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Abstract
We propose a type-theoretic framework for describing and proving properties of quantum computa-
tions, in particular those presented as quantum circuits. Our proposal is based on an observation
that, in the polymorphic type system of Coq, currying on quantum states allows one to apply
quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control
this currying, we are further able to separate the combinatorics of the circuit structure from the
computational content of gates. We apply our development to define quantum circuits recursively
from the bottom up, and prove their correctness compositionally.
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1 Introduction

Quantum computation is a theory of computation whose unit of information is the states of
a quantum particle, called a quantum bit. A quantum bit is unlike a classical bit in that
the former may retain many values at the same time, albeit they ultimately can only be
observed as probabilities, while the latter has a single value. This possibility of a multitude
of values is preserved by pure quantum computation, and destroyed by a measurement of
the probability.

These properties of quantum bits and computation are commonly modelled in terms of
unitary transformations in a Hilbert space [19]. Such a transformation is constructed by
composing both sequentially and parallelly various simple transformations called quantum
gates.

Many works have been built to allow proving quantum algorithms in such settings [15,
18, 20], or more abstractly using string diagrams representing computations in a symmetric
monoidal category [5]. We investigate whether some type-theoretic insights could help in
describing and proving properties of quantum computations, in particular those denoted by
so-called quantum circuits.

Our main goal is to reach compositionality inside a semantical representation of compu-
tations. We wish it both at the level of definitions and proofs, with as little overhead as
possible.
Definitional compositionality means that it should be possible to turn any (pure) quantum

circuit into an abstract component, which can be instantiated repeatedly in various larger
circuits.
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Proof compositionality means that the proof of functional properties about (pure) quantum
circuits should be statable as a generic lemma about the corresponding abstract component,
so that one can build proofs of a large circuit by applying this lemma to instances of the
component, without having to unfold the concrete definition of the component during
the proof.

Abstraction overhead refers to the extra steps required for abstraction and instantiation,
both in definitions and proofs.

The approach we have designed represents circuits as linear transformations, and reaches
the above goals by cleanly separating the complex linear algebra in computation from the
combinatorics of the wiring, using a combinatorial notion of lens. Compared to more abstract
approaches, such as the ZX-calculus [4], we are directly working on an explicit representation
of states, but we are still able to prove properties in a scalable way that does not rely on
automation, as one can compose circuits without adding complexity to the proof.

Our proposal combines several components, which are all represented using dependent
and polymorphic types in Coq. Finite functions over n-tuples of bits can encode a n-qubit
quantum state. Lenses are injections between sets of indices, which can be used to describe
the wiring of quantum circuits in a compositional way. They are related to the lenses used for
view-update in programming languages and databases [7]. Currying of functions representing
states, along a lens, provides a direct representation of tensor products. Polymorphism
suffices to correctly apply transformations to curried states. We need this polymorphism to
behave uniformly, which is equivalent to morphisms being natural transformations.

Using these components, we were able to provide a full account of pure quantum circuits in
Coq, on top of the MathComp library, proving properties from the ground up. We were also
able to prove a number of examples, such as the correctness of Shor coding [17] (formalized
for the first time, albeit only for an error-free channel at this point), the Greenberger-Horne-
Zeilinger (GHZ) state preparation [10], and the reversed list circuit [20].

Our development is available online [9].
The plan of this paper is as follows. In Section 2, we provide a short introduction to

quantum states and circuits. In Section 3, we define lenses. In Section 4, we provide the
mathematical definition of focusing of a circuit through a lens. In Sections 5 and 6, we
explain the Coq definitions of gates and their composition. In Section 7, we introduce some
lemmas used in proof idioms that we apply to examples in Section 8. In Section 9, we define
noncommutative and commutative monoids of sequential and parallel compositions of gates.
We present related works in Section 10 before concluding.

2 Quantum circuits and unitary semantics

In this section, we present basic notions from linear algebra to describe the unitary model of
quantum computation, and how they appear in a quantum circuit diagram.

2.1 Quantum states
Let us first recall that pure classical computation can be seen as a sequence of boolean
functions acting on an array of bits of type 2n for some n. Similarly, pure quantum
computation is modeled, in terms of linear algebra, as a sequence of unitary transformations
that act on a quantum state of type C2n .

A quantum bit (or qubit) is the most basic unit of data in quantum computation. We
regard it as a variable of type C2 and each vector of norm 1 is considered to be a state of
the qubit. C2 has a standard basis (1, 0), (0, 1), which we denote in the context of quantum
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Figure 1 Shor’s 9-qubit code.
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Figure 2 Bit-flip code.
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Figure 3 Sign-flip code.

programming |0⟩ , |1⟩, indicating that the state of the qubit is 0 and 1 respectively. Regarding
C2 as the function space [[[2]]]→ C, where [[[n]]] stands for {0, . . . , n− 1}, we can express the
standard basis in the form of functions

|0⟩ := x 7→

{
1 if x = 0
0 otherwise

|1⟩ := x 7→

{
1 if x = 1
0 otherwise

States other than basis states are linear combinations, which we call superpositions. The
state of a qubit is mapped to a classical bit by an operation called measurement, which
probabilistically results in values 0 or 1. The measurement of a state in superposition
a |0⟩+ b |1⟩ results in 0 with probability |a|2 and 1 with probability |b|2.

Those definitions naturally extend to n-ary quantum states. The basis states for n qubits
are functions

|i1i2 . . . in⟩ := (x : [[[2]]]n) 7−→
{

1 if x = (i1, i2, . . . , in)
0 otherwise

States other than basis states are again superpositions, which are linear combinations of norm
1. In other words, a state is represented by a function of type C2n , besides the condition on
its norm. We hereafter regard this type as the space of states. This type can also be identified
with the n-ary tensor power (C2)⊗n of C2, a usual presentation of states in textbooks.

Similarly to the unary case, a measurement of an n-ary quantum state
∑
i∈2n ci |i1i2 . . . in⟩

results in an array of classical bits i = (i1, i2, . . . , in) with probability |ci|2.

2.2 Unitary transformations
We adopt the traditional view that pure quantum computation amounts to applying unitary
transformations to a quantum state. A unitary transformation is a linear function from a
vector space to itself that preserves the inner product of any two vectors, that is, ⟨U(a) | U(b)⟩
is equal to ⟨a | b⟩ for any unitary U and vectors a and b, if we denote the inner product
by ⟨a | b⟩. Since the norm of a is defined to be

√
⟨a | a⟩, a unitary also preserves the norm

condition of quantum states.

2.3 Quantum circuits
In the same way that classical computation can be expressed by an electronic circuit comprised
of boolean gates (AND, OR, etc.), quantum computation is also conveniently presented as a
circuit with quantum gates that represent primitive unitary transformations. More generally,
a quantum circuit may contain nonunitary operations such as measurement, but we restrict
ourselves to pure quantum circuits that contain none of them.

ITP 2024
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A quantum circuit is a concrete representation of quantum computation, drawn as n

parallel wires with quantum gates and other larger subcircuits being placed over those wires.
A quantum state is input from the left end of a circuit, transformed by gates and subcircuits
on the corresponding wires, and output from the right end. As an example, we show the
Shor’s 9-qubit error correction code (Figure 1) and its subcomponents (Figures 2 and 3).

The primitive operations in a quantum circuit are quantum gates. In the Shor’s code,
three kinds of gates appear, namely Hadamard H , Controlled Not (CNOT) • , and
Toffoli •• . The large box Ch denotes an arbitrary unitary transformation modelling
a possibly erroneous channel. The gates placed to the left of Ch implement the encoder
algorithm of the code, and those to the right the decoder. The unitary operations denoted
by these gates can be expressed as matrices with respect to the lexicographically ordered
standard basis (e.g. |00⟩ , |01⟩ , |10⟩ , |11⟩ for two qubits):

H = 1√
2

[
1 1
1 −1

] •
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •• =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


A gate composed in a circuit is represented by a matrix by, first taking the Kronecker

product with identity matrices corresponding to irrelevant wires, and second sandwiching
it with the matrices that represent the action of a permutation on the index of tensors to
reorder the input and output wires. For example, to describe the leftmost CNOT gate in the
Shor’s code, we first pad (append) seven wires to CNOT by taking the Kronecker product
with I27 = I128 and apply the permutation (24) to move ⊕ from the second wire to the
fourth wire. The resulting matrix is:

U29((42))


I128 0 0 0

0 I128 0 0
0 0 0 I128
0 0 I128 0

 U29((24))

where U29((24)) denotes the matrix representation of (24) that maps the basis vectors
|i1 i2 i3 i4 i5 i6 i7 i8 i9⟩ to |i1 i4 i3 i2 i5 i6 i7 i8 i9⟩, and its inverse U29((42)) is the same since
(42) = (24).

The above method realizes the padding and permutation as linear transformations,
resulting in multiplications of huge matrices. Taken literally, this method is compositional in
that the embedding of a smaller circuit into a larger one can be iterated, but impractical
because of the exponential growth of the dimension of the matrices. A way to avoid this
problem is to stick to a symbolic representation based on sums of matrix units, that can
ignore zero components, but it is less compositional, in that the representation of the gate
is modified to fit an application site, leading to different representations and reasoning at
different sites. We aim at solving this problem by separating the wiring part, which is a
combinatorics that does not essentially touch quantum states, from the actions of a quantum
gate, which is an intrinsic property of the gate itself.

3 Lenses

The first element of our approach is to provide a data structure, which we call a lens, that
describes the composition of a subcircuit into a circuit. It forms the basis for a combinatorics
of composition.
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The concept of lens [7] was introduced in the programming language community as a
way to solve the view-update problem [1], which itself comes from the database community.
Lenses are often described as a pair of functions get : S → V and put : V × S → S, which
satisfy the laws GetPut : put(get(s), s) = s and PutGet : get(put(v, s)) = v. A more
versatile approach adds the concept of complementary view [1, 2], which adds another type
C and a function get∁ : S → C, changing the type of put to V × C → S, so that the first
law becomes put(get(s), get∁(s)) = s.

Our representation of lenses is an instance of the second approach. We want to map
the m wires of a subcircuit to the n wires of the external one. This amounts to defining an
injection from [[[m]]] to [[[n]]], which can be represented canonically as a list of m indices in [[[n]]],
without repetition.

Record lensn,m := {ℓ : [[[n]]]m | uniq ℓ}.

Throughout this paper, we use mathematical notations to make our Coq code easier to read.
For instance [[[n]]] in the above record definition denotes the ordinal type 'I_n of MathComp,
and [[[n]]]m denotes the type of tuples of arity m of this type (i.e. the type m.-tuple 'I_n).
We also write type parameters as indices, and allow for omitting them.

We call focusing the operation using a lens to update a system accoding to changes in a
subsystem. The following operations on lenses are basic and required to define focusing.

Definition extractT,n,m : lensn,m → Tn → Tm.
Definition lensCn,m : lensn,m → lensn,n−m.
Definition mergeT,n,m : lensn,m → Tm → Tn−m → Tn.

The get operation of lens ℓ is extract ℓ, which is the projection of Tn onto Tm along ℓ.
Each lens ℓ has its complementary lens lensC ℓ, which is the unique monotone bijection
from [[[n−m]]] to [[[n]]] ∖ Im(ℓ). We will write ℓ∁ for lensC ℓ. Their composition extract ℓ∁

returns the complementary view. The corresponding put operation is merge ℓ v c. In the
following, the lens ℓ will be available from the context, so that we omit it in extract and
merge, and extract∁ denotes extract ℓ∁. The GetPut and PutGet laws become:

Lemma merge_extract : merge (extract v) (extract∁ v) = v.
Lemma extract_merge : extract (merge v1 v2) = v1.
Lemma extractC_merge : extract∁ (merge v1 v2) = v2.

We show the classical case of focusing (focus1) as an example (Figure 4). In this case,
data is represented by direct products, whose elements are tuples, readily manipulated by
extract and merge. A change on the subsystem of type Tm is thus propagated to the global
state of type Tn.

Definition focus1T,n,m (ℓ : lensn,m) (f : Tm → Tm) : Tn → Tn :=
s 7→ merge (f (extract s)) (extract∁ s).

Lemma focus1_in : extract ◦ (focus1ℓ f) = f ◦ extract.

It is also often useful to compose lenses, or to factorize a lens into its basis (the monotone
part) and permutation part.

[[[m]]] [[[n]]]

[[[m]]]
perm.

ℓ

basis, monotone

Namely, we have the following functions and laws:

ITP 2024
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S = T n T m = V

T n T m

extractℓ

focus1ℓ f

mergeℓ

Figure 4 Classical focusing.

S = T 2n

(T 2n−m

)2m

= V T 2m

T 2n

(T 2n−m

)2m

T 2m

curryℓ

focusℓ G
T 2n−m GT

uncurryℓ

Figure 5 Quantum focusing.

Definition lens_compn,m,p : lensn,m → lensm,p → lensn,p.
Definition lens_basisn,m : lensn,m → lensn,m.
Definition lens_permn,m : lensn,m → lensm,m.
Lemma lens_basis_perm : lens_comp (lens_basis ℓ) (lens_perm ℓ) = ℓ.
Lemma mem_lens_basis : lens_basis ℓ =i ℓ.

where ℓ1 =i ℓ2 means that ℓ1 and ℓ2 are equal as sets.

4 Quantum focusing

We are going to define actions of lenses on quantum states and operators. The classical
operators merge and extract introduced in the previous section play an important role in
the definition.

In the quantum case, the get operation must not discard the irrelevant part of an input
state, unlike the classical one that was defined as a projection. Such a quantum get and the
corresponding put operations can be defined in a form of currying and uncurrying:

Definition curryT,n,m : lensn,m → T 2n → (T 2n−m)2m

.
Definition uncurryT,n,m : lensn,m → (T 2n−m)2m → T 2n

.

The type parameter T is intended to vary over C-modules, whose archetypical example is
C itself. The result of applying curryℓ to an input state σ ∈ T 2n is a function that takes
two indexing tuples v ∈ 2m and w ∈ 2n−m and returns σ(merge v w), the evaluation of
σ at the combined index of v and w along ℓ. Its inverse uncurryℓ is defined similarly as
σ(extract v)(extract∁ v) for σ ∈ (T 2n−m)2m and v ∈ 2n.

We verify that curry and uncurry form an isomorphism by cancellation lemmas:

Lemma curryK : uncurryℓ ◦ curryℓ = idT 2n .
Lemma uncurryK : curryℓ ◦ uncurryℓ = id(T 2n−m )2m .

When specialized to T := C, we can further follow another isomorphism derived from the
adjunction between the category Set of sets and Vect of vector spaces, showing that our
curry is actually equivalent to the currying for tensor products in Vect:

C2n ∼=
(
C2n−m

)2m

= Set
(

2m,C2n−m
)
∼= Vect

(
C2m

,C2n−m
)

.

An m-qubit quantum gate G is a linear transformation on C2m , and it can be represented
by a matrix. The action of this matrix on a 2m-dimensional vector is computed only by
scalar multiplications and additions. Therefore, the action can be extended to T 2m for
any C-module T . We are thus led to endow such G with a polymorphic type of linear
transformations indexed by T .

G : ∀T : C-module, T 2m linear−→ T 2m
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Along the curry-uncurry isomorphism above, a gate G can be applied to a larger number
of qubits, to become composable in a circuit. This realizes quantum focusing (Figure 5).

focusℓ G := Λ T.(uncurryℓ ◦GT 2n−m ◦ curryℓ)

So far, the type of G has told that each instance GT is linear and can be represented by
a matrix, but not that they are the same matrix for any T . We impose the uniqueness of the
matrix as an additional property as follows.

∃M :M2m(C), ∀T : C-module, ∀s : T 2m

, GT (s) = Ms.

Here the multiplication Ms is defined for s = (s1, . . . , s2m)t and M = (M(i,j))i,j as

Ms :=
∑

1≤j≤2m

(M(1,j)sj , . . . , M(2m,j)sj)t.

This existence of a unique matrix representation implies the uniformity of the actions of G,
which amounts to naturality with respect to the functor (−)2m :

T T 2m

T 2m

T ′ T ′2m

T ′2m

∀φ φ2m
φ2m

GT

GT ′

We proved conversely that this naturality implies the uniqueness of the matrix. We shall
incorporate naturality, instead of a matrix, in our definition of quantum gates.

5 Defining quantum gates

Using MathComp, we can easily present the concepts described in the previous sections.
From here on, we fix K to be a field, and denote by K1 the one-dimensional vector space
over K to distinguish them as different types.

We first define quantum states as the double power T 2n discussed in Section 2. It is
encoded as a function type T n̂ from n-tuples of some finite type I to a type T . For qubits, we
shall have I = [[[2]]] = {0, 1}, but we can also naturally represent qutrits (quantum information
units with three states) by choosing I = [[[3]]].

Variables (I : finite type) (dI : I) (K : field) (T : K-module).
Definition T n̂ := In

finite−−−→ T.
Definition dpmapm,T1,T2 (φ : T1 → T2) (s : T1

m̂) : T2
m̂ := φ ◦ s.

This construction, (−)n̂, can be regarded as a functor with its action on functions provided
by dpmap, that is, any function φ : T1 → T2 can be extended to dpmap φ : T1

n̂ → T2
n̂, which

are drawn as the vertical arrows in the naturality square in the previous section.
We next define quantum gates as natural transformations (or morphisms).

Definition morlinm,n := ∀ T : K-module, T m̂
linear−−−→ T n̂.

Definition naturalitym,n (G : morlinm,n) :=

∀(T1 T2 : K-module),∀(φ : T1
linear−−−→ T2), (dpmap φ) ◦ (G T1) = (G T2) ◦ (dpmap φ).

Record morm,n := {G : morlinm,n | naturality G}.
Notation endon := (morn,n).
Definition unitary_morm,n (G : morm,n) := ∀s, t, ⟨GK1 s | GK1 t⟩ = ⟨s | t⟩.

ITP 2024
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A crucial fact we rely on here is that, for any K-module T , MathComp defines the K-module
of the finite functions valued into it, so that T n̂ is a K-module. This allows us to define
the type morlin of polymorphic linear functions between T m̂ and T n̂, and further combine
it with naturality into the types morm,n of morphisms from (−)m̂ to (−)n̂ and endon of
endo-morphisms.

We leave unitarity as an independent property, called unitary_mor, since it makes sense
to have non-unitary morphisms in some situations.

Concrete quantum states can be expressed directly as functions in (K1)n̂, or as a linear
combination of computational basis vectors |v⟩, where v : In is the index of the only 1 in the
vector.

Definition |v⟩ : (K1)n̂ := (v′ : In) 7→
{

1 if v = v′

0 otherwise

For a concrete tuple, we also write |i1, . . . , in⟩ for |[tuple i1; . . . ; in]⟩. This representation of
states allows us to go back and forth between computational basis states and indices, and is
amenable to proofs.

Using this basis, one can also define a morphism from its matrix representation (expressed
as a nested double power, in column-major order). We define the CNOT gate as mapping
from computational basis indices to column vectors, using v[i] as a notation for the ith
element of the tuple v, aka tnth v i. The expression ket_bra k b stands for the product of
a column vector and a row vector, resulting in an m× n matrix (written |k⟩ ⟨b| in the Dirac
notation). We use it to define the Hadamard gate as a sum of matrix units. Both matrices
are then fed to dpmor to obtain morphisms.

Definition dpmorm,n : ((K1)n̂)
m̂

→ morm,n.

Definition ket_bram,n (k : (K1)m̂) (b : (K1)n̂) : ((K1)n̂)
m̂

:= v 7→ (k v) · b.
Definition cnot : endo2 := dpmor (v : [[[2]]]2 7→ |v[0], v[0]⊕ v[1]⟩).
Definition hadamard : endo1 :=

dpmor
(

1√
2

(ket_bra |0⟩ |0⟩+ ket_bra |0⟩ |1⟩+ ket_bra |1⟩ |0⟩ − ket_bra |1⟩ |1⟩)
)

.

As explained in Section 4, naturality for a morphism is equivalent to the existence of a
uniform matrix representation.

Lemma naturalityP : naturality G ←→ ∃M, ∀T, s, GT s = (dpmor M)T s.

On the right hand side of the equivalence we use the extensional equality of morphisms,
which quantifies on T and s. By default, it is not equivalent to Coq’s propositional equality;
however the two coincide if we assume functional extensionality and proof irrelevance, two
relatively standard axioms inside Coq.

Lemma morP : ∀(F, G : morm,n), (∀T, s, FT s = GT s)←→ F = G.

While our development distinguishes between the two equalities, in this paper we will not
insist on the distinction, and just abusively write F = G for extensional equality too. Only
in Section 9 will we use those axioms to prove and use the above lemma.

6 Building circuits

The currying defined in Section 4 allows us to compose circuits without referring to a
global set of qubits. This is obtained through two operations: (sequential) composition of
morphisms, which just extends function composition, and focusing through a lens, which
allows us to connect the wires of a gate into a larger circuit.
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Definition •n,m,p : morm,p → morn,m → morn,p.
Definition focusn,m : lensn,m → endom → endon.

To define focus, we combine currying and polymorphism into focuslin as we did in Section 4,
and add a proof of naturality.

Definition focuslinn,m (ℓ : lensn,m) (G : endom) : morlinn,n :=
ΛT. (uncurry ℓ)T ◦G

T n̂−m ◦ (curry ℓ)T .
Lemma focusN ℓ G : naturality (focuslin ℓ G).
Definition focusn,m ℓ G := (a morphism packing focuslin ℓ G and focusN ℓ G).

In particular, focus and sequential composition satisfy the following laws, derived from
naturality and lens combinatorics.

Lemma focus_comp : focusℓ (F •G) = (focusℓ F ) • (focusℓ G).
Lemma focusM : focus(lens_comp ℓ ℓ′) G = focusℓ (focusℓ′ G).
Lemma focusC : ℓ and ℓ′ disj.→ (focusℓ F ) • (focusℓ′ G) = (focusℓ′ G) • (focusℓ F ).
Lemma unitary_comp : unitary_mor F → unitary_mor G→ unitary_mor (F •G).
Lemma unitary_focus : unitary_mor G→ unitary_mor (focusℓ G).

The law focus_comp states that the sequential composition of morphism commutes with
focusing. Similarly, focusM states that the composition of lenses commutes with focusing.
The law focusC states that the sequential composition of two morphisms focused through
disjoint lenses (i.e. lenses whose codomains are disjoint) commutes. The last two lemmas
are about unitarity. Since all circuits can be built from unitary basic gates using sequential
composition and focus, they are sufficient to guarantee unitarity for all of them.

7 Proving correctness of circuits

Once we have defined a circuit by combining gates through the above functions, we want
to prove its correctness. Usually this involves proving a relation between the input and the
output of the transformation, which can be expressed as a behavior on computational basis
vectors. In such situations, the following lemmas allow the proof to progress.

Variables (n m : N) (ℓ : lensn,m).
Definition dpmerge : In → (K1)m̂ linear−−−→ (K1)n̂.
Lemma focus_dpbasis : (focusℓ G)K1 |v⟩ = dpmerge v (GK1 |extract v⟩).
Lemma dpmerge_dpbasis : dpmerge v |v′⟩ = |merge v′ (extract∁ v)⟩.
Lemma decompose_scaler : ∀(σ : (K1)n̂), σ =

∑
v:Ik σ(v) · |v⟩.

The function dpmerge embeds the result of a quantum gate applied to a part of the system
into the whole system, using the input computational basis vector for complement; this can
be seen as an asymmetric variant of the put operation. It is defined using uncurryℓ and
dpmap. It is only introduced and eliminated through the two lemmas following. The helper
law focus_dpbasis allows one to apply the morphism G to the local part of the basis vector
v. The result of this application must then be decomposed into a linear combination of
(local) basis vectors, either by using the definition of the gate, or by using decompose_scaler.
One can then use linearity to obtain terms of the form dpmerge v |v′⟩ and merge the local
result into the global quantum state. Linear algebra computations have good support in
MathComp, so we do not need to extend it much.
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Extraction and merging only rely on lens-related lemmas, orthogonal to the linear algebra
part. We have not yet developed a complete theory of lenses, but we have many such lemmas.
The following ones are of particular interest:

Section lens_index.
Variables (n m : N) (i : [[[n]]]) (ℓ : lensn,m).
Definition lens_index (H : i ∈ ℓ) : [[[m]]].
Lemma tnth_lens_index : ∀(H : i ∈ ℓ), ℓ[lens_index H] = i.
Lemma tnth_merge : ∀(H : i ∈ ℓ), (merge v v′)[i] = v[lens_index H].
Lemma tnth_extract : (extract v)[j] = v[ℓ[j]].
Lemma mem_lensC : (i ∈ ℓ∁) = (i /∈ ℓ).
Lemma mem_lens_comp : ∀(H : i ∈ ℓ), (i ∈ lens_comp ℓ ℓ′) = (lens_index H ∈ ℓ′).
End lens_index.
Lemma tnth_mergeC : ∀(H : i ∈ ℓ∁), (merge v v′)[i] = v′[lens_index H].

The expression lens_index H, where H is a proof that i is in ℓ, denotes the ordinal position
of i in ℓ, hence the statement of tnth_lens_index. It is particularly useful in tnth_merge
and tnth_mergeC, where it allows one to prove equalities of tuples and lenses through case
analysis on the boolean expression i ∈ ℓ (using mem_lensC for conversion).

Using these two techniques we have been able to prove the correctness of a number of
pure quantum circuits, such as Shor’s 9-qubit code or the GHZ preparation.

8 Concrete examples

When working on practical examples we move to more concrete settings. Namely, we use C
as the coefficient field, which can also be seen as the vector space Co = C1. The indices are
now in I = [[[2]]] = {0, 1}. In this section we use Coq notations rather than the mathematical
ones of the previous sections, so as to keep close to the actual code.

As an example, let us recall the circuit diagram of Shor’s code (Figure 1). It consists
of two smaller components, bit-flip and sign-flip codes (Figures 2 and 3), in such a way
that three bit-flip codes are placed in parallel and surrounded by one sign-flip code. This
construction can be expressed straightforwardly as the following Coq code.

Definition bit_flip_enc : endo3 := focus [lens 0; 2] cnot • focus [lens 0; 1] cnot.
Definition bit_flip_dec : endo3 := focus [lens 1; 2; 0] toffoli • bit_flip_enc.
Definition hadamard3 : endo3 :=

focus [lens 2] hadamard • focus [lens 1] hadamard • focus [lens 0] hadamard.
Definition sign_flip_dec := bit_flip_dec • hadamard3.
Definition sign_flip_enc := hadamard3 • bit_flip_enc.
Definition shor_enc : endo9 :=
focus [lens 0; 1; 2] bit_flip_enc • focus [lens 3; 4; 5] bit_flip_enc •
focus [lens 6; 7; 8] bit_flip_enc • focus [lens 0; 3; 6] sign_flip_enc.

Definition shor_dec : endo9 := ...

We proved that Shor’s code is the identity on an error-free channel:

Theorem shor_code_id : (shor_dec • shor_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩ = |i, 0, 0, 0, 0, 0, 0, 0, 0⟩.

The proof is compositional, relying on lemmas for each subcircuit.

Lemma cnotE : cnot |i, j⟩ = |i, i + j⟩.
Lemma toffoliE00 : toffoli |0, 0, i⟩ = |0, 0, i⟩.
Lemma hadamardK : ∀T, involutive hadamardT .
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1 bit_flip_enc ¦ i, j, k 〉
2 rewrite /=.
3 = focus [lens 0; 2] cnot (focus [lens 0; 1] cnot ¦ i, j, k 〉)
4 rewrite focus_dpbasis.
5 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k]
6 (cnot ¦ extract [lens 0; 1] [tuple i; j; k]〉)
7 simpl_extract.
8 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k] (cnot ¦ i, j 〉))
9 rewrite cnotE.

10 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k] ¦ i, i + j 〉)
11 rewrite dpmerge_dpbasis.
12 = focus [lens 0; 2] cnot ¦ merge [lens 0; 1] [tuple i; i + j]
13 (extract (lensC [lens 0; 1]) [tuple i; j; k]) 〉
14 simpl_merge.
15 = focus [lens 0; 2] cnot ¦ i, i + j, k 〉

Figure 6 Excerpt of interactive proof of bit_flip_enc_ok.

Lemma bit_flip_enc_ok : bit_flip_enc |i, j, k⟩ = |i, i + j, i + k⟩.
Lemma bit_flip_toffoli : bit_flip_dec • bit_flip_enc = focus [lens 1;2;0] toffoli.
Lemma sign_flip_toffoli: sign_flip_dec • sign_flip_enc = focus [lens 1;2;0] toffoli.

The notation (i : [[[m]]]) in expressions (here in flip) denotes that we have a proof that i ∈ [[[m]]];
in the actual code one uses specific function to build such dependently-typed values. The
first 3 lemmas describe properties of the matrix representation of gates, and involve linear
algebra computations. The proof of HadamardK also involves some real computations about√

2. The remaining 3 lemmas and the theorem do mostly computations on lenses. In total,
there were about 100 lines of proof.

To give a better idea of how the proofs proceed, we show a few steps of the beginning of
bit_flip_enc_ok, in Figure 6, interspersing tactics on a gray background between quantum
state expressions and equations. Lines beginning with an “=” symbol state that the expression
is equal to the previous one.

Simplifying on line 2 reveals the focused application of the two cnot gates. Rewriting
with focus_dpbasis, on line 4, applies the first gate directly to a basis vector. The helper
tactic simpl_extract, on line 7, computes the tuple obtained by extract (MathComp is
not good at computing in presence of dependent types). It results here in the vector |i, j⟩,
which we can rewrite with cnotE. As a result, on line 10, dpmerge is applied to a basis vector,
so that we can rewrite it with dpmerge_dpbasis. Again, on line 14, we use a helper tactic
simpl_merge, which uses the same code as simpl_extract to simplify the value of the merge
expression. We obtain |i, i + j, k⟩ as result after the first gate, and can proceed similarly
with the second gate to reach |i, i + j, i + k⟩.

As we explained above, our approach cleanly separates computation on lenses from linear
algebra parts. Namely, in the above proof we have three logical levels: focus_dpbasis and
dpmerge_dpbasis let one get in and out of a focus application; simpl_extract and simpl_merge
are doing lens computations; and finally cnotE uses a property of the specific gate.

The proof of shor_code_id is more involved as the Hadamard gates introduce superposi-
tions. The code can be found in the file qexamples_shor.v of the accompanying development,
and is about 30 lines long. We will just explain here the main steps of the proof. The basic
idea is to pair the encoders and decoders, and to turn them into Toffoli gates, which happen
to be identities when the extra inputs are zeros. The first goal is to prove that

(shor_dec • shor_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩ =
focus [lens 0;3;6] (sign_flip_dec • sign_flip_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩
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|0⟩ H •
|0⟩ •
|0⟩ •
|0⟩ •
|0⟩

Figure 7 5-qubit GHZ state preparation.

|φ1⟩ × |φ5⟩
|φ2⟩ × |φ4⟩
|φ3⟩ |φ3⟩
|φ4⟩ × |φ2⟩
|φ5⟩ × |φ1⟩

Figure 8 5-qubit reversed state circuit.

If we expand the compositions on both sides, we see that they both start by applying
focus [lens 0;3;6] sign_flip_enc to the input. We can use focus_dpasis and simpl_extract
to progress, but due to the Hadamard gates in sign_flip_enc, the state of the corresponding
3 qubits becomes non-trivial. However, we can use decompose_scaler to see this state as a
sum of unknown computational basis vectors, and progress using linear algebra lemmas, to
reach the bit-flip part of the circuit. Once we do that, the remainder of the proof consists in
using focusC to reorder the bit-flip encoders and decoders, so that the corresponding ones are
sequentially paired. We can then use focus_comp to produce applications of bit_flip_dec •
bit_flip_enc, which can be converted to Toffoli gates by bit_flip_toffoli. Then we observe
that in the input the ancillaries are all zeros, so that the result of each gate is the identity,
which concludes the first part of the proof. Then we can proceed similarly to prove that the
remaining composition of the sign-flip encoder and decoder is the identity, which concludes
the proof.

Another interesting example is the Greenberger-Horne-Zeilinger (GHZ) state preparation.
It is a generalization of the Bell state, resulting in a superposition of |0⟩⊗n and |1⟩⊗n, which
denote states composed of n zeroes and ones, respectively. As a circuit, it can be expressed
by the composition of one Hadamard gate followed by n CNOT gates, each one translated
by 1 qubit, starting from the state |0⟩⊗n. The 5-qubit case is shown in Figure 7.

We can write the transformation part as follows in our framework (for an arbitrary n):

Lemma succ_neq n (i : [[[n]]]) : (i : [[[n + 1]]]) ̸= (i + 1 : [[[n + 1]]]).
Fixpoint ghz n :=

match n as n return endon.+1 with
| 0 => hadamard
| m.+1 => focus (lens_pair (succ_neq (m:[m.+1]))) cnot •

focus (lensC (lens_single (m.+1:[m.+2]))) (ghz m)
end.

The definition works by composing ghz(m), which has type endon (since n = m + 1), with an
extra CNOT gate. Note that we use dependent types, and the recursion is at a different type.
The lemma succ_neq is a proof that i ̸= i + 1 in [[[n + 1]]]. It is used by lens_pair to build
the lens [lens m; m + 1] from [[[2]]] to [[[m + 2]]]. lens_single builds a singleton lens, so that
lensC (lens_single (m.+1:[m.+2])) is the lens from [[[m + 1]]] to [[[m + 2]]] connecting the inner
circuit to the first m + 1 wires. We can express the target state and correctness property as
follows:

Definition ghz_state n : (C1)n̂+1 :=
1√
2

·
(
|0⟩⊗(n+1) + |1⟩⊗(n+1)).

Lemma ghz_ok : ghz n |0⟩⊗(n+1) = ghz_state n.

Due to the nesting of lenses, the proof includes a lot of lens combinatorics, and is about 50
lines long. We only show the last few lines of the proof in Figure 9, as they include typical
steps. They prove the action of the last CNOT gate of the circuit when it propagates a 1 to
the last qubit of the state. The notation [tuple F i | i < n] denotes the n-tuple whose ith
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1 lp := lens_pair (succ_neq (n : [n.+1]))
2 =======================================
3 merge lp [tuple 1; 1]
4 (extract (lensC lp) [tuple if i != n.+1 then 1 else 0 | i < n.+2])
5 = [tuple 1 | _ < n.+2]
6 apply eq_from_tnth => i; rewrite [RHS]tnth_mktuple.
7 case/boolP: (i \in lp) => Hi.
8 Hi : i \in lp
9 ============================

10 tnth (merge lp [tuple 1; 1]
11 (extract (lensC lp) [tuple if i0 != n.+1 then 1 else 0 | i0 < n.+2])) i = 1
12 rewrite tnth_merge -[RHS](tnth_mktuple (fun=>1) (lens_index Hi)).
13 tnth [tuple 1; 1] (lens_index Hi) = tnth [tuple 1 | _ < 2] (lens_index Hi)
14 by congr tnth; eq_lens.
15 Hi : i \notin lp
16 ============================
17 tnth (merge lp [tuple 1; 1]
18 (extract (lensC lp)) [tuple if i0 != n.+1 then 1 else 0 | i0 < n.+2])) i = 1
19 rewrite -mem_lensC in Hi.
20 rewrite tnth_mergeC tnth_extract tnth_mktuple.
21 Hi : i \in lensC lp
22 ============================
23 (if tnth (lensC lp) (lens_index Hi) < n.+1 then 1 else 0) = 1
24 rewrite tnth_lens_index ifT //.
25 i != n.+1
26 move: Hi; rewrite mem_lensC !inE; apply contra.
27 i == n.+1 -> (i == (n : [n.+2])) || (i == (n.+1 : [n.+2]))
28 by move/eqP => Hi; apply/orP/or_intror/eqP/val_inj.

Figure 9 Excerpt of interactive proof of ghz_ok.

element is F i. Lemma eq_from_tnth on line 6 allows index-wise reasoning. The tnth_mktuple
on the same line extracts the ith element of the tuple comprehension on the right-hand side.
We immediately do a case analysis on whether i is involved in the last gate. In the first case,
we have i ∈ lens_pair(succ_neq(n : [[[n + 1]]])), so we can use tnth_merge on the left-hand
side. On the right-hand side we use tnth_mktuple backwards, to introduce a 2-tuple. As a
result, we obtain on line 13 a goal on which we can use congruence, and conclude with eq_lens
as both tuples are equal. The second case, when i /∈ lens_pair(succ_neq(n : [[[n + 1]]])), is
more involved. By using mem_lensC in Hi, we can use tnth_mergeC, followed by tnth_extract
and tnth_mktuple to reach the goal at line 21. But then the argument to tnth is precisely
that of Hi, so this expression can be rewritten to i by tnth_lens_index. From line 25 on it
just remains to prove that i cannot be n + 1, which is true since it is in the complement of
lens_pair (succ_neq (n : [[[n + 1]]])).

9 Parallel composition

In this section, we extend our theory with noncommutative and commutative monoids of
the sequential and parallel compositions of morphisms. Thanks to quantum state currying,
we have been able to define focusing and composition of circuits without relying on the
Kronecker product. This also means that parallel composition is not primitive in this system.
Thanks to focusC, morphisms applied through disjoint lenses do commute, but it is harder
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to extend this to an n-ary construct, as done in CoqQ [20]. Yet it is possible to define
parallel composition using MathComp big operators by defining a new notion of commuting
composition of morphisms. Note that big operators on monoids require axioms based on
propositional equality, rather than the extensional equality of morphisms, so in this section
we assume functional extensionality and proof irrelevance, which allows us to use lemma
morP of Section 5.

As a first step, we define the noncommutative monoid of morphisms, using the sequential
(vertical in category-theoretic terminology) composition as monoid operation and the identity
morphism as unit element. Registering the associativity and unitality laws with Hierarchy
Builder [6], allows one to use the corresponding m-ary big operator.

HB.instance Definition _ := Monoid.isLaw.Build on •n,n,n and idmorn.
Definition compn_mor m (F : [[[m]]] → endon) (P : pred [[[n]]]) :=

\big[•n,n,n/idmorn](i<n, P i) F i.

By itself, it just allows us to define some circuits in a more compact way. It will also allow
us to connect with the commutative version.

The parallel (horizontal) composition of morphisms is derived from vertical composition,
in the case where the morphisms focused in a circuit have disjoint supports.

G1

G2

G3

:=

G1

G2

G3

( Turn the diagram 90 degrees clockwise to
see that it is a “horizontal” composition.

)
We construct a commutative monoid whose operation is the horizontal composition, by
reifying the notion of focused morphism (inside an n-qubit circuit), using the corresponding
lens to express the support.

Record foc_endon := {(m, ℓ, e) : N × lensn,m × endom | ℓ is monotone}.

The monotonicity of ℓ in focused morphisms is demanded for the canonicity and strictness of
their compositions. The arity m of the morphism is existentially quantified.

The actual Coq definition of foc_endo has four fields foc_m, foc_l, foc_e, and foc_s,
the first three corresponding to m, ℓ, e above, and the last one being the proof that ℓ is
monotone. We define mkFendo, a “smart constructor” that factorizes a given lens (lens_basis
and lens_perm in Section 3) into its basis (whose monotonicity proof being lens_sorted_basis)
and permutation to build a focused morphism.

Definition mkFendon,m (ℓ : lensn,m) (G : endom) :=
{| foc_s := lens_sorted_basis ℓ; foc_e := focus (lens_perm ℓ) G |}.

Focused morphisms come with both a unit element and an annihilating (zero) element.

Definition id_fendo := mkFendo (lens_empty n) (idmor I K 0).
Definition err_fendo := mkFendo (lens_id n) (nullmor n n).

The unit element id_fendo has an empty support, and the zero element err_fendo has a full
support.

A focused morphism can be used as an ordinary morphism at arity n by actually focusing
the morphism field e along the lens field ℓ (field projections foc_l and foc_e are denoted by
.ℓ and .e).

Definition fendo_mor (Φ : foc_endo) : endon := focus Φ.ℓ Φ.e.

We can then define commutative composition comp_fendo.
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Definition par_compp,q (F : endop) (G : endoq) : endop+q :=
(focus lens_left F ) • (focus lens_right G)

Definition comp_fendo (Φ Ψ : foc_endo) :={
mkFendo (Φ.ℓ ++ Ψ.ℓ : lensn,Φ.m+Ψ.m) (par_comp Φ.e Ψ.e) if Φ.ℓ and Ψ.ℓ are disjoint
err_fendo otherwise

To make composition commutative, we return the zero element whenever the lenses of the
two morphisms are not disjoint. If they are disjoint, we return their composition, using the
union of the two lenses. We require lenses to be monotone to guarantee associativity.

Using this definition of commutative composition, we can declare the commutative monoid
structure on focused morphisms and define their m-ary parallel composition. When the
lenses are pairwise disjoint, it coincides with compn_mor.

HB.instance Definition _ := Monoid.isComLaw.Build on comp_fendo and id_fendo.
Variables (m : N) (F : [[[m]]] → foc_endo) (P : pred [[[m]]]).
Definition compn_fendo := \big[comp_fendo/id_fendo](i<m, P i) F i.
Hypothesis Hdisj : ∀i, j, i ̸= j → (F i).ℓ and (F j).ℓ are disjoint.
Theorem compn_mor_disjoint : compn_mor (fendo_mor ◦ F) P = fendo_mor compn_fendo.

To exemplify the use of this commutative monoid, we proved that the circuit that consists
of ⌊n/2⌋ swap gates that swap the ith and (n− i− 1)th of n qubits returns a reversed state
(Figure 8).

Lemma rev_ord_neqn (i : [[[⌊n/2⌋]]]) : (i : [[[n]]]) ̸= (n − i − 1 : [[[n]]]).
Definition rev_circuit n : endon :=

compn_mor (i 7→ focus (lens_pair (rev_ord_neq i)) swap) xpredT.
Lemma rev_circuit_ok : ∀(i : [[[n]]]),

proj (lens_single (n − i − 1 : [[[n]]])) (rev_circuit n σ) = proj (lens_single i) σ.

Here rev_ord_neq produces an inequality in [[[n]]], which we can use to build the required pair
lens to apply swap.

10 Related works

There are many works that aim at the mechanized verification of quantum programs [14].
Here we only compare with a number of like-minded approaches, built from first principles, i.e.
where the formalization includes a model of computation based on unitary transformations,
which justifies the proof steps.

Qiskit [16] is a framework for writing quantum programs in Python. While it does not
let one write proofs, it has the ability to turn a circuit into a gate, allowing one to reuse it in
other circuits, so that it has definitional compositionality.

QWIRE [15] and SQIR [11] define a quantum programming language and its Hoare logic
in Coq, modeling internally computation with matrices and Kronecker products. QWIRE
and SQIR differ in their handling of variables: in QWIRE they are abstract, handled through
higher-order abstract syntax, but in SQIR, which was originally intended as an intermediate
language for the compilation of QWIRE, they are concrete natural numbers, denoting indices
of qubits. The authors note in their introduction [11] that “[abstract variables] necessitate
a map from variables to indices, which we find confounds proof automation”. They go on
remarking that having a distinct semantics for pure quantum computation, rather than
relying only on the density matrices needed for hybrid computations, considerably simplifies
proofs; this justifies our choice of treating specifically the pure case. While QWIRE satisfies
definitional compositionality, this is not the case for SQIR, as circuits using fixed indices
cannot be directly reused. We have not proved enough programs to provide a meaningful
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comparison, yet it is noteworthy that our proof of GHZ, which uses virtually no automation,
is about half the size of the proof in SQIR [11]. The main difference is that we are able to
solve combinatorics at the level of lenses, while they have to work all along with a symbolic
representation of matrices, that is a linear combination of matrix units (Dirac’s notation), to
avoid working directly on huge matrices.

VyZX [12, 13] formalizes the ZX-calculus in Coq, on top of SQIR. Its goal is to prove
graph-rewriting rules, and ultimately to build a verified optimizer for the ZX-calculus.
However, as they state themselves, the graphical nature of the calculus appears to be a
major difficulty, and only restricted forms of the rules are proved at this point. Since the
ZX-calculus itself enjoys compositionality, albeit at the graph level, this is a promising line of
work. It would be interesting to see if our approach can make proving such graph-rewriting
rules easier. As preliminary experiment, we have proved the triangular identity involving a
cup and a cap, by defining an asymmetric version of focusing. More generally, finding a nice
way to compose graphs is essential, and concepts such as lenses could have a role there.

CoqQ [20] builds a formalized theory of Hilbert spaces and n-ary tensor products on
top of MathComp, adding support for the so-called labelled Dirac notation. Again they
define a Hoare logic for quantum programs, and are able to handle both pure and hybrid
computations. While the labelled Dirac notation allows handling commutation comfortably,
it does not qualify as compositional, since it is based on a fixed set of labels, i.e. one cannot
mix programs if they do not use the same set of labels.

Unruh developed a quantum Hoare logic and formalized it in Isabelle, using a concept of
register [18] for which he defines a theory, including operations such as taking the complement
of a register. His registers in some meaning generalize our focus function, as they allow
focusing between arbitrary types rather than just sets of qubits. Since one can compose
registers, his approach is compositional, for both definitions and proofs, and the abstraction
overhead is avoided through automation. However, while each application of focus to a lens
can be seen as a register, he has not separated out a concrete combinatorics based on finite
objects similar to our notion of lens.

In a slightly different direction, Qbricks [3] uses the framework of path-sums to allow the
automatic proof of pure quantum computations. The notion of path is more expressive than
that of computational basis state, and allows one to represent many unitary transformations
as maps from path to path, making calculations easier. It would be interesting to see whether
it is possible to use them in our framework.

Most approaches above support not only pure quantum computation but also hybrid
quantum-classical computation. While we have concentrated here on pure computation, we
have already extended our approach to the density-matrix interpretation required to support
hybrid computations, and verified that it commutes with focusing. Practical applications are
left to future work.

Note also that, while some of the above works use dependent types to represent matrix
sizes for instance, they all rely on ways to hide or forget this information as a workaround.
On the other hand, our use of dependent types is strict, only relying on statically proved
cast operators to adjust types where needed, yet it is lightweight enough for practical use.

Some other aspects of our approach can be related to programming language theory. For
instance, the way we shift indices during currying is reminiscent of De Bruijn indices, and our
merge operation shifts indices in the precise same way as the record concatenation defined
in the label-selective λ-calculus [8]. This suggests that our currying of quantum states is
actually similar to the currying occurring in that calculus.
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11 Conclusion

We have been able to build a compositional model of pure quantum computation in Coq,
on top of the MathComp library, by using finite functions, lenses, and focusing. We have
applied the development to prove the correctness of several quantum circuits. An interesting
remark is that, while we started from the traditional view of seeing quantum states as
tensor products, our implementation does not rely on the Kronecker product for composing
transformations. Since the Kronecker product of matrices can be cumbersome to work with,
this is a potential advantage of this approach.

Many avenues are open for future work. First we need to finish the proof of Shor’s code,
this time for erroneous channels; paper proofs are simple enough but the devil is in the details.
Next, building on our experience, we would like to formalize and abstract the algebraic
theory of lenses. Currently we rely on a large set of lemmas developed over more than a
year, without knowing their interdependencies; such a theory would have both theoretical
and practical implications. Third, we are interested in the category-theoretic aspects of this
approach, and would like to give an account of focus, explaining both the relation between a
lens and its action, and the structural properties of focusing.
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