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Abstract
This paper discusses the formalization of the theory of quaternions in the Prototype Verification
System (PVS). The general approach in this mechanization relies on specifying quaternion structures
using any arbitrary field as a parameter. The approach allows the inheritance of formalized properties
on quaternions when the parameters of the general theory are instantiated with specific fields such as
reals or rationals. The theory includes characterizing algebraic properties that lead to constructing
quaternions as division rings. In particular, we illustrate how the general theory is applied to formalize
Hamilton’s quaternions using the field of reals as a parameter, for which we also mechanized theorems
that show the completeness of three-dimensional rotations, proving that Hamilton’s quaternions
mimic any 3D rotation.
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1 Introduction

Quaternions can be identified with the general theory of algebraic structures consisting
of quadruples built over a field, ⟨F,+F, ∗F, zeroF, oneF⟩ and two selected elements of the
field a, b ∈ F, where the quaternion addition is built from the field addition component to
component, and the product quaternion is a distributive product, that satisfies a series of
axioms, including

(zeroF, oneF, zeroF, zeroF)2 = (a, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF)2 = (b, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF) ∗ (zeroF, oneF, zeroF, zeroF) = (zeroF, zeroF, zeroF, oneF)

among others, from which all properties of addition and multiplication of quaternions are
inferred. In general, given a field F, and elements a, b ∈ F, the quaternion algebra is
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11:2 A Formalization of the General Theory of Quaternions

represented as
(
a, b

F

)
. It is a vector space in F, with the basis

1 = (oneF, zeroF, zeroF, zeroF) i = (zeroF, oneF, zeroF, zeroF)
j = (zeroF, zeroF, oneF, zeroF) k = (zeroF, zeroF, zeroF, oneF)

and a distributive product, such that : i2 = a, j2 = b, ij = k (cf. axioms above), and
ij = −ji, for a = (a, zeroF, zeroF, zeroF), b = (b, zeroF, zeroF, zeroF).

Hamilton’s quaternions are the first introduced structure of quaternions [11]. After its
discovery, the research for structures similar to the original quaternions started, leading to a
more generic and algebraic definition than the classic approach of Hamilton. Our specification
in PVS uses such a generic definition.

Using the notation above, Hamilton’s quaternions is the algebra H =
(

−1,−1
R

)
.

The structure of Hamilton’s quaternions is the most popular because of its well-known
efficient applicability in manipulating three-dimensional (3D) objects. Despite this fact, the
interest in quaternions is not limited to Hamilton’s ones but also to other structures of
quaternions that are of great interest (e.g., [22]).

1.1 Main results
This paper describes the formalization of the general theory of the structures of quaternions in
the interactive proof assistant PVS. It provides a characterization of quaternions as division
rings based on algebraic properties of fields. The characterization is crucial to building
multiplicative inverses for non-zero quaternion elements, an essential element in structures
such as Hamilton’s quaternions. In addition, the formalization shows how to build the
structure of Hamilton’s quaternions with adequate theory parameters. Finally, we formalize
a completeness theorem of Hamilton’s quaternions to rotate any 3D vector.

The quaternions theory is developed over the PVS nasalib theory algebra 2. Recent
developments on this theory are reported in [4]. The theory includes complete proofs of the
three isomorphism theorems for rings, characterizations of principal, prime, and maximal
ideals, and an abstract algebraic-theoretical version of the Chinese Remainder Theorem for
arbitrary rings [7]. Also, it includes a division algorithm for Euclidean rings and Unique
Factorization Domains [6].

As far as we know, there are three solid formalizations restricted to the structure of
Hamilton’s quaternions, one of them in HOL Light [9], another in Coq [2], and the third one
in Isabelle/HOL [18]. The HOL Light formalization applies to verify basic parts of theories
related to slicing regular functions and Pythagorean-Hodograph curves; the second one in
Coq has been applied to formalize 3D robot manipulators; and the one in Isabelle/HOL
inspired Koutsoukou-Argyraki’s formalization of octonions [13]. In contrast, some elements
of the general theory of quaternions built over any abstract field, as in our case, were only
developed as part of the Lean mathlib library [16].

1.2 Organization
Section 2 is divided into subsections discussing the basic elements used in the specification
and axiomatization of the general theory of quaternions (2.1), discussing how the algebraic
properties of such structures are inferred from the axiomatization (2.2), and how quaternions
are characterized as division rings (2.3). Section 3 is divided into two subsections presenting
the theory parameters used to obtain Hamilton’s quaternions (3.1), and the formalization

https://github.com/nasa/pvslib/tree/master/algebra
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Specification 1 Quaternion addition and scalar multiplication quaternion_def 2
+(u,v): quat = ( u’x + v’x, u’y + v’y, u’z + v’z, u’t + v’t ) ;
*(c,v): quat = ( c * v’x, c * v’y, c * v’z, c * v’t ) ;

% scalar multiplication
* :[ quat ,quat -> quat] ; % quaternion multiplication

of the completeness of this structure to deal with 3D vector rotations (3.2). Finally, before
concluding and discussing future lines of research in Section 5, Section 4 briefly discusses
how other structures of quaternions can be specified.

The paper includes links to the specific points of the specification. The formalization is
part of the PVS nasalib theory algebra 2. Formalizations in PVS are given in two files with
extensions .pvs and .prf. The former contains the specifications, whereas the latter contains
the proofs. The system itself, as well as relevant documentation about it, can be found in [1].
Also, an extension for PVS is available for VSCode [15].

2 Mechanization of the theory of quaternions

This section presents the formalization of the theory of quaternions using as a parameter an
algebraic field and two constants: ⟨F,+F, ∗F, zeroF, oneF, a, b⟩.

2.1 Specification of Basic Notions

The general theory of quaternions is built from any abstract type T, with binary operators
for addition and multiplication +,*: [T, T] -> T, with constants zero, one, a, b: T.

Initially, in the theory defining the structure and type quat, quaternion_def 2, it is only
assumed that [T,+,zero] is a group: group?(fullset[T]). An element q of type quat is
a quadruple of elements of type T, represented as q = (x, y, z, t), and through the use
of a macro, components of q can be accessed, for instance q’y = y. Quadruples for the
quaternion basis 1, i, j, k, and for quaternions a and b are defined; distinguishing them with
names one_q, i, j, k, a_q, b_q. The substring _q refers to quaternions. Thus, field
elements with the suffix _q refer to the associated quaternions; for instance, a_q refers to
the quaternion (a, zero, zero, zero), and zero_q specifies the zero quaternion. The
conjugate and the additive inverse of a quaternion are specified in the usual manner: they are
well-defined since [T,+,zero] is a group, and each element of the quadruple has an additive
inverse. Tuple addition and scalar multiplication are defined in Specification 1. Finally, note
that quaternion multiplication is defined as a binary operator over quaternions.

The required axioms of the theory of quaternions are given in Specification 2, where
variable types are u, v : quat, and c, d : T. Notice that the axioms include associativity
and (right and left) distributivity of the quaternion multiplication over the addition (q_assoc,
q_distr and q_distrl), and associativity and commutativity regarding scalar multiplication
over quaternion multiplication (sc_quat_assoc, sc_comm and sc_assoc). Also, it is required
that one_q be the identity for quaternion multiplication: the axioms one_q_times and
times_one_q are essential to prove the characterization of the quaternion multiplication
provided in the Subsection 2.2.
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Specification 2 Axioms for the Theory of Quaternion 2

sqr_i : AXIOM i * i = a_q
sqr_j : AXIOM j * j = b_q
ij_is_k : AXIOM i * j = k
ji_prod : AXIOM j * i = inv(k)
sc_quat_ assoc : AXIOM c*(u*v) = (c*u)*v
sc_comm : AXIOM (c*u)*v = u*(c*v)
sc_ assoc : AXIOM c*(d*u) = (c*d)*u
q_ distr : AXIOM distributive ?[ quat ](* , +)
q_ distrl : AXIOM (u + v) * w = u * w + v * w
q_ assoc : AXIOM associative ?[ quat ](*)
one_q_ times : AXIOM one_q * u = u
times _one_q : AXIOM u * one_q = u

Specification 3 Quaternion Basis 2

basis _quat: LEMMA
FORALL (q: quat ): q = q’x * one_q + q’y * i + q’z * j + q’t * k

2.2 Inference of Algebraic Properties of Quaternions

The PVS theory quaternions 2 completes the basic structure of quaternions, refining the
parameters in such a manner that a and b are different from zero, and [T,+,*,zero,one] is
a field (specified in theory field_def 2). So, the type T with addition and zero, as well as
T-{zero} with multiplication and one are Abelian groups.

From this basis, it is now possible to infer a series of lemmas about quaternions,
such as j*i = - (i*j), k*k = -a_q * b_q, k * i = -a_q * j, k * j = b_q * i, i
* k = a_q * j, and j * k = -b_q * i (see basic lemmas 2).

Such lemmas allow us to infer that quaternions one_q, i, j, and k act as a basis as
given in Specification 3, and the characterization of quaternion multiplication as given in
Specification 4. The proof of this characterization uses the decomposition according to the
lemma basis_quaternion and requires exhaustive algebraic manipulation using quaternions
axioms, a series of auxiliary lemmas, including the previous ones mentioned, and others
about the algebra of quaternions, such as lemmas for the scalar product. The advantage of
such formulation is that the characterization of quaternion multiplication, usually presented
as a definition, is obtained from a minimal axiomatization.

Further results include the formalization of the fact that any quaternion abstract
structure, quat[T,+,*,zero,one,a,b], is a ring with identity as given in the Specifi-
cation 5. A ring is not necessarily commutative regarding multiplication. The proof
requires expanding the field definition for [T, +, *, zero, one], then using that it is
a commutative division ring, a commutative group with identity. From this, and the

Specification 4 Quaternion Multiplication Characterization 2

q_prod_ charac : LEMMA FORALL (u,v:quat ):
u * v = (u’x * v’x + u’y * v’y * a + u’z * v’z * b + u’t * v’t * inv(a)*b,

u’x * v’y + u’y * v’x + (inv(b)) * u’z * v’t + b* u’t * v’z,
u’x * v’z + u’z * v’x +a * u’y * v’t + inv(a) * u’t * v’y,
u’x * v’t + u’y * v’z + inv(u’z * v’y) + u’t * v’x );

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L79-L90
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L86-L86
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L22-L210
https://github.com/nasa/pvslib/tree/master/algebra/field_def.pvs#L1-L20
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L74-L84
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Specification 5 Quaternions are Rings with identity 2

quat_is_ring_w_one: LEMMA
ring_with_one ?[ quat ,+,*, zero_q,one_q]( fullset [quat ])

Specification 6 Conjugate of Multiplication of Quaternions 2

conj_ product _quat : LEMMA FORALL (q, u : quat) :
conjugate (q * u) = conjugate (u) * conjugate (q)

algebraic properties inferred until this point, it is possible to prove that the structure
of quaternions given as [quat[T,+,*,zero,one,a,b], +, *, zero_q, one_q] is indeed
a ring with identity. The last is done expanding the notion of ring-with-identity and
proving first that [quat[T,+,*,zero,one,a,b], +, *, zero_q] is a ring, and then that
[quat[T,+,*,zero,one,a,b], *, one_q] is a monoid.

Some of the formalizations benefit from PVS strategies to automatize manipulation of the
algebra of quaternions. For instance, the lemma in Specification 6 states that for quaternions
q, u, conjugate(q * u) = conjugate(u) * conjugate(q), where conjugate(u) 2 is
given by the quaternion (u‘x, -u‘y, -u‘z, -u‘t). The proof of this lemma is done
by applying the theorem of characterization of quaternion multiplication q_prod_charac,
showing that each pair of corresponding components of the resulting quadruples are equal.
Quaternions’ operations are defined from addition and multiplication over arbitrary fields.
PVS allows the manipulation of numerical algebraic structures, such as the field of reals.
Indeed, Manip is a package of PVS tactics that simplify numerical manipulation [8]. However,
it does not support algebraic manipulations over arbitrary fields.

Simple strategies were developed to handle quaternions’ operations PVS strategies 2.
Roughly, a strategy in PVS is a proof script that can be applied as a PVS proof command
to improve automation. For instance, at some point in the proof, one must show that the
quadruples’ first components coincide with the corresponding equation presented below.
However, proving this equality is not straightforward, requiring exhaustive applications of
quaternions’ addition and multiplication properties, which justified the development of such
strategies.

-(q‘x * u‘t + q‘y * u‘z + -(q‘z * u‘y) + q‘t * u‘x) =
-(u‘x * q‘t) + u‘y * q‘z + -(u‘z * q‘y) + -(u‘t * q‘x)

Some additional lemmas and definitions are formalized to characterize quaternions as
division rings.

Two important predicates and subtypes of quat are defined, the type of pure quaternions,
pure_quat 2, and the type of scalar quaternions, scalar_F 2, which consists of quaternions
with null scalar component and with null components i,j,k, respectively. Also, we specify
the reduced norm of a quaternion q as red_norm(q) = q * conjugate(q). The lemmas
obtained for such definitions cover the properties in the Specification 7, among others.

The lemma center_quat_is_sc_F expresses the fact that if the characteristic of the ring
[T, +, *, zero] is different from two, i.e., there exists an element x ∈ T such that x +
x ̸= zero, the center of the structure built with the quaternions and its multiplication is
exactly the subtype of all the scalar quaternions.
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Specification 7 Pure and Scalar Quaternions Conjugate and Norm Properties 2

red_norm_ charac : LEMMA FORALL (q: quat ):
red_norm(q) = (q‘x * q‘x +

inv(a) * (q‘y * q‘y) +
inv(b) * (q‘z * q‘z) +
(a * b) * (q‘t * q‘t),
zero , zero , zero)

conj_ product _quat_ scalar : LEMMA FORALL (s : T, q : quat) :
conjugate (s * q) = s * conjugate (q)

red_norm_conj: LEMMA FORALL (q:quat ):
red_norm( conjugate (q)) = red_norm(q)

center _quat_is_sc_F: LEMMA charac ( fullset [T]) /= 2 IMPLIES
center [( quat ) ,*]( fullset [quat ]) = scalar _F

q_x_v_cq : LEMMA FORALL (q:quat , v:( pure_quat )) :
pure_quat(q * v * conjugate (q))

Specification 8 T_q(q)(v) Operator 2

T_q(q: quat )(v:( pure_quat )): (pure_quat) = q * v * conjugate (q)

T_q_is_ linear : LEMMA FORALL (c,d: T, q: quat , v,w: (pure_quat )):
T_q(q)(c * v + d * w) = c * T_q(q)(v) + d * T_q(q)(w)

T_q_red_norm_ invariant : LEMMA FORALL (q: quat , v:( pure_quat )):
red_norm(q) = one_q IMPLIES red_norm(T_q(q)(v)) = red_norm(v)

T_q_ invariant _red_norm: LEMMA FORALL (c: T, q: quat ):
red_norm(q) = one_q IMPLIES T_q(q)(c * pure_part(q)) = c * pure_part(q)

The center of such structure is given by the quaternions that multiplicatively commute
with all other quaternions: { q | ∀ u : q * u = u * q }. This theorem is obtained,
proving that for any quaternion q in the center, commutativity with the basis quaternions i,
j, k implies the pure components of x should be zero.

Finally, from the last lemma in Specification 7, q_x_v_cq, the transformation given as the
curried operator Tq(q:quat)(v:(pure_quat)) is specified, and crucial properties about it are
proved, as presented in Specification 8. Such properties express the linearity of the operator,
T_q_is_linear; the fact that if the red_norm of q is one, the resulting transformation of the
pure quaternion v, T_q(q)(v), has the same norm as v; and, that the transformation over the
pure quaternion pure_part(q), obtained from q, does not affect any multiple of it. In fact,
the last lemma could be obtained by proving that T_q(q)(pure_part(q))=pure_part(q)
and by the fact that T_q(q) is linear.

Quaternions of characteristic two require specialized definitions but are not the subject
of this paper (e.g., Chapter six of [22]).

2.3 Characterization of Quaternions as Division Rings
The characterization of quaternions as division rings is given by a series of six lemmas
presented in Specification 9.

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L124-L156
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L160-L172
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The first lemma, nz_red_norm_if_inv_exist, is proved constructively. Assuming
red_norm(q) ̸= zero_q, using the characterization of red_norm in Specification 7, one
has that the scalar component of red_norm(q) = q‘x * q‘x + -(a) * (q‘y * q‘y) +
-(b) * (q‘z * q‘z) + (a * b) * (q‘t * q‘t) is not null and consequently has a multi-
plicative inverse in the field, say y. From this, one builds the desired quaternion multiplicative
inverse of q as the quaternion conjugate(q) *(y * one_q). We have to consider the quater-
nion y * one_q in the previous multiplication since y is a scalar. The exhaustive job is
once again related to the algebraic manipulation to prove that q * (conjugate(q) *(y *
one_q)) = one_q and vice-versa. This involves repeated applications of the characteri-
zation of quaternion multiplication, the definition and characterization of red_norm, and
several algebraic properties of quaternions.

The second lemma in Specification 9, div_ring_iff_nz_rednorm, established that a
quaternion is a division ring exactly when all non-zero quaternions have a reduced norm
different from zero_q. Necessity is proved by contradiction, assuming the existence of an
inverse for q, say y * q = one_q. Then, by expanding the definition of reduced norm, one
obtains q * conjugate(q) = zero_q. From these equations, by simple algebraic manipu-
lations, one obtains y * (q * conjugate(q)) = one_q * conjugate(q), and finally one
obtains zero_q = conjugate(q), which contradicts the assumption that q ̸= zero_q. The
proof of sufficiency is obtained by applying the first lemma.

The third lemma in Specification 9, inv_q_prod_charac, characterizes the inverse of a non
zero_q quaternion q through the equation inv(q) = conjugate(q) * inv(red_norm(q))
whenever the quaternion structure is a division ring. This lemma uses the previous
one and exhaustive algebraic manipulation. The key of the proof is to show that
conjugate(q) * (red_norm(q))−1 is the inverse of q. This is proved showing that q *
(conjugate(q) * (red_norm(q))−1) = one_q and (conjugate(q) * (red_norm(q))−1)
* q = one_q. The former equation requires only associativity and expansion of the defini-
tion of red_norm to obtain the equation (q * conjugate(q)) * (q * conjugate(q))−1

= one_q, from which one concludes. The latter equation requires the application of the
previous lemma to obtain the multiplicative inverse of red_norm(q), say y, such that
red_norm(q) * y = one_q. Expanding the definition of red_norm, one obtains the equa-
tion (q * conjugate(q)) * y = one_q. In this manner, one obtains the equation q *
((conjugate(q) * y) * q) = q * one_q, from which one concludes.

The fourth lemma in Specification 9, quat_div_ring_aux1, is a simple auxiliary result
from the theory of fields. If t = zero, the type of a implies -a ≠ zero. For the case in which
t ̸= zero, after Skolemization, one obtains the premise t*t = a; also, t has a multiplicative
inverse, say y. Then, by instantiating the premise with y and zero, one obtains objective
equality a*(y*y) + b * zero = one. By replacing a with t*t, one obtains (t*t)*(y*y)
= one. The formalization, as expected, requires simple field algebraic manipulations.

The fifth lemma, quat_div_ring_aux2, is another auxiliary result on fields. When t =
zero, one concludes by the inequation results from the type of b. Otherwise, let y and y1 be
the multiplicative inverses of t and a + a, respectively. Notice that since the characteristic
of the field is different from two, a + a ̸= zero, allowing the use of the latter inverse. The
second premise is then instantiated with (one + a) * y1 and (one - a) * y1 * y giving
the objective

a((one + a) ∗ y1)2 + b((one − a) ∗ y1 ∗ y)2 = one

Algebraic manipulation transforms the left-hand side of this equation into the term below,

ITP 2024
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Specification 9 Characterization of Quaternions as Division Rings 2

nz_red_norm_iff_inv_ exist : LEMMA
( FORALL (q:nz_quat ):

red_norm(q) /= zero_q) IFF
inv_ exists ?[ quat ,*, one_q]( remove (zero_q, fullset [quat ]))

div_ring_iff_nz_ rednorm : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IFF
( FORALL (q: nz_quat ): red_norm(q) /= zero_q)

inv_q_prod_ charac : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IMPLIES
( FORALL (q: nz_quat ):

inv[nz_quat ,*, one_q](q) = conjugate (q)* inv[nz_quat ,*, one_q]( red_norm(q)))

quat_div_ring_aux 1: LEMMA
( FORALL (x,y:T): a * (x*x) + b * (y*y) /= one) IMPLIES

FORALL (t:T): t*t + inv[T,+, zero ](a) /= zero

quat_div_ring_aux 2: LEMMA
( charac ( fullset [T]) /= 2 AND ( FORALL (x,y:T): a * (x*x)+b * (y*y) /= one ))

IMPLIES
FORALL (t:T): a*(t*t) + b /= zero

quat_div_ring_char: LEMMA
charac ( fullset [T]) /= 2 IMPLIES
(( FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]))

where for the integer k, k t abbreviates t+t+· · · +t k times.

a ∗ y12 + 2(a2 ∗ y12) + a3 ∗ y12 + b ∗ y12 ∗ y2 + 2(b ∗ (−a) ∗ y12 ∗ y2) + b ∗ (−a)2 ∗ y12 ∗ y2

By multiplying a*(t*t) + b = zero by y * y, one obtains the equation a + b (y * y)
= zero, which allows the elimination of the first and second component of the above term;
indeed

a ∗ y12 + b ∗ y12 ∗ y2 = (a + b ∗ y2)y12 = zero

The third and last components are also eliminated:

a3 ∗ y12 + b ∗ (−a)2 ∗ y12 ∗ y2 = (a + b ∗ y2) ∗ a2 ∗ y12 = zero

Finally, the remaining four components are proved equal to one using the equation
−b ∗ (y ∗ y) = a:

2(a2 ∗ y12) + 2(b ∗ (−a) ∗ y12 ∗ y2) = 4(a2 ∗ y12) = (a + a) ∗ (a + a) ∗ y12 = one

The final lemma, quat_div_ring_char, states that the structure of quaternions with
multiplication is a division ring whenever the characteristic of the ring [T, +, *, zero] with
field multiplication is different from two and the condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one,
used in previous two lemmas, holds. The proof applies the second lemma in the series of
lemmas given in Specification 9, div_ring_iff_nz_rednorm, thus, changing the objective
to proving that red_norm(q) ̸= zero_q, for any q ̸= zero_q under these conditions.

On the one side, if there exists x, y in the field such that a ∗ x2 + b ∗ y2 = one, one can
select the quaternion element q = oneq + x ∗ i + y ∗ j. So, q ̸= zero_q, and its reduced
norm, 1 − a ∗ x2 − b ∗ y2 is different from zero. Therefore, the quaternion cannot be a

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L181-L206
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division ring. On the other side, suppose the quaternion is not a division ring, but the
condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one holds. Then, there exists q ̸= zero_q such that
red_norm(q) = q‘x2 − a ∗ q‘y2 − b ∗ q‘z2 + a ∗ b ∗ q‘t2 = zero_q. For short, let this q be
equal to (x,y,z,t).

The first component of the reduced norm gives the field equation:

x2 − a ∗ y2 − b ∗ z2 + a ∗ b ∗ t2 = zero (1)

From the last equation, one has that x2 − a ∗ y2 = b ∗ (z2 − a ∗ t2). From this equation,
one obtains (x2 − a ∗ y2) ∗ (z2 − a ∗ t2) = b ∗ (z2 − a ∗ t2)2. This equation gives

(x2 ∗ z2 + a2 ∗ y2 ∗ t2 − a ∗ x2 ∗ t2 − a ∗ y2 ∗ z2) = b ∗ (z2 − a ∗ t2)2

From the last equation, one obtains

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = (x ∗ z + a ∗ y ∗ t)2 (2)

Notice that (x ∗ z + a ∗ y ∗ t) = zero; otherwise, multiplying the equation by the square
of the inverse of this term, one contradicts the hypothesis ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one.
Therefore, equation (2) becomes:

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = zero (3)

Suppose now that z2 − a ∗ t2 ̸= zero. Thus, multiplying the equation by the square of
the inverse of this term, one obtains an equation of the form a ∗ t′2 + b = zero, which gives
a contradiction by lemma quat_div_ring_aux2. Thus, z2 − a ∗ t2 = zero.

Assume now that t ̸= zero. Multiplying by the square of the inverse of t, one ob-
tains an equation of the form t′2 − a = zero, which gives a contradiction by lemma
quat_div_ring_aux1. Therefore, the fourth component of the quaternion element q is
zero: t = zero, which also implies the third component z = zero.

Thus the reduced norm of q is equal to x2 − ay2, and by hypothesis, x2 − ay2 = zero.
Once again, if y ̸= zero, multiplying the equation by the square of the inverse of y, one
obtains an equation of the form t′2 − a = zero, which gives a contradiction by lemma
quat_div_ring_aux1. So, y = zero, and also x = zero.

This completes the proof.

3 Parameterization of the Algebra of Hamilton’s Quaternions

By providing parameters quaternions[real,+,*,0,1,-1,-1] to the theory quaternions
2, one obtains Hamilton’s quaternions, H, mentioned in the introduction. This structure
is usually characterized in textbooks by the identities i2 = j2 = k2 = ijk = −1 (e.g.,
[22]). In this section, we will present the completeness of 3D rotation by using Hamilton’s
quaternion, as well as the main properties to achieve such results formalized in the PVS
theory quaternions_Hamilton 2. In this section, “quaternions” reference elements of the
structure of Hamilton’s quaternions.

3.1 Specification of Basic Properties
The structure given by (H,+H, zeroq, ∗R), where ∗R indicates the scalar product induced
by the multiplication over real numbers, is a vector space isomorphic to R4 equipped with
their standard operations. A pure part of a quaternion can be mimicked by a vector from
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11:10 A Formalization of the General Theory of Quaternions

Specification 10 Connection between quaternions and vectors 2

Real_part(q: quat ): real = q‘x

Vector _part(q: quat ): Vect3 = (q‘y, q‘z, q‘t)

conversion _quot: LEMMA
FORALL (r: real , nz: nzreal ): r/nz = number _ fields ./(r,nz)

quat_is_Real_p_ Vector _part: LEMMA
FORALL (q: quat ):

q = (Real_part(q), Vector _part(q)‘x, Vector _part(q)‘y, Vector _part(q)‘z)

decompose _eq_Real_ Vector _part: LEMMA
FORALL (q, p : quat ):

Real_part(q) = Real_part(p) AND Vector _part(q) = Vector _part(p) IFF
q = p

Vector _part_ scalar : LEMMA
FORALL (k:real , q: quat ): Vector _part(k*q) = k * Vector _part(q)

R3 and has a fundamental role in the theorems regarding the completeness of 3D rotations.
To reuse results about real vectors, formalized in theory vectors 2 in PVS nasalib, we
specified operators that return the real and pure part of a quaternion as a real number and
a three-dimensional vector, respectively, and formalized basic properties about them (see
Specification 10).

3.2 Rotational completeness of Hamilton’s Quaternions
Hamilton’s quaternions is a suitable structure to perform rotations in R3, and it has some
advantages when compared with techniques based on rotating by Euler angles:

The rotation using quaternions relies on the application of the linear transformation
T_q(q)(v), defined in Specification 8. This operator is based on the multiplication of
three quaternions which, in the light of the lemma q_prod_charac 2, is computed using
multiplication and sum of real numbers in this context. On the other hand, rotating by
Euler angles relies on the multiplication of three matrices of order 3, whose entries contain
trigonometric functions, each one of these matrices represents a rotation around the axes
x, y, and z of a 3D coordinate system (e.g., Chapter 4 in [3], and [19]). Thus, Hamilton’s
quaternions provide a computational, more efficient manner to perform rotations.
Rotating by Euler angles can lead to a gimbal lock. This well-known phenomenon occurs
when two axes align, causing the loss of one degree of freedom and locking the system to
rotate in a degenerated two-dimensional space [10]. Hamilton’s quaternions avoid gimbal
lock.
A rotation by Euler angles is based on the composition of rotations around three axes,
e.g., yaw, pitch, and roll. In contrast, only the pure part of a quaternion element q defines
the axis of a rotation using Hamilton’s quaternions [10]. Therefore, it is easier to visualize
the transformation by quaternions.

The landmark results of this section, presented in the Specification 11, are the formaliza-
tions of theorems Quaternions_Rotation 2 and Quaternions_Rotation_Deform 2. The
former states that given two pure quaternions a and b, which can be identified as vectors
of R3 of the same norm, there is a quaternion q = rot_quat(a,b) such that the operator

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L44-L61
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Specification 11 Completion of rotation using Hamilton’s quaternions 2

Quaternions _ Rotation : THEOREM
FORALL (a:( pure_quat), b:( pure_quat) |

norm( Vector _part(a)) = norm( Vector _part(b)) AND
linearly _ independent ?( Vector _part(a), Vector _part(b))):

LET q = rot_quat(a,b) IN b = T_q(q)(a)

Quaternions _ Rotation _ Deform : THEOREM
FORALL (a:( pure_quat), b:( pure_quat) |

linearly _ independent ?( Vector _part(a), Vector _part(b))):
LET q =
(sqrt( number _ fields ./( norm( Vector _part(b)), norm( Vector _part(a )))))*

rot_quat(a,
number _ fields ./( norm( Vector _part(a)), norm( Vector _part(b)))*b)

IN b = T_q(q)(a)

T_q(q) rotates a into b. The latter theorem ensures the existence of a quaternion q such that
the operator T_q(q) transforms a into b, even when they are not, necessarily, of the same

length. For the second transformation, it is only needed multiplying rot_quat
(

a,
|a|
|b|

b
)

by

the scalar

√
|a|
|b|

, where |v| denotes the usual norm of v in R3.

The following will highlight the main steps to formal-
ize those theorems. Initially, consider two pure quater-
nions a and b such that va = Vector_part(a) and vb
= Vector_part(b) are linearly independent; i.e., such
vectors are nonparallel and non-null. Let θ be the small-
est angle between va and vb and consider n = va × vb

|va||vb|
,

where va × vb denotes the usual cross product of vectors
in R3. The idea is to consider n as the rotation axis and
built the quaternion q that leads a into b from θ and n,
as follows:

q =
(

cos
(
θ

2

)
, n′x ∗ sin

(
θ

2

)
, n′y ∗ sin

(
θ

2

)
, n′z ∗ sin

(
θ

2

))
The elements θ, n and q were specified as r_angle(a,b) 2, n_rot_axis(a,b) 2, and

rot_quat(a,b) 2, respectively (See Specification 12). They use some structures formalized
in the theories vectors 2 and trig 2 in the PVS nasalib. For example, r_angle(a,b)
is formalized from the operator angle_between(Vector_part(a),Vector_part(b)) 2,
which, in turn, is specified by using the arccosine function and the usual inner product
of R3; whereas, n_rot_axis(a,b) uses the specification of cross product defined as the
vector cross(a,b) 2. Notice that r_angle(a,b) 2 has type nnreal_le_pi, inheriting the
adequate type (reals in the interval (0, π]) in which the function acos is specified in the PVS
trigonometry library.

Four main lemmas are needed to formalize the Theorem Quaternions_Rotation 2.
The first one consists of a characterization of the operator T_q(q)(a) specified as the

lemma T_q_Real_charac 2. According to this result, for any quaternion q and any pure
quaternion a, the following equality holds:
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11:12 A Formalization of the General Theory of Quaternions

Specification 12 Basic elements to built a rotation by quaternions 2

r_ angle (a,b:( nzpure _quat )): nnreal _le_pi =
angle _ between ( Vector _part(a), Vector _part(b))

n_rot_axis(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): Vect3 =

normalize ( cross ( Vector _part(a), Vector _part(b)))

rot_quat(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): quat =

LET rot_angl_ halve : nnreal _le_pi = number _ fields ./(r_ angle (a,b), 2),
sin_ha = sin(rot_angl_ halve ),
cos_ha = cos(rot_angl_ halve ),
n = n_rot_axis(a,b)

IN (cos_ha , sin_ha * n‘x, sin_ha * n‘y, sin_ha * n‘z)

Vector_part(T_q(q)(a)) = ((q′x)2 − |Vector_part(q)|2) ∗ va +
(2 ∗ (Vector_part(q) ∗ va)) ∗ Vector_part(q) +
(2 ∗ q′x) ∗ (Vector_part(q) × va)

(4)

In Equation 4, the multiplication v ∗ w between vectors is interpreted as the dot product.
The vector part of T_q(q)(a) expresses all the relevant information of the resulting

quaternion: since the type established for T_q(q)(a) is pure_quat, see Specification 8, the
prover automatically generates a proof obligation, called in PVS Type Correctness Condition
(TCC), to verify that the first component of this quaternion is zero. Also, according to
the lemma T_q_is_linear, showed in Specification 8, T_q(q)(a) is a linear transformation.
And since |q| = 1, it preserves the norm of |a|, acting as a rotation.

The other three key lemmas consist of established equivalent expressions for each term in
the addition appearing in T_q_Real_charac, see Equation 4.

The lemma Quat_Rot_Aux1 2 ensures that Vector_part(q) * va = 0. Consequently,
the equation (2 * (Vector_part(q) * va)) * Vector_part(q) = 0 also holds.

The formalization of this lemma applies the lemma orth_cross 2, of the PVS theory
vectors, that guarantees that the vectors (va × vb) and va are orthogonal. This is a

consequence of the equalities Vector_part(q) = sin
(
θ

2

)
∗ n =

sin
(

θ
2

)
|va||vb|

∗ (va × vb).

The lemma Quat_Rot_Aux2 2 establishes the equality

((q′x)2 − |Vector_part(q)|2) ∗ va = cos(θ) ∗ va

By definition of q and since |n| = 1,

(q′x)2 − |Vector_part(q)|2 = cos2
(
θ

2

)
− sin2

(
θ

2

)
∗ |n|2 = cos2

(
θ

2

)
− sin2

(
θ

2

)
Thus, Quat_Rot_Aux2 follows as a consequence of the lemma cos_2a 2, formalized in the

theory trig@trig_basic, from which one can infer that cos2
(
θ

2

)
− sin2

(
θ

2

)
= cos(θ).

Finally, in the lemma Quat_Rot_Aux3 2, it is formalized that

(2 ∗ q′x) ∗ (Vector_part(q) × va) = vb − cos(θ) ∗ va
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In fact, by definition of q and n, and the associative property for scalar elements, one can
infer that:

(2 ∗ q′x) ∗ (Vector_part(q) × va) =
(

2 cos
(
θ

2

)
sin
(
θ

2

)
1

|va × vb|

)
((va × vb) × va)

Applying the lemmas cross_cross 2 and sin_2a 2, specified in theories
vectors@cross_3D and trig@trig_basic, respectively, one obtains the equality(

2 cos
(

θ

2

)
sin
(

θ

2

) 1
|va × vb|

)
((va × vb) × va) = sin(θ)

|va × vb| ((va ∗ va) ∗ vb − (vb ∗ va) ∗ va)

Since, (va ∗ va) = |va|2 and (vb ∗ va) = cos(θ)|va||vb|, it holds that

sin(θ)
|va × vb|

((va ∗ va) ∗ vb − (vb ∗ va) ∗ va) = sin(θ)
|va × vb|

(|va|2 ∗ vb − (cos(θ) ∗ |va||vb|) ∗ a)

Thus, by using the fact the |va| = |vb| and applying the identity
|va × vb| = |va||vb| sin(θ), formalized in the lemma norm_cross_charac_ 2 of the
theory vectors, one obtains the equality

sin(θ)
|va × vb|

(|va|2 ∗ vb − (cos(θ) ∗ |va||vb|) ∗ va) = vb − cos(θ)va

The Theorem Quaternions_Rotation 2 is then obtained as a direct consequence of the
lemmas T_q_Real_charac, Quat_Rot_Aux1, Quat_Rot_Aux2 and Quat_Rot_Aux3.

The formalization of the Theorem Quaternions_Rotation_Deform 2 ensures that Hamil-
ton’s quaternions are useful to promote not only rotations in R3 but also linear scaling since
the transformation T_q(q)(a) maps a into b even when they are not of the same length.

For this, we have only to consider q =

√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
)

. In fact, using this q as

argument of the transformation,

T_q(q)(a) =

√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
)

∗ a ∗ conjugate

(√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
))

Then, applying the lemma conj_product_quat_scalar 2, behind some algebraic ma-
nipulations, it holds that

T_q(q)(a) =
√

|b|
|a| ∗

√
|b|
|a| ∗ rot_quat

(
a,

|a|
|b|b
)

∗ a ∗ conjugate

(
rot_quat

(
a,

|a|
|b|b
))

= |b|
|a| ∗ T_q

(
rot_quat

(
a,

|a|
|b|b
))

(a)

Finally, since |Vector_part(a)| =
∣∣∣∣Vector_part

(
|a|
|b|

b
)∣∣∣∣, the proof of the Theorem

Quaternions_Rotation_Deform 2 is completed instantiating Quaternions_Rotation 2

with the pure quaternions a and |a|
|b|

b, which guarantees that

T_q
(

rot_quat
(

a,
|a|
|b|

b
))

(a) = |a|
|b|

b,

and, consequently, that T_q(q)(a) = b.
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11:14 A Formalization of the General Theory of Quaternions

It is important to note that only the crucial lemmas for formalizing the previous results
were highlighted. Although the automation for the simplification of equations over reals is in
an advanced stage in PVS, several algebraic manipulations involving associative property
for scalars, characterization of the norm of a vector, and properties derived from linear
independence, among others, were necessary to conclude the formal proofs.

4 Theory Parameters to Specify other Quaternions

Quaternion theory, as defined in Section 1, can describe many algebraic structures. Depending
on the field F and a, b ∈ F×, the subset of invertible elements of the field, some quaternions
algebra can be isomorphic to the matrix ring M2(F). In these cases, we say that the
quaternion algebra splits over F. In fact, it has been proved that a quaternion algebra(
a, b

F

)
, which is not a division ring, is indeed isomorphic to M2(F) [5].

An example is given by the quaternion built over the complex field:
(
a, b

C

)
∼−→ M2(C),

in which not only, it splits for some values a, b ∈ C \ {0} = C×.

On the other hand, all
(
a, b

F

)
that are not isomorphic to M2(F) are division rings; an

example are Hamilton’s quaternions.

Another case of a quaternion that is a division ring is
(
a, p

Q

)
, where p is an odd prime

and a is a quadratic non-residue, or
(
a, p

Qp

)
, where Qp are the p-adic numbers and a, p having

the same restrictions [22].
The formalization of the general theory of quaternions constitutes a starting point for

dealing with other interesting applications of the theory of quaternions. Surveying only a few
of the applications covered in Voight’s book [22], we can mention the following: applications
of quaternion algebras in analytic number theory, geometry (hyperbolic geometry and low-
dimensional topology), arithmetic geometry, and supersingular elliptic curves. Also, Lewis
surveys relevant applications of quaternion theory in several areas [14].

Many of these application topics use these different types of quaternions or their order.
In this case, an order is understood as a subring of the quaternion algebra, which is also
a lattice. In Voight’s book [22], a more detailed description of interesting orders such as
maximal order, Eichler order, and more general orders is given.

The Hurwitz quaternion order is one such maximal order used for proving theorems.

This quaternion order is a subring of the quaternions H and
(

−1,−1
Q

)
, and is given by

H = {αζ + βi+ γj + δk | α, β, γ, δ ∈ Z}, where ζ = 1
2 (1 + i+ j + k).

It is used to prove Lagrange’s theorem that every positive integer is a sum of four squares.
Furthermore, it is possible to prove that, short of commutativity, H has all the properties of
Euclidean rings.

In the aforementioned proof of Lagrange’s four-square theorem. Considering u, v ∈ H:

u = a0 + a1i+ a2j + a3k, and v = b0 + b1i+ b2j + b3k

Since Red_norm(uv) = Red_norm(u) * Red_norm(v) 2, the reduced norm in H can be
used to prove the Lagrange Identity in Z:

(a2
0 + a2

1 + a2
2 + a2

3)(b2
0 + b2

1 + b2
2 + b2

3) = c2
0 + c2

1 + c2
2 + c2

3

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L165-L166


T. A. de Lima, A. L. Galdino, B. B. de Oliveira Ribeiro, and M. Ayala-Rincón 11:15

where, by the characterization of quaternion multiplication:

c0 = a0b0 − a1b1 − a2b2 − a3b3 c1 = a0b1 + a1b0 + a2b3 − a3b2

c2 = a0b2 − a1b3 + a2b0 + a3b1 c3 = a0b3 + a1b2 − a2b1 + a3b0

With this identity and by restricting the domain from H to H, we can change the original
problem from finding a solution for all positive integers into finding it for all primes. In this
manner, the four integer square problem is expressed using only quaternions, which turns
the Number Theory problem into an easier algebraic one. A didactic proof approach appears
in Chapter 7 of Herstein’s textbook [12]. Among other formalized properties available in the
PVS nasalib theory algebra 2, the mechanization of this theorem uses the first isomorphism
theorem for rings and results about maximal ideals [7].

Among the interesting applications in physics, it is possible to express gravity as part of
a simple quaternion wave equation [21], the four Maxwell equations as a nonhomogeneous
quaternion wave equation, as well as the Klein-Gordon equation as a quaternion simple
harmonic oscillator [20]. Furthermore, under some restrictions, it is possible to express
a quaternion analog to the Schrödinger equation, a well-known differential equation that
governs the behavior of wave functions in quantum mechanics. The Schrödinger equation
gives the kinetic energy plus the potential. To do this, we first look at the quaternions as
the external tensor product of a scalar and an R3-vector, denoted by (s, Ṽ), and write the
quaternion in its polar form, namely:

q = (s, Ṽ) = ∥q∥ eθ∗I = ∥q∥(cos(θ) + I ∗ sin(θ)),

where ∥q∥ =
√

q ∗ conjugate(q), θ = arccos
(

s
∥q∥

)
, and I = Ṽ

∥Ṽ∥
. Note that I2 = −1.

Next, it is necessary to determine the quaternion wave function, ψ. Therefore, consider
the quaternion (t, R̃) representing time and space, the quaternion (E, P̃) representing the
electric field and momentum, and the quaternion V(0, X) representing the potential. Thus,
with ℏ being the reduced Planck constant, we have:

ψ ≡ (t, R̃) ∗ (E, P̃)
ℏ

= (Et − R̃ ∗ P̃, E ∗ R̃ + P̃ ∗ t + R̃ × P̃)
ℏ

Passing ψ to its polar form, and assuming that ψ is normalized, we have the quaternion
wave function:

ψ = e(E∗t−R̃∗P̃)∗I/ℏ, where I = E ∗ R̃ + P̃ ∗ t + R̃ × P̃
∥E ∗ R̃ + P̃ ∗ t + R̃ × P̃∥

Now, the derivatives of ψ with respect to time and space give, respectively:

∂ψ

∂t
= E ∗ I

ℏ
ψ√

1 +
(

E∗t−R̃∗P̃
ℏ

)2
and ∇ψ = − P̃ ∗ I

ℏ
ψ√

1 +
(

E∗t−R̃∗P̃
ℏ

)2

To achieve the objective, which is to establish an analog to the Schrödinger equation in
terms of quaternions, it is necessary to consider some assumptions and verify the behavior of
the quaternion wave function ψ. Among these assumptions are, for example, the conservation
of energy and momentum and the assumption that E ∗ t − R̃ ∗ P̃ = 0. Therefore,

∂ψ

∂t
= E ∗ I

ℏ
ψ ⇒ −I ∗ ℏ

∂ψ

∂t
= Eψ ⇒ E = −I ∗ ℏ

∂

∂t
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∇ψ = − P̃ ∗ I
ℏ

ψ ⇒ I ∗ ℏ∇ψ = P̃ψ ⇒ P̃ = I ∗ ℏ∇

It is known that the momentum P̃ is the product of the mass, m, and velocity, v. Conse-
quently,

P̃2 = (mv)2 = 2m
mv2

2
= 2m KE = −ℏ2∇2 ⇒ KE = − ℏ2

2m
∇2

Since the Hamiltonian H corresponds to the total energy (E), that is, it is equal to the
sum of the kinetic energy KE and the potential energy V, we obtain the following equation,
which is similar to the Schrödinger equation:

Hψ = − ℏ2

2m
∇2ψ + V ∗ ψ.

5 Conclusions and Future Work

Table 1 presents the number of lines in the proofs of the crucial lemmas and theorems
on the characterization of quaternions as division rings and rotational completeness of
Hamilton’s quaternions formalized in the theories quaternions 2 and quaternions_Hamilton
2, respectively.

Although the complexity of proving rotational completeness is high, PVS supplies sat-
isfactory algebraic automation of the field of reals R, which makes the formalization of
rotational completeness much simpler than the formalization of characterization of an arbi-
trary structure of quaternion as a division ring (observe the number of proof lines). Indeed,
algebraic manipulation on standard number types, such as the type real, has been studied
and implemented during the evolution of PVS, as reported by Muñoz and Mayero in [17] and
di Vito in [8], among others. Although some simple strategies were developed in this work to
apply automatically commutative and associative properties of the (general) field parameter
over which quaternions were defined, the improvement of tactics and the availability of
techniques to detect and cancel equal terms over algebraic theories as field and quat is
indispensable. This will surely make it possible to simplify substantially the length of the
proofs presented in Table 1 for the case of the theory of quaternions.

Possible future work includes formalizations of applications of quaternions theory in other
areas as discussed in Section 4. For instance, a formalization of Lagrange’s four-square
theorem (in progress) required adequate parameters to the quaternion theory, proving that
Hurwitz’s substructure is indeed a ring and almost a Euclidean ring, except for commutativity.
After such proof, a few more auxiliary arithmetic lemmas, such as Lagrange’s Identity, which
can turn the problem from finding solutions to all integers into finding for all primes, can be
used for proving Lagrange’s Theorem using quaternions.

In addition to the availability of the abstract theory of quaternions, other available PVS
theories may be useful to formalize the application of quaternions in quantum mechanics
discussed in Section 4. For instance, to specify quaternions in their polar form and the quater-
nion wave function, the core of theorems related to quaternion arithmetic and trigonometric
theory should be useful; also, to formalize the Schrödinger equation, it will be extremely
relevant to develop theorems or axioms on the differentiation of quaternions, and physics
concepts, for example, momentum.

Of course, another urgent line of research is extending PVS tactics, strategies, and, in
general, mechanisms of arithmetic manipulation for standard types as int, nat, and reals
to abstract algebraic structures as ring, field, and quat.

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L181-L206
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L143-L176
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L143-L176


T. A. de Lima, A. L. Galdino, B. B. de Oliveira Ribeiro, and M. Ayala-Rincón 11:17

Table 1 Quantitative information.

Theory/Formula Name Proof Line
Numbers

Number of Proved
Formulas

Lemmas/Theorems
nz_red_norm_iff_inv_exist 2 125 1
div_ring_iff_nz_rednorm 2 95 1
inv_q_prod_charac 2 259 1
quat_div_ring_aux1 2 40 1
quat_div_ring_aux2 2 388 1
quat_div_ring_char 2 487 1
quaternions.pvs 2 10981 63

T_q_Real_charac 2 190 1
Quat_Rot_Aux1 2 10 1
Quat_Rot_Aux2 2 116 1
Quat_Rot_Aux3 2 106 1
Quaternions_Rotation 2 38 1
Quaternions_Rotation_Deform 2 94 1
quaternions_Hamilton.pvs 2 3662 30
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