ ⊢ p : Prop), the first thing Duper does is negate the target p and add
it to the local context Γ, resulting in the modified goal state E(Γ,¬p ⊢ False : Prop). Having
a goal state of this form allows Duper to enter a main saturation loop in which it attempts
to deduce all possible inferences from Γ, ¬p, and the user-provided lemmas until either a
contradiction is derived or no further inferences can be performed. In the former case, Duper
uses the set of hypotheses that yielded a contradiction to produce the desired proof term t,
and in the latter case, Duper informs the user that it was unable to prove the goal with the
available lemmas. This high-level approach to proof search makes Duper a saturation-based
theorem prover.

The procedure that drives the main saturation loop in most saturation-based theorem
provers is called the given clause procedure [28]. Since different theorem provers implement
different calculi and search heuristics, there are multiple variants of this procedure [8],
the most common of which are the Otter loop [30] and the DISCOUNT loop [1]. Duper
implements a variant of the DISCOUNT loop, described by Vukmirović et al. [45], that is
designed to address complications that arise in higher-order unification.

At a high level, Duper’s given clause procedure functions by partitioning its derived facts
into a set of fully processed clauses called the active set and a set of unprocessed formulas
called the passive set. In each iteration of the main saturation loop, the procedure selects a
new formula from the passive set called the “given clause,” clausifies it, simplifies it, and then
uses generating rules to produce conclusions from it before transferring it to the active set and
proceeding to the next iteration of the loop. Conceptually, this control flow is simple, though
there are a variety of complications, such as the fact that some of Duper’s inference rules
can generate infinitely many clauses. Solutions to complications arising from higher-order
reasoning are described by Vukmirović et al. [45], and our solutions to complications arising
specifically from dependent type theory are described in Section 4.2.2.

Aside from implementing a prover’s central control flow, one of the primary purposes of
a given clause procedure is to manage redundancy. Since the search space that an automatic
theorem prover can consider is so large, reducing it as much as possible is an extremely
important part of building a performant prover. Toward this end, modern provers implement
a variety of heuristics, strategies, and features to help minimize the time spent reasoning
about clauses that are no longer necessary to obtain a contradiction.

One of the main ways the given clause procedure manages redundancy is by performing
simplification rules. Simplification rules are like generating rules in that they can produce
new conclusions for Duper to reason about, but they are unlike generating rules in that they
also eliminate one of the rule’s premises from future consideration. Simplification rules can
be applied as forward simplification rules, meaning they use clauses from the active set to
modify or eliminate the current given clause, or as backward simplification rules, meaning
they use the current given clause to modify or eliminate clauses in the active set.

Typically, in each iteration of the main saturation loop, forward simplification rules are
applied first, then backward simplification rules, and finally inference rules. This order is
ideal because it ensures that the given clause is simplified before it is used to modify the
active set and that the active set is reduced as much as possible before it is used to generate
inferences. Although this order is preferred, there are some special cases in which it must be
violated. Such cases are discussed in Section 4.2.2.

ITP 2024



10:4 Duper

2.2 Core Calculus
The core calculus Duper uses to generate new facts in its main saturation loop is based on
Zipperposition’s oλSup calculus [5]. There are two primary reasons we chose to use this
calculus. First, Zipperposition is a state-of-the-art theorem prover with an established track
record of high performance, especially on higher-order problems [40, 41, 42, 44]. Second,
Zipperposition’s calculus is designed to be a graceful generalization of first-order superposition,
rather than a translation-based approach that transforms higher-order problems into first-
order logic before calling an essentially first-order procedure. Since Duper operates in a
dependently typed setting, we preferred an approach that supports native higher-order
reasoning and can be extended to support native dependent type theory reasoning over an
approach that requires translating to a less expressive logic.

Duper’s implementation of the superposition calculus has three primary components. First,
there is the implementation of each individual rule and its corresponding proof-reconstruction
procedure. For the most part, there are few substantive differences between how Duper
implements its inference rules and how other provers might implement the same rules.

One aspect of rule implementation worth mentioning is how Duper defines the clauses
that its inference rules act on. Most of Duper’s inference rules involve unification. Since
that involves mapping variables to specific values, a clause’s variables may take on particular
values for the sake of one inference but not others. It is therefore convenient to store clauses
both in a permanent format that will be unchanged by inference generation as well as in a
temporary format that can be modified by the unification procedure. To avoid confusion, we
refer to facts in the first format as clauses and facts in the second format as mclauses. This
naming convention arises from the fact that mclauses represent their variables with Lean
metavariables whose types and values can easily be modified by the unification procedure.

The second component of Duper’s core calculus is a strict order on terms, literals, and
mclauses. Having such an order enables Duper to impose side conditions on its inference rules
which drastically improve performance by limiting the number of possible valid inferences.
For this, Duper uses the Knuth-Bendix order (KBO) [24, 27] extended to be compatible with
higher-order logic [5].

To implement this order for Lean expressions, which come in more categories than just
symbols and variables, only a few additions and modifications are necessary. In mclauses,
Duper uses Lean metavariables as free variables, and treats Lean constants, free variables,
projections, strings, and natural numbers as “symbols.” Of these symbols, Duper treats
constants as greatest, followed by free variables, projections, strings, and natural numbers,
in that order. Lean expressions with additional metadata are definitionally equivalent to
those same expressions without the metadata, so Duper simply removes them from all
expressions prior to calling the KBO procedure. To handle λ-expressions, Duper follows
the approach described by Bentkamp et al. [6]. This involves exhaustively applying β- and
η-reduction rules to get rid of as many λ-expressions as possible, and then treating any
remaining λ-expressions of the form (λx : t. e[x]) as expressions of the form (LAM t e[#0])
where “LAM” is a constant and #0 is a bound variable with De Bruijn index 0. Finally, to
handle let expressions, Duper’s KBO procedure applies ζ-reduction exhaustively along with
β- and η-reduction which guarantees that no let expressions need to be considered.

The final component of Duper’s core calculus is a higher-order unification procedure.
We extend the approach outlined by Vukmirović et al. [46] to dependent type theory. This
enables Duper to generate arbitrarily many solutions to unification problems where infinitely
many incomparable unifiers may exist. The specifics of how we extend this approach to
dependent type theory are described in Section 4.1.
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3 Proof Reconstruction

Once Duper derives a contradiction in its main saturation loop, it uses that contradiction
to construct a proof term t such that E(Γ,¬p ⊢ t : False). Since Duper always begins by
applying double-negation elimination to transform its input goal E(Γ ⊢ p : Prop) into the
modified goal E(Γ,¬p ⊢ False : Prop), this suffices to close the original goal. We note that
although this initial transformation is standard for many automatic theorem provers, it is
only sound classically, as are many of the rules in Duper’s underlying superposition calculus.
Consequently, Duper only generates classical proofs, even when given a goal that could be
proved intuitionistically.

To construct t, Duper begins by collecting the list of clauses that were used to derive the
contradiction it found. Duper then generates proof terms for each clause in this list using
proof terms from earlier clauses or facts supplied as input. Since the final clause that Duper
generates is the empty clause, the final proof term that Duper generates is t.

Since the addition of a new clause is justified by a rule and a list of parent clauses, one can
construct the proof term for the result of an inference from those of the inference’s premises.
The specifics of how each result is justified depend on which rule is used to produce it, so
each of Duper’s rules is paired with a unique proof reconstruction procedure. In this section,
we discuss two ideas relevant to the proof reconstruction procedure of several of our rules.

3.1 Clause Instantiation
Each of Duper’s clauses is a disjunction of literals preceded by arbitrarily many universal
quantifiers. So if conclusion D is meant to follow from premises C1 and C2, the first step
to constructing D’s proof term is usually to instantiate all of the universal quantifiers at
the heads of C1 and C2. To guarantee that this is possible, if a rule’s proof reconstruction
procedure is known to require this first step, the rule itself will output conclusions whose
universal quantifiers include all of its parents’ universal quantifiers. Duper can then instantiate
C1’s and C2’s universal quantifiers using free variables introduced from the target D.

Although this restriction on Duper’s inference rules ensures that Duper will always be
able to instantiate C1’s and C2’s universal quantifiers with free variables introduced from
D, there are some instances in which Duper must adopt a different instantiation strategy.
This happens primarily when metavariables in mclauses are instantiated with particular
values by Duper’s unification procedure. Since metavariables in mclauses correspond to
bound variables in regular clauses, instantiating an mclause’s metavariable corresponds to
instantiating a clause’s universal quantifier. When this instantiation strategy is used, the
term used to instantiate the relevant quantifier is provided by the unification procedure.

This approach has some subtle consequences. The first is that Duper’s inference rules
can generate conclusions containing universal quantifiers whose variables do not appear in
the conclusion’s clause body. For example, given the premise ∀x : α, f x ̸= f x ∨ a = b,
Duper will recognize that the literal f x ̸= f x is always false and eliminate it to produce
the conclusion ∀x : α, a = b. Even though x does not appear in the clause body a = b, the
conclusion includes x’s universal quantifier since x appears in the premise and is not assigned
a value by the unification procedure.

To compensate for this behavior, Duper implements an additional simplification rule, called
removeVanishedVars, which takes an arbitrary premise and attempts to produce a conclusion
containing an identical clause body and strictly fewer universal quantifiers. Applying this
rule requires knowing that the removed quantifiers range over inhabited types, so Duper
must perform additional reasoning to determine which types are provably inhabited. The
specifics of this additional reasoning are discussed in Section 4.2.1.

ITP 2024
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The second subtle consequence of this approach is that although most of Duper’s proof
reconstruction can be delayed until after it is known which clauses appear in the final
proof, some amount of proof reconstruction must be performed for every generated clause.
Specifically, after any rule is carried out, all metavariable instantiations performed by the
unification procedure must be recorded before the rule’s mclauses are forgotten. For this
reason, Duper constructs partially instantiated parent terms immediately rather than wait
until the end of the proof search. Transforming the conclusion’s mclause into a clause also
requires taking the unification procedure’s instantiations into account, so performing these
partial instantiations immediately does not result in significant additional overhead.

3.2 Transfer Expressions
The only input required by most rules’ proof reconstruction procedures is a list of proof terms
corresponding to each premise and the type of the desired conclusion. In many cases, a rule’s
proof reconstruction procedure amounts to applying a single polymorphic Lean theorem that
justifies the rule’s soundness. However, some rules require additional information.

One example of such a rule is ForallHoist. This rule takes a clause C containing an
expression e that can be unified with (∀x : ?m1, (?m2 x)) and cases on whether e is
true. It does this by replacing e with False in C and giving C a new literal of the form
(?m2 ?m3 = True) where ?m3 is a fresh metavariable of type ?m1. The idea is that if e is
false, then replacing it with False in C is sound, and if e is true, then (?m2 ?m3) will also
evaluate to true.

The issue is that although ?m2 appears in the parent clause that ForallHoist takes, ?m3
does not. So it’s not possible to produce a proof term for the correct conclusion by merely
passing the parent’s proof term into even a polymorphic Lean theorem. The result type would
contain an unassigned metavariable, which is disallowed by Lean’s application procedure.
It is therefore necessary to, in addition to supplying the parent’s proof term, supply an
expression corresponding to ?m3. In principle, this expression can be derived from the type
of the desired conclusion, but in practice, it is both simpler and more efficient to pass the
necessary expression to the proof reconstruction procedure directly.

We call expressions that are passed directly to proof reconstruction procedures but are
not proof terms for parent clauses “transfer expressions.” Several of the higher-order rules
that Duper implements have proof reconstruction procedures that benefit from such transfer
expressions, usually because these rules produce more involved unification problems. If
Duper were a standalone automatic theorem prover that needed to interface with a separate
interactive theorem prover, passing along transfer expressions might be prohibitively difficult.
But because Duper is implemented in Lean, has clauses defined in terms of Lean expressions,
and makes use of several of Lean’s metaprogramming functionalities, implementing transfer
expressions is relatively straightforward.

4 Native Dependent Type Theory Reasoning

Lean’s type theory is based on the calculus of constructions (CoC) with a countable hierarchy
of non-cumulative universes and inductive types [2]. Lean moreover allows users to mark
arguments to be instantiated by type classe inference. Developing an automatic theorem
prover that can operate in the presence of these features poses a variety of challenges. Here,
we discuss the problems that Duper handles natively. Additional issues that are addressed
during preprocessing are discussed in Section 5.
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4.1 Unification
Many of Duper’s inference rules involve unification. To ensure these rules can be applied
even when dependent types are at play, it is important that Duper can support unifying
dependently typed terms. Consider the following example which involves matrices defined in
terms of Fin n, the (dependent) type of values less than n:

example (a b : Nat) (matrix : Fin a → Fin b → Nat)
(transpose : ∀ n m : Nat, (Fin n → Fin m → Nat) → (Fin m → Fin n → Nat))
(h : ∀ n m : Nat, (fun x => transpose n m (transpose m n x)) = (fun x => x)) :
transpose b a (transpose a b matrix) = matrix := by
duper [h]

This example can be proved by using h to rewrite transpose b a (transpose a b matrix) as
(fun x => x) matrix. But in order to perform this straightforward rewrite, it is necessary to
unify matrix of type Fin a → Fin b → Nat with x of type Fin ?m → Fin ?n → Nat (where ?m
and ?n are assignable metavariables). From this, we can see that even simple examples may
require Duper to use a unification procedure that supports dependently typed terms.

The unification procedure in Duper is based on that of Vukmirović et al. [46]. To unify
two terms s and t, the unification procedure builds a tree with nodes of the form (E, σ), where
E is a multiset of unification constraints {(s1

?= t1), . . . , (sn
?= tn)} and σ is a substitution.

The tree is built by starting from the root ({s ?= t}, ∅) and progressively creating nodes
according to transition rules. A transition rule (E, σ) −→ (E′, σ′) allows one to attach a
new node (E′, σ′) to an existing node (E, σ). It is expected that the solutions represented by
(E′, σ′) is a subset of that of (E, σ), and that either σ′ = σ or σ′ is a refinement of σ.

Among all the transition rules, the Bind rule is of great importance because it is the main
rule that refines the substitution. The Bind rule is defined as

({s ?= t} ⊎ E, σ) −→ ({s ?= t} ⊎ E, ρσ) ρ ∈ P(s ?= t)

where P(s ?= t) is the set of bindings applicable to s ?= t.
Both the transitions and bindings implemented by Duper are a superset of the ones

described by Vukmirović et al., hence Duper’s procedure is complete for the higher-order
fragment of Lean. In the following discussion, we use the notations and conventions established
by Vukmirović et al., including describing the unification procedure as acting on free variables.
Note that because Duper’s unification procedure operates on terms taken from mclauses, free
variables in the following discussion correspond with metavariables in our implementation.

4.1.1 Transitions
In dependent type theory, types are also terms, and types can contain ∀ binders. Consider
the unification equation ∀x. F x

?= ∀x. g x where F is a free variable and g is rigid. It is
easy to see that F 7→ g is a solution. However, there are no transitions in Vukmirović et
al.’s higher-order procedure applicable to this unification equation. To address this issue, we
introduce a new transition:

ForallToLambda : ({∀x. f x ?= ∀x. g x} ⊎ E, σ) → ({λx. f x ?= λx. g x} ⊎ E, σ)

Apart from this, the Fail and Decompose transitions from Vukmirović et al. are extended to
handle dependent type theory features.

ITP 2024



10:8 Duper

4.1.2 Bindings
In this section, we explain how Imitation Binding of Vukmirović et al. is extended to account
for dependent types. Other bindings are extended in a similar way. Apart from these, a new
binding ImitForall is introduced to deal with ∀ quantifiers.

For unification equations of the form λx. F sn
?= λx. a tm where F : α1 → · · · → αn → β

and a : γ1 → · · · → γn → β, Vukmirović et al. allows the binding Imitation of a for F to be
applied:

F 7→ λxn. a (F1 xn) . . . (Fm xn).

Here Fm are fresh free variables. This binding attempts to find a substitution for F such
that the head of the two sides of the equations are identical.

Three issues are introduced when we take dependent type theory into account. Resolving
these issues yields an imitation binding suitable for dependent type theory:

F and a might be dependently typed. Hence, even when the number of λ binders in the
LHS and RHS of the unification equation are different, solutions might still exist. For
example, consider unification equation λx. F x

?= g U where F and U are free variables
and F : γ → γ, U : Type, and g : ∀ α : Type. α. Note that both LHS and RHS are
η-expanded, and that the number of λ binders are different. However, the substitution
{F 7→ g (γ → γ), U 7→ (γ → γ)} is clearly a solution to the unification equation. Thus,
we need to extend the scope of the imitation binding to unification equations of form
λxu. F sn

?= λxv. a tm, where u and v are not required to be equal.
Since F and a might be dependently typed, their types should be written as

F : ∀ (x1 : α1) . . . (xk : αk). β xk

a : ∀ (y1 : γ1) . . . (yl : γl). δ yl

Again, we cannot assert that k = n or l = m because types can contain free variables.
However, since both λxu. F sn and λxv. a tm are η-expanded, we know that k ≤ n and
l ≤ m.
For 1 ≤ i < j ≤ n, the type of the bound variable xj can depend on xi, hence the binding
for F should be written as

F 7→ λ (x1 : α1) . . . (xk : αk). a (F1 xn) . . . (Fh xk)

Plugging the above binding into the unification equation and comparing the number of
λ-binders on the two sides, we get h+ n− k − u = m− v, hence h = m+ k + u− n− v.

4.2 Inhabitation Reasoning
As noted in Section 3.1, sound proof reconstruction in a dependently typed setting requires
reasoning about the presence of empty types. If any of a clause’s universal quantifiers range
over an empty type, then the clause is vacuously true and has an irrelevant clause body. One
way we might respond to this issue is to observe that in many of the theorems that people
actually care to prove, all of the nonpropositional types at play are known to be inhabited. In
practice, it is often fine to have Duper temporarily assume that all nonpropositional types it
encounters are inhabited and throw an error at the end if this results in an unsound inference.
This is exactly what Duper does if passed in the option inhabitationReasoning := False.

When Duper is not passed in this option, it takes care throughout the reasoning process
to ensure that empty types and potentially vacuous clauses are properly accounted for. In
broad strokes, the differences in Duper’s behavior when inhabitationReasoning is enabled or
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disabled can be classified into two categories: there is the additional reasoning needed to
determine whether any given type is inhabited, and there are the modifications to the main
saturation loop needed to ensure that Duper correctly handles potentially vacuous clauses.

4.2.1 Determining Whether a Type Is Inhabited
Lean has a built-in type class Inhabited α that indicates that α is nonempty and supplies a
witness attesting to this fact. When a type is known to be inhabited and is either built-in or
part of the popular Mathlib library [29], it will typically already have an instance of this
type class. Additionally, user-defined datatypes can often generate instances of this type
class automatically with the syntax deriving Inhabited, and if a type is composed of inhabited
types in certain preapproved ways, then Lean can automatically infer that the produced type
is also inhabited. For example, from the instances [Inhabited α] and [Inhabited β], type class
inference will automatically yield [Inhabited (α× β)].

So in most cases, when Duper encounters a type and needs to determine whether it is
nonempty, Duper can simply make use of Lean’s built-in type class inference. However, there
are some goals, particularly those involving polymorphic types, for which this approach is
insufficient. Consider the following example:

example (f : α → α) (h : ∃ x : α, f x ̸= x) : ∃ x y : α, x ̸= y := by duper [h]

If we manually inspect this example, it is clear from hypothesis h that α must be inhabited,
otherwise it would be impossible for there to exist a value x of type α. But Lean’s type class
inference on its own is insufficient to make use of this observation. In order for Duper to
handle this example, it must explicitly note that ∃x : α, f x ̸= x entails that α is inhabited.

More generally, when inhabitationReasoning is enabled, the simplification rules used to
clausify quantifiers must do more than apply Skolemization to eliminate said quantifiers. We
note that given a clause of the form (∃x : α, P (x)) ∨R, it is not always possible to generate
a Skolem symbol of type α since α may not be inhabited. So instead, Duper generates a
Skolem symbol skS of type α → α, and produces the Skolemized clause ∀z : α, (P (skS z)∨R).
This approach is effective in pushing all quantifiers to the head of the clause, but it does not
preserve the information that if R is false, then α must be inhabited. To ensure that this
information remains derivable, the simplification rules Duper uses to clausify quantifiers are
expanded from just Clausify∃

1 and Clausify∀
1 to all of the rules in Figure 1.

∀x1 : α1, ... ∀xn : αn, (∃y : β, p) = True ∨ R

∀x1 : α1, ... ∀xn : αn, ∀z : β, p[y/(skS x1 x2 ... xn z)] = True ∨ R
Clausify∃

1

∀x1 : α1, ... ∀xn : αn, (∃y : β, p) = True ∨ R

∀x1 : α1, ... ∀xn : αn, Nonempty β = True ∨ R
Clausify∃

2

∀x1 : α1, ... ∀xn : αn, (∀y : β, p) = False ∨ R

∀x1 : α1, ... ∀xn : αn, ∀z : β, ¬p[y/(skS x1 x2 ... xn z)] = True ∨ R
Clausify∀

1

∀x1 : α1, ... ∀xn : αn, (∀y : β, p) = False ∨ R

∀x1 : α1, ... ∀xn : αn, Nonempty β = True ∨ R
Clausify∀

2

Figure 1 Quantifier clausification rules. The constant skS which appears in Clausify∃
1 and Clausify∀

1
is a fresh Skolem function of type α1 → ... → αn → β → β.

Note that although some preprocessing can be done to extract inhabited types from a
goal state’s original hypotheses, it is not possible in general to derive all type inhabitation
information at the preprocessing stage. As an example, if a goal state contains the hypothesis
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(∃x : α, P ) ∨ Q, then after this hypothesis is clausified to (∃x : α, P ) = True ∨ Q = True,
Clausify∃

2 can be used to derive Nonempty α = True ∨Q = True. But this does not yet settle
the question of whether α is actually inhabited. Until Q is refuted, which may not happen
until a later stage in the reasoning process, Duper cannot use this clause to determine α’s
inhabitation status. The fact that type inhabitation information must be derived throughout
the reasoning process, rather than all at once during preprocessing, has consequences on the
structure of the main saturation loop that are discussed in Section 4.2.2.

4.2.2 Modifications to the Main Saturation Loop
The main saturation loop described in Section 2.1 accurately reflects Duper’s behavior when
inhabitationReasoning is disabled. As long as all types are known or assumed to be inhabited,
a dependently typed setting does not require any substantive changes from this procedure.
However, when there are potentially vacuous clauses, meaning clauses with leading universal
quantifiers whose types are possibly empty, the approach described in Section 2.1 can cause
Duper to remove or ignore clauses that are necessary to obtain a contradiction.

To avoid removing or ignoring clauses that are necessary to obtain a contradiction, Duper
must refrain from using potentially vacuous clauses to simplify away nonvacuous clauses.
However, Duper cannot avoid reasoning about potentially vacuous clauses entirely, as they
may be discovered to be nonvacuous at a later stage in the reasoning process. Additionally,
Duper cannot fully defer reasoning about potentially vacuous clauses until they are determined
to be nonvacuous because they may be needed to derive certain type inhabitation facts. For
example, even if α is a possibly empty type, it may be necessary to reason about the clause
∀x : α,Nonempty β = True ∨ P because if P can be refuted, then the resulting clause will
entail that α → β is nonempty.

To satisfy these various requirements, when inhabitationReasoning is enabled, Duper
adopts an alternative given clause procedure that has been modified in the following ways:

When a given clause is identified as potentially vacuous, forward simplification rules and
inference rules are still applied to it, but it is not used for backward simplification rules.
When a potentially vacuous clause is added to the active set, it is still added to the data
structures that allow it to be retrieved for inference rules and backward simplification
rules. However, it is not added to any of the data structures that would enable it to be
used in future forward simplification rules.
After any clause is fully simplified, a check is run to see if any type inhabitation facts can
be derived from the clause.
When a new type is discovered to be nonempty, the set of clauses that Duper classifies as
potentially vacuous is revisited and updated.
When a clause previously classified as potentially vacuous is discovered to be nonvacuous,
it is immediately used for backward simplification rules and is subsequently added to the
data structures that enable it to be used in future forward simplification rules.

4.3 Universe Levels
Some problems require Duper to reason about universe polymorphic theorems and inductive
types with universe level parameters. In many cases, these complications can be eliminated
at the preprocessing stage by way of the monomorphization procedure described in Section 5.
When feasible, this is Duper’s preferred method of addressing universe polymorphism.
Unfortunately, the procedure described in Section 5 cannot be applied to all problems. Even
when it can be used, it is still possible for some of Duper’s higher-order inference rules to
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produce clauses containing universe polymorphic constants such as the equality and inequality
predicates @Eq.{u} and @Ne.{u}. So Duper requires the ability to carry out some universe
polymorphic reasoning natively.

During the main saturation loop, there are three areas where universe levels are relevant.
First, Duper’s unification procedure must take universe levels into account. For the most
part, this only requires calling Lean’s built-in level unifier in cases where a level metavariable
determines whether two sorts or constants are unifiable. Second, converting between clauses
and mclauses requires interchanging parameter names in clauses with level metavariables
in mclauses. Finally, the Skolem symbols that Duper generates in Figure 1’s Clausify∃

1 and
Clausify∀

1 are universe polymorphic, so some machinery is needed both to generate the initial
Skolem symbols and to keep track of their parameters across inferences.

During proof reconstruction, Duper must occasionally instantiate universe polymorphic
facts with specific universe levels. In some cases, Duper must even instantiate the same fact
multiple times with different universe levels. Consider the following example:

theorem singletonListNotEmpty.{u} : ∀ α : Type u, ∀ z : α, ¬[z].isEmpty := . . .

example (t1 : Type 1) (t2 : Type 2) (x : t1) (y : t2) :
¬[x].isEmpty ∧ ¬[y].isEmpty := by duper [singletonListNotEmpty]

In this example, Duper must instantiate singletonListNotEmpty with universe level 1 so
that ¬[x].isEmpty can be derived and with universe level 2 so that ¬[y].isEmpty can be
derived. During proof reconstruction, Duper determines this by examining the children
clauses generated via inferences involving singletonListNotEmpty. If these clauses have specific
universe levels instead of singletonListNotEmpty’s universe variable, then those universe levels
determine how singletonListNotEmpty is instantiated. If the children clauses are also universe
polymorphic, then their children clauses are recursively examined until a clause without
singletonListNotEmpty’s universe variable is found. This is guaranteed to happen because
repeatedly examining children will inevitably lead to the empty clause. The information
concerning how universe levels must be instantiated can then be propagated from children to
parents until it is known how to instantiate each of Duper’s universe polymorphic clauses.

5 Monomorphization

An advantage to using dependent type theory as a foundation is that it provides powerful
mechanisms to support algebraic reasoning. When a user types an expression like x + y
in a context where x and y are inferred to have type Nat, the expression is parsed as
HAdd.hAdd Nat _, where the third argument, represented here by an underscore, is expected
to be an instance of a type class for the addition notation. Lean will synthesize a suitable value,
such as @instHAdd Nat AddSemigroup.toAdd, by searching through a database of instances
that have been registered with the system. Type classes are similarly used to handle algebraic
structures and generic theorems about them.

Type class inference is at odds with automated reasoning in a number of respects. First,
it renders expressions quite verbose, increasing processing time and storage during search.
Second, searching for instances is generally too expensive to carry out in Duper’s main
saturation loop. Third, two fully elaborated instances of an expression like x + y may be only
definitionally equal rather than syntactically equal, which means that Lean can determine
they are the same only by unfolding definitions and simplifying them. This can happen when
the system infers implicit arguments, like the addition function that is appropriate to the
natural numbers, in different ways. Testing equivalence of terms up to definitional equality
is also generally too expensive to carry out during the main saturation loop.
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When using Duper as a tactic in Lean, we therefore rely on a preprocessing phase,
implemented in a separate tool called LeanAuto,1 that does all of the following:

abstracts the proof goal as a smaller higher-order problem with dependently typed
parameters that are kept separate;
heuristically instantiates types and type classes in generic lemmas in the context; and
identifies definitionally equal expressions with a single representative.

We refer to this as monomorphization although that term is more properly used to describe
the second component above. The monomorphization procedure is complex and will be
described in greater detail elsewhere. Here we sketch the main ideas.

5.1 Reduction to Essentially Higher-Order Problems
The first observation is that many goals that arise in Lean are essentially higher-order
validities. For example, suppose we have variables n : Nat and a b c : Fin n, where Fin n
is the (dependent) type of values less than n. Suppose further that we are trying to prove

a + (b + c) = (c + b) + a

from

∀ x y : Fin n, x + y = y + x.

If we abstract Fin n to a generic type α, we get a first-order problem of which our original
goal is an instance.

▶ Definition 1. Let φ be a proposition in Lean. φ is an essentially higher-order validity
iff there exists a valid higher-order formula ψ and a mapping σ such that:

σ(ψ) = φ.
σ maps free variables to expressions in Lean.
σ maps constants, function symbols and type symbols to closed expressions in Lean.
Moreover, we require that the equality symbol = in higher-order logic is mapped to = in
Lean.
σ is type consistent, i.e. for each constant, function symbol, type symbol, or free variable
x of type T , σ(x) is of type σ(T ).

A Lean goal h1 : T1, h2 : T2, . . . , hn : Tn ⊢ T is essentially higher(first)-order iff ∀ (h1 :
T1) (h2 : T2) . . . (hn : Tn), T is essentially higher(first)-order.

Given a Lean goal h1, h2, . . . , hn ⊢ False, our monomorphization procedure will instantiate
the quantifiers of the premises and construct a new goal G with the resulting instances as
premises and False as conclusion. Then, it attempts to find a higher-order formula ψ and
a substitution σ such that σ(ψ) is equivalent to G. If successful, ψ is passed to the main
saturation loop. Finally, if the saturation loop manages to find a proof of ψ, a proof of G
will be reconstructed using σ.

5.2 Type Classes and Definitional Equality
Our monomorphization procedure implements a mechanism to check whether functions with
different type class instance arguments are definitionally equal. For each function f with
such arguments, the monomorphization procedure keeps a list of mutually (definitionally)

1 https://github.com/leanprover-community/lean-auto

https://github.com/leanprover-community/lean-auto
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unequal expressions of the form f t. Each time a new expression e of the form f t is found
by the monomorphization procedure, it compares e to the previously recorded expressions
associated with f and checks whether they are definitionally equal. This mechanism cannot
recognize all definitional equalities in Lean, since expressions with different heads can also be
definitionally equal. However, this approach is effective in handling the sorts of type classes
that tend to appear in Mathlib.

6 Evaluation

In this section, we evaluate Duper’s performance on first-order and higher-order benchmarks
in the TPTP format [43]. Duper requires a Lean goal state as input, so to run Duper on
these benchmarks, we wrote a parser to convert TPTP problems into Lean goals. Said parser
is included in the Duper repository. The goal of our evaluation is to answer the following:
1. How does Duper compare against other automatic theorem provers? In particular, how

does Duper compare against Metis, an automatic theorem prover frequently used for
Sledgehammer’s proof reconstruction? This is a metric for Duper’s current strength as a
general automatic theorem prover.

2. What is the impact of using external automation to minimize benchmarks on Duper’s
performance? And is this impact dependent on the nature of the external automation?
This is a metric for Duper’s current potential as proof reconstruction for a future hammer.

3. Some of Duper’s rules are marked as expensive based on their behavior in Zipperposition.
What is the impact of enabling or disabling expensive rules on Duper’s performance?
And is this impact dependent on whether Duper is given a problem in a first-order or
higher-order format? This is a metric for determining in which circumstances Duper’s
expensive rules should be enabled.

6.1 Experimental Methodology
6.1.1 Benchmarks
We borrow benchmarks from Seventeen Provers under the Hammer [16] and GRUNGE: A
Grand Unified ATP Challenge [11]. Both of these sources provide TPTP benchmarks in
multiple formats, so we evaluate on the same set of benchmarks translated to a first-order
form (FOF) and a typed higher-order form (THF). Specifically, we use the TH0− encodings
from the Seventeen benchmarks and TH0-II encodings from the GRUNGE benchmarks.

The Seventeen benchmarks contain multiple versions of each problem with different
numbers of additional facts supplied by Sledgehammer. We test on the same Seventeen
benchmarks with 16 facts included and 256 facts included. The GRUNGE benchmarks are
not duplicated in this manner, so for these, we just test on the available benchmarks in their
“bushy” format, meaning the format containing exactly the facts needed to prove the original
HOL4 [38] theorems from which the benchmarks were generated.

6.1.2 Provers
In addition to Duper, we evaluate the benchmarks with Metis, Zipperposition, and Vampire
[25]. Metis was selected as the standard for Sledgehammer-style proof reconstruction,
Zipperposition was selected as a powerful automatic theorem prover that implements the
same core calculus as Duper, and Vampire was selected as a powerful automatic theorem
prover that implements a different core calculus from Duper.
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We use Duper version v0.0.9, Metis version 2.4, Zipperposition version 2.1, and Vampire
version 4.6.1. All provers except Duper are given arguments indicating they have a 30 second
timeout, and all provers are externally terminated after 30 seconds of wall-clock time. Duper
is run both with and without expensive rules enabled. Duper (–) is used to refer to Duper
without expensive rules and Duper (+) is used to refer to Duper with “expensive” rules. Metis
is run with default settings, while Vampire and Zipperposition are run with options replicating
those in the Seventeen paper as closely as possible. Specifically, Vampire is run in portfolio
mode with the “casc” schedule for FOF problems and the “casc_hol_2020” schedule for
THF problems, while Zipperposition is run with the script portfolio.lams.parallel.py available
in Zipperposition’s repository. We note that the Python code used to run Zipperposition’s
portfolio mode on multiple cores is not Mac-compatible, so Zipperposition is only able to use
one core of the computer used to run these experiments. Vampire’s portfolio mode code does
not have such issues, so it was run unaltered. The computer used to run these experiments
is a Mac with a 3.8GHz processor and 16GB of RAM.

6.2 Experimental Results

Table 1 Original benchmark problems solved.

FOF Format THF Format
Seventeen
(16 Facts)

Seventeen
(256 Facts)

GRUNGE
(Bushy)

Seventeen
(16 Facts)

Seventeen
(256 Facts)

GRUNGE
(Bushy)

Duper (−) 1176/5000 1086/5000 64/1000 1111/5000 934/5000 231/1000
Duper (+) 1167/5000 1050/5000 64/1000 997/5000 670/5000 78/1000
Metis 1195/5000 1120/5000 202/1000 – – –
Vampire 1285/5000 2521/5000 262/1000 1331/5000 2341/5000 459/1000
Zipperposition 1277/5000 2209/5000 277/1000 1314/5000 2122/5000 354/1000

Table 1 shows the number of original benchmark problems solved by Duper, Metis,
Vampire, and Zipperposition when given a 30 second timeout. Vampire and Zipperposition
outperform Metis by a significant margin, especially as more facts are made available, and
Metis outperforms Duper by a slimmer margin. We note that except for Metis, which only
accepts FOF problems, all provers perform significantly better on GRUNGE THF problems
than GRUNGE FOF problems. The difference in results between GRUNGE ’s formats is
significantly greater than the difference in results between Seventeen’s formats. This is likely
explained by the fact that the GRUNGE benchmarks use a more inefficient encoding of
polymorphism into the FOF format, apparently resulting in harder FOF problems [16].

Table 2 Vampire-minimized Seventeen benchmark problems solved.

FOF Format THF Format
16 Facts 256 Facts 16 Facts 256 Facts

Duper (−) 1246/1285 2372/2521 1214/1331 2121/2341
Duper (+) 1244/1285 2368/2521 1149/1331 2025/2341
Metis 1268/1285 2382/2521 – –

Tables 2 and 3 show the number of Seventeen benchmark problems that Duper and Metis
can solve after they are minimized by Vampire and Zipperposition respectively. Minimized
benchmark problems are generated by removing all axioms that do not appear in the proofs
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Table 3 Zipperposition-minimized Seventeen benchmark problems solved.

FOF Format THF Format
16 Facts 256 Facts 16 Facts 256 Facts

Duper (−) 1249/1277 2169/2209 1231/1314 2061/2122
Duper (+) 1248/1277 2166/2209 1214/1314 2014/2122
Metis 1267/1277 2165/2209 – –

output by Vampire and Zipperposition. Thus, a minimized benchmark problem can only be
generated if Vampire or Zipperposition solved the original benchmark problem. We only test
on minimized Seventeen benchmark problems because the original GRUNGE benchmark
problems already include exactly the axioms necessary to solve them.

Although Metis observably outperforms Duper on original benchmark problems, neither
Duper nor Metis significantly outperforms the other on minimized problems. For both
Vampire-minimized problems and Zipperposition-minimized problems, there is less than a
2% disparity in the number of reconstructed 16-Facts FOF problems, and less than a 1%
disparity in the number of reconstructed 256-Facts FOF problems. Duper appears to do
slightly better reconstructing Zipperposition’s proofs than Vampire’s, but the difference is
marginal. We take this as a evidence that Metis’ and Duper’s abilities to reconstruct proofs
generated by external provers are comparable.

In all benchmark categories, Duper performs better on average with its expensive rules
disabled. We note that there are no FOF benchmarks that Duper can only solve with its
expensive rules enabled, but there are 46 THF problems across the various categories that
Duper requires expensive rules to solve. The fact that expensive rules appear to have some
benefit for THF problems but no benefit for FOF problems is explained by the fact that
most of Duper’s expensive rules are higher-order.

Overall, we conclude that on raw TPTP problems, Metis performs slightly better than
Duper, but that the two tools perform extremely similarly on problems minimized by a
more powerful external prover. We note that this evaluation of Duper’s performance is
restricted to first-order and higher-order problems. Ideally, the features Duper implements
that are oriented toward reasoning in a dependently typed setting would be evaluated using
benchmarks from Mathlib, but until Duper is equipped with a relevance filter, such an
evaluation is not feasible.

7 Related Work

Section 6 provides a quantitative evaluation comparing Duper against other automatic
theorem provers. In this section, we discuss some of the qualitative differences between
Duper and other general-purpose proof automation in various interactive theorem provers.

In Coq, the tactic most similar to Duper in purpose is sauto [13]. Just as Duper was
designed with proof reconstruction for a future Lean hammer in mind, sauto was created to be
CoqHammer’s [14] proof reconstruction procedure of choice. The primary difference between
Duper and sauto is that Duper produces classical proofs and sauto produces constructive
proofs. While Duper’s initial goal transformation and underlying superposition calculus are
only sound classically, sauto’s direct search for type inhabitants in an appropriate normal
form is fundamentally intuitionistic. For many Lean users, the benefit of being able to prove
more facts outweighs the benefit of staying in Lean’s intuitionistic fragment, since many
Lean users are formalizing classical mathematics in any case. On the other hand, many Coq
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users are firmly committed to constructive proofs and their computational interpretations,
so it makes sense that there would be a greater desire for Coq’s general-purpose automation
to remain intuitionistic, even if it means fewer problems can be solved.

In Lean 3, the tactic most similar to Duper is Super.2 Super is a prototype proof-producing
superposition theorem prover implemented with Lean 3’s metaprogramming language. Due
to inherent limits of Lean 3 metaprogramming, Super was not performant enough to make it
into common use, but it was nonetheless an important proof of concept. The name “Duper”
is an homage to that project.

In Lean 4, the most notable general-purpose proof automation tactic currently available
is Aesop [26]. The primary difference between Duper and Aesop is that Duper is designed to
require as little user input as possible, whereas Aesop is designed to be a highly customizable
white-box automation tactic. There are benefits to both approaches. Aesop’s white-box
approach gives users more control over how the proof search is performed, while Duper’s
black-box approach is more amenable to push-button automation and has a lower barrier
to entry for users. Overall, we hope that Duper and Aesop will prove to be complementary
tactics well suited to different use cases.

In Isabelle/HOL, HOL4, and HOL Light, the proof automation most similar to Duper is
Metis. Although the evaluation given in Section 6 is useful for gauging Metis’ and Duper’s
relative performances, it is limited in that it considers only TPTP problems that can be
expressed in both first- and higher-order logic. A fact that the evaluation does not capture
is that there is a class of problems accessible to Duper but not Metis. This is the class of
problems that fundamentally require native higher-order reasoning.

Even though Metis is a first-order prover, it can still solve some higher-order problems by
first translating them into first-order logic. For many problems, this approach is sufficient,
as evidenced by Metis’ frequent use in higher-order interactive theorem provers. However,
as noted in Mechanical Mathematics [4], when problems critically involve higher-order
constructions, their first-order translations can quickly become intractable. Consider the
following problem which is presented both as an Isabelle/HOL lemma and as a Lean example:

lemma "(
∑

i::nat=0..n. i) + (
∑

i::nat=0..n. i) = (
∑

i::nat=0..n. i + i)"
by (metis sum.distrib)

example : Σ i in range n, i + Σ i in range n, i = Σ i in range n, (i + i) :=
by duper [Finset.sum_add_distrib]

When this problem is given to Isabelle/HOL’s Sledgehammer, Zipperposition is able to
find a proof and suggests the above Metis call. However, Metis is unable to reconstruct
Zipperposition’s proof because the summation notation involved is significantly more complex
when encoded in first-order logic. On the other hand, Duper has no issue with the equivalent
Lean example because it does not need to translate the problem into a less expressive logic.

8 Conclusion and Future Work

We have presented Duper, a proof-producing superposition theorem prover for Lean. Duper’s
underlying approach to proof search adapts classical methods in automatic theorem proving
to a dependently typed setting using a flexible combination of preprocessing and native
reasoning. Since Duper directly generates proofs in Lean’s axiomatic foundation, it can be
called as a terminal tactic in interactive Lean proofs.

2 https://github.com/leanprover/super

https://github.com/leanprover/super
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In the future, we hope to use Duper for proof reconstruction in a Lean hammer. Equipping
Duper with a relevance filter and integrating Duper into a full hammer pipeline will drastically
increase Duper’s usefulness. The experimental results given in Section 6.2 show that Duper is
performant enough to reconstruct proofs from a variety of state-of-the-art automatic theorem
provers.
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