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Abstract
Some processors, especially embedded ones, do not implement all instructions in hardware. Instead,
if the processor encounters an unimplemented instruction, an unsupported-instruction exception
is raised, and an exception handler is run that implements the missing instruction in software.
Getting such a system to work correctly is tricky: The exception-handler code must not destroy any
state of the user program and must use the control and status registers (CSRs) of the processor
correctly. Moreover, parts of the handler are typically implemented in assembly, while other parts
are implemented in a language like C, and one must make sure that when jumping from the user
program into the handler assembly, from the handler assembly into C, back to assembly and finally
back to the user program, all the assumptions made by the different pieces of code, hardware, and
the compiler are satisfied.

Despite all these tricky details, there is a concise and intuitive way of stating the correctness of
such a system: User programs running on a system where some instructions are implemented in
software behave the same as if they were running on a system where all instructions are implemented
in hardware.

We formalize and prove such a statement in the Coq proof assistant, for the case of a simple
exception handler implementing the multiplication instruction on a RISC-V processor.
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1 Introduction

Assembly language is frequently regarded as the lowest level of software abstraction in software-
verification endeavors. However, the ISA (instruction-set architecture) semantics typically
employed for software verification present an abstraction of the bare-metal ISA specifications,
omitting machine-level aspects of the ISA, like the configuration registers that control
the intricate interplay between the hardware’s intrinsic capabilities and the meticulously
crafted firmware (a piece of software) tasked with maintaining machine configurations and
implementing high-privilege handlers in charge of emulating unsupported instructions, as
well as managing other forms of low-level exceptions.
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17:2 Verifying Software Emulation of an Unsupported Hardware Instruction

For example, in the RISC-V ISA, control and status registers (CSRs) shape the behavior
and functionality of the machine. These registers serve as a mechanism for controlling various
aspects of the processor’s operation, ranging from enabling or disabling specific features to
controlling where the machine jumps in case of interrupts and exceptions. These registers
and the associated exception handlers exert fundamental control over machine behaviors, so
their improper configuration can lead to undefined outcomes.

CSRs coupled with the handlers introduce an intriguing specification, implementation,
and verification challenge: while they are essential to determining the machine’s behavior,
the CSRs are themselves set and manipulated by software, and the handlers are themselves
software.

There is a bit of a chicken-and-egg problem: We want to provide a nice and simple ISA
abstraction, but to implement this abstraction and prove it correct, we have to write a trap
handler and want to compile parts of it with a compiler whose proof already relies on this
abstraction that we are supposed to implement, so how can we break the circularity?

One might be tempted simply to augment software-verification efforts with more detailed
and faithful ISA specifications. We eschew this approach. The simplified ISA abstractions
commonly employed are far more practical and productive compared to their cumbersome
and heavier bare-metal counterparts, and the intricate details of configurations and handlers
should anyway remain irrelevant to software or compilers higher up the stack.

This paper endeavors to disentangle the problem by focusing on a simplified-yet-illustrative
instance: the specification, implementation, and verification of a RISC-V machine with
software-implemented multiply instructions.

Through this exploration, we aim to shed light on the interesting challenges posed by
CSRs and handlers and pave the way for a more coherent understanding of hardware-software
interactions.

We will show that for this simple case we can indeed provide (with proofs!) the desired
abstractions, and we can leverage tools that were built on top of those nice abstractions
to provide the said abstractions without creating a circular conundrum. Our solution is to
prove a helper lemma that ports assembly program-correctness proofs against the nice and
simple ISA semantics to proofs against the detailed low-level ISA semantics. The helper
lemma requires that the program does not contain any unsupported instruction that would
trigger the trap handler, and this assumption gets discharged when we instantiate it with
the concrete handler code produced by the compiler. However, there are also parts of the
handler whose semantics cannot be expressed using the nice and simple ISA semantics, and
we implement these manually in assembly and prove their correctness directly at the assembly
level.

Our paper makes the following contributions:
We propose a pleasantly simple specification for a RISC-V system equipped with a
software trap handler emulating unsupported instructions: User programs running on a
system where some instructions are implemented in software in a trap handler should
behave as if they were running on a system with hardware support for these instructions.
We implement such a trap handler by combining code in a C-like language with handwrit-
ten assembly code, and we prove its correctness, in a mechanized and foundational way,
down to the binary machine code of the handler, combining symbolic-evaluation proofs
at the C level and assembly level with a compiler-correctness proof.

All our code is publicly available at https://github.com/mit-plv/softmul.

https://github.com/mit-plv/softmul
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Figure 1 Overview diagram. The circled numbers are referenced in the text and do not stand for
any meaningful order.

2 Overview

We want to show that a machine without hardware support for multiplication, but correctly
configured with an exception handler that implements multiplication in software, behaves
like a machine that supports multiplication in hardware. This theorem could then be used to
simplify reasoning about programs running on a machine without hardware multiplication,
because it saves the burden of reasoning about the trap handler and instead makes it as easy
as reasoning about the specification with multiplication in hardware:
match inst with
| Mul rd rs1 rs2⇒

x← getRegister rs1;

y← getRegister rs2;

setRegister rd (mul x y)

| ...

end

We use the RISC-V instruction-set architecture [1, 2], as formalized in riscv-coq [5].
RISC-V splits the instruction set into several extensions, each named with an uppercase letter.
The base instruction set that every processor must support is called I, and multiplication,
division and modulo operations are in a separate extension called M that small embedded
processors may choose not to implement, or to implement in software by catching unsupported-
instruction exceptions. In our proof-of-concept case study, we pretend that the M extension
only contains one single instruction, namely the multiplication instruction, but we believe
that support for the other instructions of the M extension could be added in the same way.

The riscv-coq specification defines a set of rougly a dozen primitives such as getRegister,
setRegister, loadByte, storeByte, and then defines the semantics of each RISC-V instruction
in terms of these primitives. As explained in [5], the semantics of each primitive is deliberately
left unspecified in riscv-coq, so that each application that needs a formal specification of
RISC-V can instantiate these primitives in a suitable domain-specific way.

Figure 1 presents an overview of our code (boxes ➄ and ➅) and specifications (the
remaining boxes). Our theorem uses two instantiations of the riscv-coq specification: One
that implements multiplication in hardware (box ➀) and one (box ➁) that implements it
using a trap handler. Note that since the configurability of this specification is first-class, i.e.
expressed in Coq itself rather than in some configuration files of the build process, there is
no code duplication between the two instantiations.

ITP 2024



17:4 Verifying Software Emulation of an Unsupported Hardware Instruction

Parts of the exception handler (box ➅) are implemented in the Bedrock2 source lan-
guage [8] (a small and simple subset of C) and compiled (➆) using the Bedrock2 compiler,
but the handler also needs some low-level operations that are not expressible in the Bedrock2
source language and are therefore implemented by-hand in assembly. That is, our handler
(box ➄) starts and ends in handwritten assembly and calls a compiled Bedrock2 function in
the middle. Our proof combines a program-logic proof about the Bedrock2 handler function,
the compiler-correctness proof, and a proof about the assembly instructions, guaranteeing
that all these parts have been put together correctly, and the final statement only mentions
RISC-V semantics. All the other interfaces have been canceled out by combining the proofs
and thus are not part of the trusted code base anymore.

In addition to the two instantiations of the RISC-V semantics with and without hardware
multiplication, our proof (but not the final statement) also uses a third instantiation (box ➃)
which does not have any CSRs (control and status registers, required by the exception
mechanism). This third instantiation fails (with undefined behavior) on all CSR-related
instructions. For the compiler, an axiomatization (box ➂) of this instantiation was chosen
to simplify the proof, because the compiler does not emit any instructions that depend on
CSRs.

3 The Top-Level Theorem Statement

We can state the theorem (arrow ➉ in Figure 1) as follows:

Theorem softmul-correct: forall (initialH initialL: MachineState) (post: State→ Prop),

runsTo (mcomp_sat (run1 mdecode)) initialH post→
R initialH initialL→
runsTo (mcomp_sat (run1 idecode)) initialL (fun finalL⇒

exists finalH, R finalH finalL ∧ post finalH).

It is phrased as a specification-preservation1 statement: If a machine with hardware
multiplication runs from an initial state initialH to states satisfying a postcondition post,
then every machine initialL with hardware multiplication, related to initialH by R, runs to
a low-level state finalL which, when translated back to a high-level state finalH, satisfies the
same postcondition.

The theorem uses run1, which defines how one single instruction is executed:

Definition run1(decoder: Z→ Instruction): M unit :=

pc← getPC;

inst← Machine.loadWord Fetch pc;

Execute.execute (decoder (LittleEndian.combine 4 inst));;

endCycleNormal.

It is is parameterized over the instruction decoder, which is instantiated with mdecode

(a decoder that supports the multiplication instruction) in the hypothesis and with idecode

(a decoder that returns InvalidInstruction for the multiplication instruction) in the conclusion
of the theorem.
The mcomp_sat function is of type M unit → State → (State → Prop) → Prop and asserts
that a monadic program (consisting of primitives used in riscv-coq such as getRegister,
setRegister, loadByte, etc.), applied to some initial state, satisfies a postcondition, and runsTo

1 It can also be seen as a small-step omnisemantics forward simulation as defined in [6].
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Definition R(r1 r2: MachineState): Prop :=

r1.(regs) = r2.(regs) ∧
r1.(pc) = r2.(pc) ∧
r1.(nextPc) = r2.(nextPc) ∧
r1.(csrs) = map.empty ∧
basic_CSRFields_supported r2 ∧
regs_initialized r2.(regs) ∧
exists mtvec_base scratch_end,

map.get r2.(csrs) CSRField.MTVecBase = Some mtvec_base ∧
map.get r2.(csrs) CSRField.MScratch = Some scratch_end ∧
<{ * eq r1.(mem)

* mem_available (word.of_Z (scratch_end - 256)) (word.of_Z scratch_end)

* ptsto_bytes (word.of_Z (mtvec_base * 4)) softmul-binary }> r2.(mem).

Figure 2 The predicate relating high-level states (multiplication implemented in hardware) to
low-level states (multiplication implemented in software).

lifts it to an arbitrary (but finite) number of steps.2 The predicate R (Figure 2) is used to
relate a high-level state (i.e. the state of a machine that supports multiplication in hardware)
to a low-level state (i.e. the state of a machine that implements multiplication in software
using a trap handler), and it also contains all the preconditions on how the low-level machine
needs to be configured. That is, R asserts that the two states have the same values for the
registers and the program counter, and that the memory (modeled as a partial map from
32-bit addresses to bytes) of the low-level machine contains all of the high-level memory, as
well as the instructions of the exception handler and some scratch space that the exception
handler can use as its stack (which must be available even if the main program has used up
all of its stack). To define at which address in memory the handler and the scratch space are
located, RISC-V defines some CSRs [2] that our definition of R mentions:

The CSR called MTVecBase is used to store the address of the trap handler (we use direct
mode where all exceptions set the PC to the same address, but RISC-V also has a vectored
mode where the PC is set to the base address in this register plus an offset corresponding
to the cause of the exception).
The CSR called MScratch is a read/write register dedicated for use by machine mode, and
we use it to store the address of the end of the scratch space (we store the end address
instead of the start address because it is used like a stack that grows downwards).

The memory (record fields r1.(mem) and r2.(mem) in Figure 2) is modeled as a finite map
from 32-bit words to bytes. In the setup used in this case study, no primitive (nor other
operation) changes the domain of that map. If an address outside of the domain of that map
is accessed, the memory-access primitives cause undefined behavior, i.e. the Prop returned by
mcomp_sat (and thus also the Prop returned by runsTo) becomes unprovable. This means that
the runsTo hypothesis of the top-level theorem assumes a basic form of memory safety of the
user program, namely that it does not access memory outside the domain of the memory.
The separation-logic formula used in Figure 2 ensures that the memory the user program can
write to (r1.(mem)) is disjoint from the scratch space and the handler code (second and third
bullet points, respectively, in the separation-logic formula). To remove this memory-safety
assumption, one could prove memory safety for the user program, i.e. that a runsTo holds for

2 runsTo is defined like the omnisemantics eventually operator [6].

ITP 2024



17:6 Verifying Software Emulation of an Unsupported Hardware Instruction

an arbitrary postcondition (the easiest choice would simply be λs. True). In our setting, user
code and handler code both run in machine mode, but in more complex systems that feature
both user mode and machine mode and also hardware-based memory-protection support (e.g.
by segmentation or virtual memory), the requirement to assume or prove this basic memory
safety for user programs could be lifted.

4 The Handler Code

The exception-handler code is implemented partially in handwritten assembly and partially
in the Bedrock2 [8] source language and compiled to bytes by the Bedrock2 compiler. In
order to prove the softmul-correct theorem, we use the correctness theorem of the Bedrock2
compiler, but note that the statement of the softmul-correct theorem does not depend on the
Bedrock2 language semantics or on anything related to the fact that we used the Bedrock2
compiler, so the auditing burden for someone (who trusts the Coq proof checker) auditing
our handler is much smaller, because one does not need to worry about the compiler, its
language semantics, and its interaction with the assembly code.

The handwritten assembly of the handler is shown in Figure 3a. Since we want our
software-emulated multiplication to behave as if it were implemented in hardware, we cannot
make any assumptions about the remaining space on the user program’s stack, nor about
whether the stack pointer sp contains any meaningful value at all. Therefore, we reserve a
separate scratch space in memory just for our handler, and we require that the CSR MScratch

contains the address of that scratch space.
As its first action (in handler_init), the handler has to store all 32 registers of the user

process by which it was triggered. It may only use registers that it has already saved, because
otherwise it would destroy state of the user program. We therefore resort to tricks such
as temporarily storing the user stack pointer in the MScratch CSR and then temporarily
storing it in the return-address register. Such tricks are easy to get wrong (and we did; see
section 8.2).

After handler_init, the registers 3 to 31 are saved to the scratch space as well, and then
the Bedrock2-generated part is called by passing it the value of the CSR register MTVal, which
contains the invalid instruction that caused the exception, and a pointer to the scratch space
in which we saved the registers.

The Bedrock2 code (Figure 3b) is written directly in Coq using the custom-notations
feature, a C-like syntax, and operator precedence as suggested by whitespace. It extracts the
three 5-bit fields of the instruction that indicate the two source registers (operands of the
multiplication operation) and the destination register, respectively, and then calls another
Bedrock2 function rpmul that implements multiplication in terms of addition, storing the
result back into the scratch space. The rpmul function iterates over the bits of the second
operand while repeatedly doubling the first operand, a technique sometimes called “Russian
peasant multiplication.” Both softmul and rpmul are verified using the Bedrock2 program
logic. The spec of the former is given in Figure 4.

Its pre- and postcondition are expressed in terms of an (unused) I/O trace t and the
memory m, for which we assert a list of two separation-logic clauses (a word array corresponding
to the scratch space containing the register values, and a generic frame R for the rest of the
memory).

After the Bedrock2 part, the handwritten snippet inc_mepc runs. It increases the CSR
called MEPC, which stores the address of the instruction that caused the exception. This
increment is needed because upon returning from the trap handler (by the Mret instruction),
execution will jump to MEPC, so we have to set it to one instruction (i.e., 4 bytes) past the
multiplication instruction.
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Definition handler_init := [[

Csrrw sp sp MScratch; (* swap sp and MScratch CSR *)

Sw sp zero (-128); (* save the 0 register (for uniformity) *)

Sw sp ra (-124); (* save ra *)

Csrr ra MScratch; (* use ra as a temporary register... *)

Sw sp ra (-120); (* ... to save the original sp *)

Csrw sp MScratch; (* restore the original value of MScratch *)

Addi sp sp (-128) (* remainder of code will be relative to updated sp *)

]].

Definition call-mul := [[

Csrr a0 MTVal; (* argument 0: value of invalid instruction *)

Addi a1 sp 0; (* argument 1: pointer to memory with register values before trap *)

Jal ra (Z.of_nat (1 + List.length inc_mepc + 29 + List.length handler_final) * 4)

]].

Definition inc_mepc := [[

Csrr t1 MEPC;

Addi t1 t1 4;

Csrw t1 MEPC

]].

Definition handler_final := [[

Lw ra sp 4;

Lw sp sp 8; (* Bug: used to be ˋCsrr sp MScratchˋ, which is wrong if Mul sets sp *)

Mret

]].

Definition asm_handler_insts := handler_init ++ save_regs3to31 ++

call-mul ++ inc_mepc ++ restore_regs3to31 ++ handler_final.

(a) Assembly part of trap handler (embedded in Coq).

Definition softmul := func! (inst, a_regs) {

a = a_regs + (inst>>15 & 31)<<2;

b = a_regs + (inst>>20 & 31)<<2;

d = a_regs + (inst>>07 & 31)<<2;

unpack! c = rpmul(load(a), load(b));

store(d, c)

}.

Definition rpmul := func! (x, e) ∼> ret {

ret = $0;

while (e) {

if (e & $1) { ret = ret + x };

e = e >> $1;

x = x + x

}

}.

(b) Bedrock2 part of trap handler (using custom Coq notations to make it look similar to C).

Figure 3 Trap handler code.

ITP 2024



17:8 Verifying Software Emulation of an Unsupported Hardware Instruction

Instance spec_of_softmul : spec_of "softmul" :=

fnspec! "softmul" inst a_regs / rd rs1 rs2 regvals R,

{ requires t m :=

mdecode (word.unsigned inst) = MInstruction (Mul rd rs1 rs2) ∧
List.length regvals = 32 ∧
seps [a_regs 7→ word_array regvals; R] m;

ensures t’ m’ := t = t’ ∧
seps [a_regs 7→ word_array (List.upd regvals (Z.to_nat rd) (word.mul

(List.nth (Z.to_nat rs1) regvals default)

(List.nth (Z.to_nat rs2) regvals default))); R] m’ }.

Figure 4 Specification of softmul function.

And finally, in restore_regs3to31 and handler_final, the values of the user program’s
registers are restored.

5 Combining the Program-Logic Proofs and Compiler-Correctness
Proof

By combining the program-logic proofs about the two Bedrock2 functions with the compiler-
correctness theorem, we can prove that if we run the compiler within Coq to obtain a list
of instructions mul-insts, these instructions satisfy the specification shown in Figure 5, a
verbose but unsurprising specification, laying out calling-convention details.

Lines 5 to 6 specify in which registers the arguments need to be placed, and line 14
requires that at address a_regs, there is an array of 32 words that store the values of the
registers of the user program. Lines 18 to 20 state that after running mul-insts, the array at
address a_regs storing the registers is updated at its rd’th index with the result of multiplying
its rs1-th and rs2-th elements, and line 23 states that the new registers of the processor (not
the ones saved in memory) only differ from the original registers on the callee-saved registers.

Note that the conclusion on line 27 refers to the same machine as the conclusion of the
top-level theorem in section 3, namely the one described by (mcomp_sat (run1 idecode)), or
box ➁ in Figure 1. However, to get there, two more proof steps (➇ and ➈) are needed:
In order to keep the Bedrock2 compiler (somewhat) general, it was not proven against a
specific instantiation of the riscv-coq semantics but against an axiomatization (box ➂) of
the primitives used in riscv-coq such as getRegister, setRegister, loadByte, etc. However, to
keep the Bedrock2 compiler proof manageable, the RISC-V machine-state representation
appearing in that axiomatization was hardcoded to a record type without CSRs (because
compiler-emitted code never touches CSRs).

An additional problem requiring some proof effort to show compatibility is that the
compiler correctness proof assumes a machine with hardware support for multiplication, but
we want to run its code on one without. By inspecting the code that it generated, we can
see that it did not output any multiplication instructions, but if it did, this would lead to a
serious bug: If during the execution of the trap handler, a multiplication instruction were
encountered, the trap handler would be recursively invoked again, infinitely many times.

We solve these two problems by introducing an intermediate helper machine (box ➃)
that uses the same state representation (without CSRs) as the compiler, and we prove an
invariant no_mul saying that the memory region marked as executable (which only includes
the compiled handler code in that instance) contains no multiplication instructions.
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1 Lemma mul-correct: forall initial a_regs regvals invalidIInst R (post: State→ Prop)
2 ret_addr stack_start stack_pastend rd rs1 rs2,
3 word.unsigned initial.(pc) mod 4 = 0→
4 initial.(nextPc) = word.add initial.(pc) (word.of_Z 4)→
5 map.get initial.(regs) RegisterNames.a0 = Some invalidIInst→
6 map.get initial.(regs) RegisterNames.a1 = Some a_regs→
7 map.get initial.(regs) RegisterNames.ra = Some ret_addr→
8 map.get initial.(regs) RegisterNames.sp = Some stack_pastend→
9 word.unsigned ret_addr mod 4 = 0→

10 word.unsigned (word.sub stack_pastend stack_start) mod 4 = 0→
11 regs_initialized initial.(regs)→
12 mdecode (word.unsigned invalidIInst) = MInstruction (Mul rd rs1 rs2)→
13 128≤ word.unsigned (word.sub stack_pastend stack_start)→
14 seps [a_regs 7→ with_len 32 word_array regvals;
15 initial.(pc) 7→ program idecode mul-insts;
16 mem_available stack_start stack_pastend; R] initial.(MinimalCSRs.mem) ∧
17 (forall newMem newRegs,
18 seps [a_regs 7→ with_len 32 word_array (List.upd regvals (Z.to_nat rd) (word.mul
19 (List.nth (Z.to_nat rs1) regvals default)
20 (List.nth (Z.to_nat rs2) regvals default)));
21 initial.(pc) 7→ program idecode mul-insts;
22 mem_available stack_start stack_pastend; R] newMem→
23 map.only_differ initial.(regs) reg_class.caller_saved newRegs→
24 regs_initialized newRegs→
25 post { initial with pc := ret_addr; nextPc := word.add ret_addr (word.of_Z 4);
26 MinimalCSRs.mem := newMem; regs := newRegs })→
27 runsTo (mcomp_sat (run1 idecode)) initial post.

Figure 5 The correctness lemma of the compiler-generated part of the handler.

6 Correctness Proof of the Assembly Part

The assembly part of the handler is proven correct by induction over the runsTo hypothesis
of softmul-correct. If the machine with hardware multiplication executes any instruction
besides multiplication, we just need to show that after executing the same instruction on
the machine with software multiplication, the R judgment is preserved, but we can do that
once-and-for-all by inspecting each primitive of the riscv-coq spec (getRegister, setRegister,
loadByte, etc.), instead of analyzing the much larger number of RISC-V instructions. The
interesting case is when the machine with hardware multiplication encounters a multiplication
instruction, and we have to show that the machine with software multiplication steps to a
related state. We do so by first symbolically executing the specification of what the hardware
does in case of an exception (Figure 6), which boils down to setting some CSR fields and
then setting the PC to the exception-handler address found in the MTVecBase CSR.

After that, we symbolically execute the handwritten assembly instructions, using Coq’s
proof context to keep track of all the facts that we know about the current state of the
machine. For each assembly instruction, we encounter its specification in terms of the
primitives of riscv-coq, and for each primitive, we have a helper lemma that updates our
symbolic state. At the point where we reach the call to the Bedrock2-generated code, we
apply the correctness lemma for the compiled trap handler. After that call, we step through
more handwritten assembly instructions that restore the registers and then call the Mret

instruction that jumps back to one instruction past the multiplication instruction that caused
the exception. At that point, we need to prove that the symbolic state accumulated in the
Coq proof context implies that the two machines are still related by R, which only works if
there are no bugs in the handler code.

ITP 2024



17:10 Verifying Software Emulation of an Unsupported Hardware Instruction

Definition raiseExceptionWithInfo{A: Type}(isInterrupt exceptionCode info: t): M A :=

pc← getPC;

(* hardcoded simplification: we only support machine mode and no interrupts *)

addr← getCSRField MTVecBase;

setCSRField MTVal (regToZ_unsigned info);;

(* these two need to be set just so that Mret will succeed at restoring them *)

setCSRField MPP (encodePrivMode Machine);;

setCSRField MPIE 0;;

setCSRField MEPC (regToZ_unsigned pc);;

setCSRField MCauseCode (regToZ_unsigned exceptionCode);;

setPC (ZToReg (addr * 4));;

@endCycleEarly M t MM MW MP A.

Figure 6 Specification (in riscv-coq) of what hardware does in case of an exception.

7 What If . . .

To explain our specification from a different angle, we list a few potential bugs that an
implementor could introduce, and we show how they make our specification unprovable.
Note that these are not bugs that actually occurred in our own implementation. For those,
we refer to section 8.2. To present each potential bug, we ask: What if . . .

. . . the compiler used to compile the handler emitted a multiplication instruction, which
would cause the handler to trigger itself recursively infinitely many times? When proving
correctness of the handwritten assembly (section 6), when we get to the jump instruction
that calls the code emitted by the Bedrock2 compiler, we need to apply the compiler-
correctness theorem (instantiated with the Bedrock2 part of our handler), but that
theorem talks about execution on a machine with multiplication support, whereas the
theorem we are about to prove is about execution on a machine without multiplication
support. To make the proof work, we need to introduce box ➃ and steps ➇ and ➈ in
Figure 1 as explained in section 5, which at some point requires us to go through the
concrete list of instructions emitted by the compiler and to check that none of them is a
multiplication instruction.
. . . the handler runs at a time when no stack exists or the stack does not have enough
remaining space? The output of the Bedrock2 compiler contains a number that indicates
the amount of stack space that the compiled code needs, and one hypothesis of the
compiler-correctness theorem is that at least that much space is available below the
current stack pointer. In order to make sure this hypothesis holds, our trap handler uses
a separate reserved scratch pad in memory as its stack, and when the correctness theorem
for the handwritten assembly applies the instantiated compiler-correctness theorem
mul-correct, it has to prove that there are at least 128 bytes of space remaining in the
scratch pad, as mandated by the hypothesis on line 13 in Figure 5.
. . . the assembly that calls compiled Bedrock2 code makes wrong assumptions about the
calling conventions of the compiler, e.g. which registers are used to pass arguments,
or whether they are passed on the stack, in which direction the stack grows, or which
registers are caller-saved? All these conventions are also captured in the intermediate
lemma mul-correct in Figure 5.
. . . the handler forgot to increase MEPC, the CSR storing the address to which the
machine jumps when we return from the exception handler, which would cause the
faulting multiplication instruction to be run again and trigger the handler again? At the
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end of the handler correctness proof, this bug would lead to a mismatch between the
state of the machine with multiplication support (whose program counter gets advanced
past the multiplication instruction) and the state of the machine without multiplication
support (whose program counter would still point to the multiplication instruction).
. . . we ran a user program using compressed instructions (2-byte instructions) on our
system? The riscv-coq specification only supports the uncompressed instruction format,
where all instructions are 4 bytes long. There is no single location where the spec explicitly
says “compressed instructions are not supported” – it requires an attentive reader who
notices that the whole spec never mentions compressed instructions. In this scenario, our
trap handler would fail to decode the unsupported instruction, and arbitrary behavior
would occur. If riscv-coq did support compressed instructions, and our handler correctly
decoded them, that would still require it to decide correctly whether to increase the
MEPC by 2 or 4, and like in the previous point, one would notice the mismatch during
the proof.

8 Evaluation

We attempt to answer the following evaluation questions (and dedicate one subsection to
each of them):
1. Does our verified trap handler run on a RISC-V system implemented by a third party?
2. Did our implementation contain bugs that our verification caught?
3. Did our implementation contain bugs that our verification failed to catch?
4. Was the effort required for verification lower than the effort for debugging would have

been?

8.1 Running Our Handler
To validate that our verified handler actually runs on a system not implemented by ourselves,
we first looked for small embedded RISC-V processors without multiplication support but
could not find any product with enough documentation in English to make us want to try it
out. Instead, we chose to test our code in the Spike RISC-V ISA simulator [3], which offers
fine-grained control over which RISC-V extensions are enabled.

We want to test that our handler behaves as expected on a system that runs a simple
C program with multiplications, compiled by a third-party compiler. We wrote a simple
program which computes the factorial of a hardcoded number and saves the result as well as
a “done” flag to memory. We compiled it using the GNU RISC-V toolchain.

Our top-level theorem applies to a list of bytes called softmul-binary (mentioned in
Figure 2 in the definition of the relation R), representing a piece of position-independent
RISC-V machine code. However, Spike expects as input an ELF file. We relied on the GNU
RISC-V toolchain to transform our binary into an ELF file, using a custom 25-line linker
script.

For our theorem to be applicable, the conditions that the relation R (Figure 2) imposes on
r2 (the machine without support for multiplication) must hold on our Spike machine. The
first six conditions above the exists are related to the formalization and do not require any
special setup action. The two lines below the exists require that the MTVecBase and MScratch

CSRs have suitable values, which we ensure by running an assembly script at the beginning
that initializes these two CSRs with addresses defined in our linker script. The last three
lines are a bullet-point separation-logic clause list describing the memory, saying that it must
contain all of the specification machine’s memory r1.(mem), as well as 256 bytes of scratch
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memory at the address in the MScratch CSR and the softmul-binary at the address in the
MTVecBase CSR. Our linker script, together with the memory-layout command-line argument
we pass to Spike, ensures that these conditions hold.

Spike comes with its own small language of debugger commands, and we used it to run
the system until the done flag in memory is 1, then print the value of the memory at the
address where we expect the result, and we also print the value of the CSR minstret, the
number of retired instructions, to see how many instructions were executed.

No matter whether we invoked Spike with or without multiplication enabled, we observed
the same result for factorial(5), namely 120. With multiplication enabled, the number of
instructions was 87; and with multiplication disabled, the number of instructions increased
to 787, which shows that our handler indeed ran. As an additional sanity check, we also
confirmed that it stops working if we set the MTVecBase CSR to a different value.

Therefore, at least for this one simple example, we can answer question 1 with “yes”.

8.2 Bugs Caught During Verification

At the end of the proof that steps through the handwritten handler assembly, we need to
prove that the symbolic state accumulated in the Coq proof context implies that the two
machines are still related by R, which only works if there are no bugs in the handler code (see
end of section 6). At that point, we found two interesting bugs. The first one was that we
forgot to reset the MScratch CSR, so one invocation of the exception handler works fine, but
the next one will use a wrong address for its scratch space. The second bug was the corner
case where the multiplication instruction stores its result into the stack pointer. In that case,
we must not override the stack pointer with the original stack pointer that we swapped into
the MScratch register at the beginning of the handler.

We also found two more obvious bugs related to when to set the stack pointer and what
stack-pointer offsets to use.

So we can answer question 2 with “yes”.

8.3 Bugs Encountered While Trying to Run It

We split the development of our experiment into two phases: First, we set up the linker script,
with the trap handler already in place, but inactive, because we enabled the M extension.
Once this experiment produced the expected output, we deactivated the M extension, so
that our handler would run.

Getting phase 1 to work required some debugging. The most difficult part was to
understand how to pass the linker-script-defined address of the heap memory to the C
program, and it required reading the relevant page3 of the GNU Linker’s manual, which
starts by saying that “accessing a linker script defined variable from source code is not
intuitive,” and further down explains that “when you are using a linker script defined symbol
in source code you should always take the address of the symbol, and never attempt to use
its value”.

None of the code involved in phase 1 was verified, so it is not surprising that debugging
was required. And to our delight, in phase 2, as soon as we disabled the M extension, our
verified trap handler worked on the first try, and no debugging was needed at all.

3 https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html

https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html
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So, to answer question 3, there were bugs in the unverified part, but no bugs in the
verified part.

In the future, it would be interesting also to verify ELF file generation, which we believe
could have prevented the above bug.

8.4 Effort

For lack of better measures, we resort to lines-of-code counts as a very approximate measure
of effort. Table 1 lists the counts of the different components.

It suggests that to produce 76 lines of verified code, a total of 3331 lines of code was
necessary, which is more than a 40× blowup. This ratio looks not very appealing, but it still
seems fair to say that for tricky code, large proofs are sometimes needed. We also have some
(potentially alleviating) remarks for each row of the table:

The RISC-V helper instance is not referenced by the top-level theorem statement but
acts as a bridge between the RISC-V spec used by the Bedrock2 compiler (whose state
does not contain any CSRs) and the one used in the top-level theorem (whose state does
have CSRs). Additionally, the helper instance maintains the invariant that no executable
instructions are from the M extension, which is important during the execution of the
trap handler, because if the trap handler contained a multiplication instruction, the trap
handler would be invoked recursively over and over again. The helper instance and its
accompanying lemmas are mostly copied from the one used in the compiler, and careful
refactoring to share the code with the compiler could considerably reduce this count,
which also means that these lines were low-effort to produce.
To verify multiplication and a simple instruction decoder in Bedrock2, we used the original
Bedrock2 program logic [8], which only automates the application of weakest-precondition
rules but does not provide any automation for side condition solving. Using a framework
that provides more automation would have reduced this proof size.
A large chunk of the proof lines (1454) is in the correctness proof of the trap-handler
parts written in assembly. The reason for this verbosity might be that, to our knowledge,
this project is the first within the Bedrock2 ecosystem to verify more than two or three
lines of assembly at a time, so there was no assembly-specific framework available. About
two thirds of the proof code could probably be factored out into a framework that would
be reusable for other assembly programs as well. We also did not spend too much time
on side-condition automation, which could further reduce the number of proof lines. We
conjecture that in a more mature assembly-verification framework, the assembly part
of the trap-handler proof might be as short as maybe 100 lines of code. Moreover, the
code-to-proof ratio also looks bad because we count the number of lines of Coq code
rather than the number of assembly instructions, which matters for save_regs3to31 and
restore_regs3to31: Each of these is just a two-line functional program but expands to 29
assembly instructions.
The compiler compat & invocation code deals with the different RISC-V instances and
decoders and also applies the Bedrock2 compiler’s correctness theorem for the instruction
decoder and multiplier implemented in Bedrock2. It consists of important but not
particularly interesting bookkeeping that quickly adds up to many lines of proof.
Finally, the top-level theorem puts everything together. It requires some helper lemmas
that could probably be generalized and moved to a library, but the fact that these lemmas
were not already present in any library used in the Bedrock2 ecosystem seems fairly
representative of the general verification experience, so it seems fair to count these lines.
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Table 1 Lines-of-code counts, excluding the dependencies (coqutil, riscv-coq, Bedrock2, and the
Bedrock2 compiler).

impl spec proof total
RISC-V helper instance 0 101 309 410
Multiplication in Bedrock2 8 5 83 96
Instruction decoder in Bedrock2 7 27 80 114
Trap handler in assembly 36 28 1454 1518
Compiler compat & invocation 14 47 716 777
Top-level theorem 11 18 147 176
Excluded (imports & comments) 240
Total 76 226 2789 3331

Finding the bugs described in section 8.2 through debugging (especially the first two)
might have been quite hard but would probably still not have taken as long as our verification
effort took, so the answer for question 4 is probably a “no”.

However, we can imagine a promising world where the proof burden becomes lower than
the debugging burden and verification becomes a part of most systems developers’ toolboxes.

9 Related Work

A number of projects have attempted to verify the interaction between (some or all of)
C code, its compilation, handwritten assembly code, and trap handlers.

In the context of the Verisoft project, Alkassar et al. [4] verified a virtual-memory system
that can swap out virtual memory pages onto disk. If an address is accessed that currently
is on disk, a page fault is triggered, and a verified page-fault handler runs. Their correctness
statement says that a physical machine with the page-fault handler can simulate a virtual
machine (by which they mean a machine that provides to a user process a linear memory
covering the whole address space). Their handler is implemented in C0 (a subset of C)
with some inline assembly, which is modeled as external calls that modify additional state
that cannot be modified directly from C0. That is, they call assembly from C, whereas we
chose the opposite direction, calling C (or the C-like language Bedrock2, in our case) from
assembly. In their project, saving and restoring of registers before and after the handler are
not implemented in assembly and verified like we do but are instead part of the semantics of
the physical machine.

BabyVMM [16] proves correctness of a simple virtual memory manager by showing that
for all kernel implementations, linking the kernel with the virtual memory manager and
running it on a machine with only physical memory (“hardware model” HW) behaves like
running the kernel on a machine with an address space whose lower part is physical memory
and whose upper part is virtual memory (“address space model” AS). It is implemented in a
C-like language, and no compiler nor assembly code appears in the formalization. Instead,
the theorem is stated in terms of C semantics. It also does not mention any page-fault
handlers.

The verified microkernel seL4 [12] is implemented in C, but some small parts are hand-
written assembly and are not verified [14, sections 4.4 and 4.8]. Contrary to our approach of
using a verified compiler, they apply translation validation to the binary generated by GCC
and certify using SMT solvers that it behaves like the C program.

CertiKOS [10, 11, 7] is a verified OS kernel. By means of certified abstraction layers, it
fully captures the behavior of each component in a deep specification, so that from the outside,
it does not matter whether the component is implemented in C or in assembly, thus achieving
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interoperability at the proof level between C and assembly. Its correctness is expressed as a
contextual refinement, based on CompCert’s [15] notion of a backward simulation, extended
with a universal quantification over all possible surrounding programs (contexts): It states
that for all assembly programs, all behaviors of that assembly program when linked with
the low-level kernel can be simulated by the same program when linked with the high-level
kernel specification. It relies on a notion of linking and uses CompCert’s formalization of
assembly, which is still fairly high-level compared to binary machine code, e.g. jumps use
labels instead of offsets or addresses, and there are instructions that allocate and free a stack
frame that do not correspond to any machine instructions. CompCert’s assembly (which
is used to model CertiKOS’s lowest layer) also does not model CSRs, whereas riscv-coq,
on which our project is based, does, so to model trap handlers at our level of detail, the
assembly (or machine) model would have to be extended.

CompCertELF [17], a different project by the same group, extends CompCert to also cover
machine-code generation and uses a more realistic memory model, without the stack-frame
allocation/freeing instructions mentioned above. As far as we know, CompCertELF has
not (yet) been integrated with CertiKOS and is not publicly available. If it were, and if
we managed to make CompCertELF compatible with our project, it could have helped to
prevent the bug (section 8.3) we encountered in our unverified usage of the GNU linker to
turn our plain binary into an ELF file.

Goel et al. [9] verify a subset of the instructions of an x86 processor which decodes x86
instructions and translates them into micro-operations before executing them. For the more
complex instructions, the generated micro-operations contain a trap that causes a jump to
microcode stored in a ROM. Similarly to our theorem, they prove that this processor behaves
as if there were no micro-operations, traps or microcode, and instructions were executed
according to a high-level x86 specification.

The CakeML compiler [13] targets multiple ISAs, and some instructions (e.g. division)
are not supported by all of them, so the compiler has to implement some unsupported
instructions in software, but contrary to our work, the necessary in-software implementation
is emitted directly by the compiler, and no trap handler comes into play.

10 Conclusion and Future Work

We have shown a pleasantly simple way of specifying the correctness of a trap handler that
emulates unsupported instructions in software, and we proved that our implementation of
such a trap handler combining handwritten assembly and compiler-generated code satisfies
this specification by combining symbolic-evaluation proofs about assembly and Bedrock2
programs with the correctness proof of the Bedrock2 compiler, as well as by proving that
the output of the Bedrock2 compiler, which assumes a machine without CSRs and with
hardware support for multiplication, also runs correctly on a machine with CSRs but without
hardware support for multiplication.

This style of proof relating multiple execution models constitutes a first step towards the
more ambitious goal of thoroughly proving correctness of a virtual memory system, stated
in a similar flavor by saying that user programs running on a system with virtual memory
(implemented by a combination of hardware, assembly, and C) behave as if they were running
on a machine where the user program can use the full physical address space.
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