
Modular Verification of Intrusive List and Tree
Data Structures in Separation Logic
Marc Hermes #Ñ

Radboud University, Nijmegen, The Netherlands

Robbert Krebbers # Ñ

Radboud University, Nijmegen, The Netherlands

Abstract
Intrusive linked data structures are commonly used in low-level programming languages such as C
for efficiency and to enable a form of generic types. Notably, intrusive versions of linked lists and
search trees are used in the Linux kernel and the Boost C++ library. These data structures differ
from ordinary data structures in the way that nodes contain only the meta data (i.e. pointers to
other nodes), but not the data itself. Instead the programmer needs to embed nodes into the data,
thereby avoiding pointer indirections, and allowing data to be part of several data structures.

In this paper we address the challenge of specifying and verifying intrusive data structures using
separation logic. We aim for modular verification, where we first specify and verify the operations
on the nodes (without the data) and then use these specifications to verify clients that attach data.
We achieve this by employing a representation predicate that separates the data structure’s node
structure from the data that is attached to it. We apply our methodology to singly-linked lists –
from which we build cyclic and doubly-linked lists – and binary trees – from which we build binary
search trees. All verifications are conducted using the Coq proof assistant, making use of the Iris
framework for separation logic.

2012 ACM Subject Classification Theory of computation→ Separation logic; Theory of computation
→ Hoare logic; Theory of computation → Programming logic; Theory of computation → Data
structures design and analysis

Keywords and phrases Separation Logic, Program Verification, Data Structures, Iris, Coq

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.19

Supplementary Material Software (Code): https://doi.org/10.5281/zenodo.12575047 [10]

Acknowledgements We thank Derek Dreyer, Laila Elbeheiry, Deepak Garg, Jules Jacobs, Ike Mulder
and Michael Sammler for discussions, and the anonymous reviewers for their feedback. This research
was supported in part by a generous award from Google Android Security’s ASPIRE program.

1 Introduction

Linked data structures such as lists and trees are pervasive in imperative programming and
serve as the implementation for various abstract data types such as queues, stacks, deques,
sets and maps. Verification of these data structures therefore received a considerable amount
of attention in the literature – e.g. the seminal papers on separation logic [30, 28] use linked
lists and trees as their key examples, and many papers on verification tools use linked data
structures as case studies [3, 4, 8, 9, 12, 27]. Yet, there is an unfortunate discrepancy between
the way linked data structures are studied in the literature and the way they are implemented
in systems programming, e.g. the Linux kernel [16, 23] and the Boost C++ library [20].

Let us first review the naive way to represent singly-linked lists in C that are “generic” in
the element type:

1 struct list {
2 void* data;
3 struct list* next;
4 };

© Marc Hermes and Robbert Krebbers;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermesmarc@gmail.com
https://hermesmarc.github.io
https://orcid.org/0000-0002-0375-759X
mailto:mail@robbertkrebbers.nl
https://robbertkrebbers.nl
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.4230/LIPIcs.ITP.2024.19
https://doi.org/10.5281/zenodo.12575047
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

Linked-list nodes contain the data and a pointer to the next node (the NULL pointer is used to
represent the empty list). To avoid fixing the element type, the field data is a void pointer,
meaning it could point to data of arbitrary type. This naive way of representing lists has a
number of drawbacks in systems programming where efficiency is a key concern.

Motivation #1. The use of a pointer indirection for data requires additional storage and
incurs a run-time cost on every read. This is in contrast to the “nongeneric” version where
the data is stored directly in the struct:

1 struct int_list {
2 int data;
3 struct int_list * next;
4 };

Defining a specific version of linked lists for each element type is clearly undesirable – it
means one has to duplicate all methods from the list API for each element type. Modern
programming languages such as C++ and Rust offer generics and monomorphization to
address this problem. It also possible to obtain efficient data types with generic elements in
plain C, which we will illustrate in the following.

The Linux kernel uses the intrusive approach to linked lists, allowing for lists that can be
re-used for different data types, while avoiding the overhead caused by pointer indirections.
This is achieved by separating the meta data (i.e. the pointers to node) from the data. One
first defines a node structure which is used to achieve the necessary linking:

1 struct node {
2 struct node* next;
3 };

next next next
NULL

The list API can now be developed for the node structure, independently of the data. These
nodes can then be incorporated as fields in other structures to create lists with values of any
desired element type. Here we show the instantiation with integer values:

1 struct intrusive_int_list {
2 int data;
3 struct node node;
4 };

next next next
NULL

d0 d1 d2

Compared to the naive approach, the functions implemented for the node API can be used to
operate on lists with attached data, no matter the type of the data. To further illustrate this,
we consider the function replace_at, which replaces the n-th element of an intrusive_int_list

with a new integer value. In the implementation, we first define a function get_pos which
yields a pointer to the n-th position in the node structure, and then use this function in
replace_at to make the replacement at the correct position:

1 struct node* get_pos (int n, struct node* v) {
2 if (n == 0 || v == NULL) return v;
3 return get_pos (n-1, v->next);
4 }
5

6 # define container_of (ptr , container , field)
7 (container *)((unsigned char *)(ptr) - offsetof (container ,field))
8

9 void replace_at (int n, struct intrusive_int_list * l, data a) {
10 struct node* pos = get_pos (n, &l->node);
11 if (pos == NULL) return ;
12 struct intrusive_int_list * lp =

M. Hermes and R. Krebbers 19:3

13 container_of (pos , struct intrusive_int_list , node);
14 lp ->data = a;
15 }

In replace_at, we first create a pointer to the node field. If the call to get_pos returns a
non-NULL node pointer pos, we make use of the container_of macro [24] to recover a pointer
to its encompassing intrusive_int_list structure, in which we can then change the data field.

Motivation #2. The intrusive representation is particularly useful when elements are part
of multiple data structures. For example, elements might be part of multiple search trees and
a priority queue so that they can be retrieved efficiently in different orders. Let us consider a
simpler example where a structure contains multiple singly-linked list nodes:

1 struct intrusive_int_list_2 {
2 int data;
3 struct node node_left ;
4 struct node node_right ;
5 };

next next next
NULL

next next next
NULL

d0 d1 d2

Here, we use node_left to keep track of the elements in left-to-right order, and node_right

to keep track of the elements in right-to-left order. In other words, using two singly-linked
intrusive lists we have constructed a doubly-linked list.

We emphasize that intrusive data structures also provide benefits in terms of allocation.
When creating a new element, one allocates a new intrusive_int_list_2, which readily
contains the list structures. This is in contrast to ordinary non-intrusive data structures,
where one has to allocate the element, and insert (a pointer to) the element into both lists.
Inserting an element into a list involves allocating a node, so this means there are three
allocations in total, while the intrusive version needs just one allocation. Note that this
means that allocation and deallocation are not handled by the node API, but that clients are
put in charge of these tasks.

Goal of the paper. Formally specifying and verifying the correctness of intrusive data
structures poses some interesting challenges. To illustrate this, let us consider the function
replace_at. First, this function makes use of some involved pointer arithmetic by its use of
the container_of macro. Secondly, the structures and functions are defined in a modular
way, and it is desirable for the verification to follow this pattern. We say that the structures
and functions are modular because instantiations (such as intrusive_int_list) use the node
structure in an abstract way. They do not interact directly with the fields of node, and only
use functions (such as get_pos) that operate on node. Similarly, we first want to specify node

and verify get_pos, and then use these ingredients to specify intrusive_int_list and verify
replace. In other words, the proof for replace should simply be about straight-line code,
whereas the reasoning about the recursion should be done in the proof of get_pos.

Regarding the first point – to verify programs operating on pointers – we make use of
separation logic [30, 28]. Since the exact programming language is not the issue we want
to focus on, we will use a simpler language that has dynamic allocation, arrays and pointer
arithmetic, but has none of the orthogonal challenges of C such as fixed-size integers, byte
representations and alignment.

To formally verify the above code in separation logic, we need to formally describe the
involved list structure. Below is the canonical way to specify int_list using a representation
predicate, which associates a value v with a mathematical list of integer data values D:

ITP 2024

19:4 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

IntList : val→ list int → iProp
IntList v [] ≜ v = None
IntList v (d :: D) ≜ ∃(l : loc). v = Some l ∗ ∃v′. l 7→ [d, v′] ∗ IntList v′ D

Here, the notation l 7→ [d, v′], or more generally l 7→ [v0, . . . , vn], is an abbreviation for
l 7→ v0 ∗ . . .∗ l+n 7→ vn, which provides unique ownership of an array storing values v0, . . . , vn

at the locations l to l + n. The connective ∗ is the separating conjunction, which is used to
describe the disjointness of the resources. NULL pointers are modeled using the constructors
None and Some of the option type.

Using the representation predicate, the specification for a function replace_int_at on
int_list can be expressed in terms of a Hoare triple. We will use ⟨n := d⟩D to denote the
mathematical list obtained from D by replacing its n-th element with d. If n is larger than
the length of the list, D remains unchanged.

{ IntList v D } replace_int_at n v d { IntList v (⟨n := d⟩D) }

While representation predicates are commonly used to describe non-intrusive structures
like int_list, our goal is to formulate and prove similar specifications for intrusive data
structures like intrusive_int_list. Additionally, we would like to achieve this in a way that
also formally captures and makes use of the modularity which underlies the definition of
intrusive_int_list and the implementation of replace_at.

To modularly verify replace_at, we should state and verify a specification for get_pos.
This brings us to the key observation about giving a specification to intrusive structures: We
should closely follow the definition of intrusive_int_list, and first isolate the intrusive node

part of the structure:

Node : val→ list loc → iProp
Node v [] ≜ v = None
Node v (l :: L) ≜ v = Some l ∗ ∃v′. l 7→ v′ ∗ Node v′ L,

In contrast to IntList, the above does not make reference to any list of data values and
is instead linking locations taken from the list L. However, this now allows us to define a
representation predicate for the intrusive structure intrusive_int_list in a straightforward
yet novel way:

IntrusiveIntList v D ≜ ∃L. Node v L ∗∗l,d∈L,D (l − 1) 7→ d

In the above, the big separating conjunction of the form∗l,d∈[l0,...,ln],[d0,...,dn] runs over the
pairs (l0, d0), . . . , (ln, dn), implicitly requiring the two appearing lists to be of equal length.
The definition of IntrusiveIntList clearly exposes the underlying intrusive structure in the
form of the Node predicate. We can now easily give a specification for get_pos, which we can
then use in the verification of replace_at:

{ Node v L } get_pos n v {x. x = nth n L ∗ Node v L }
{ IntrusiveIntList v D } replace_at n v d { IntrusiveIntList v (⟨n :=d⟩D) }

In the above specification, nth n L returns Some l if l is the n-th element of the list L,
and returns None if there is no n-th element. Given our definition of IntrusiveIntList the
verification of replace_at is both straightforward and modular. We can easily make use of
the specification of get_pos, since its precondition Node v L conveniently appears as the left
part of the separating conjunction in the definition of IntrusiveIntList.

M. Hermes and R. Krebbers 19:5

Summary of key idea. The example illustrates the key idea we want to push forward in this
paper: A separation of concerns when specifying intrusively implemented data types. One
concern is the “shape” in which data is supposed to be stored, here given by the node structure.
The second concern is the actual data itself, which we can think of as being attached to
the shape. The underlying shape is then used for navigation on the data. Functions that
have been implemented on the shape can, and should, then be used in a modular way when
implementing functions that operate on the data. The verification of the specifications should
then turn out to be modular as well.

We demonstrate this methodology through two examples: intrusive lists (Section 2) and
intrusive binary search trees (Section 3). In both cases, we give representation predicates
to specify the intrusive structure and then show how to use them to specify mutable data
structures that carry data. In the case of trees, we will implement a similar function to the
above get_pos, to locate a specific key in the tree, and to obtain a pointer to the corresponding
node. Since this function leaves us with a partially traversed tree, we need to deal with
the orthogonal challenge of specifying partial trees (Section 3.3), for which we employ ‘the
magic-wand as frame’ approach by Cao et al. [7] (which has previously only been applied to
ordinary data structures, not intrusive ones).

To summarize, the main contributions of this paper are:
We introduce a specification for Linux-like intrusive singly-linked lists and sequences in
separation logic. We use the specification to modularly build up intrusive singly-linked
cyclic lists (Section 2.3) and doubly-linked cyclic lists (Section 2.4), and use them to
implement data structures that carry data with them (Section 2.5).
We apply our approach by verifying locate and insertion operations of binary search trees,
which are based on intrusive binary trees (Section 3). In extension to what is done by
Cao et al. [7], we consider intrusive data structures, and our definition of partial trees
incorporates the invariant of a binary search tree.

All of the included structures, their operations and specifications have been defined and
verified [10] in the Coq proof assistant, by making use of the Iris framework [13, 14, 15, 17,
18, 19] for separation logic.

2 Intrusive List Structures

In this section, we will gradually and modularly build intrusive list data structures. These
structures link together locations in the heap, and do not carry any data with them. Their
API allows a user to attach new locations as nodes to the list. This means that the user is
responsible for the allocation and deallocation of the nodes, and the list structure is only
used to manage the nodes. This can then be used by the user to form lists keeping track of
data, which we will showcase by implementing a deque data structure.

After covering some preliminaries concerning the programming language and separa-
tion logic (Section 2.1), we start with the implementation of simple intrusive sequences
(Section 2.2), and give specifications for some standard operations. We then continue by
modularly using sequences to build intrusive cyclic lists (Section 2.3) and doubly-linked cyclic
lists (Section 2.4). Lastly, we illustrate how the intrusive doubly-linked cyclic lists can be
complemented with data values to implement a deque data structure (Section 2.5).

2.1 Preliminaries
We briefly go over some specifics of the programming language and program logic that will
subsequently be used. We work in a λ-calculus which includes let expressions, if-then-else
expressions, matching on terms, equality checks and mutable arrays:

ITP 2024

19:6 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

alloc n v Allocates n successive locations in memory, initializes all of them with
the value v, and returns the starting location of this array.

free n l Deallocates n successive memory locations beginning from l.
l← v Assigns the value v to the location l.
! l Retrieves the value at memory location l.

To reason about these operations, we utilize separation logic [30, 28], a variant of Hoare logic
designed for imperative programs with pointers. Separation logic introduces the primitive
l 7→ v, separating conjunction ∗, and separating implication −∗, which can be used to form
assertions that are interpreted to describe fragments of the heap.

emp An empty heap fragment.
l 7→ v Describes a memory fragment in which location l contains the value v.
P ∗Q Disjoint union of the fragments described by P and Q.
P −∗ Q Describes a heap fragment which satisfies Q once it is combined with a

disjoint fragment for which P holds.

We let iProp denote the set of separation logic assertions, differentiating it from the set of
assertions Prop of the meta-logic (Coq). We allow pointer arithmetic on locations, meaning
l + n denotes the location n steps away from l. This allows us to describe arrays of values
v0, . . . , vn in the heap, by the formula l 7→ [v0, . . . , vn] ≜ l + 0 7→ v0 ∗ . . . ∗ l + n 7→ vn. We
often encounter situations where we want to make the assumption that a certain location
is non-empty. This is expressed by ∃v. l 7→ v, which we abbreviate as l 7→ _, and likewise
extend the usage of the wildcard symbol “_” to arrays, as for example in l 7→ [_, _, v].

A key element in reasoning about program correctness within the framework of separation
logic are Hoare triples. A Hoare triple is of the form {P } e { v. Φ(v) }, where:

P Assertion specifying the state of the heap before the execution of e.
e An expression in the programming language being analyzed.
Φ(v) A predicate making an assertion about the return value v and describing

the state of the heap after the execution of e.

The semantics of a Hoare triple is that if the initial state satisfies the precondition P , then
the program e will not crash, and if it finishes executing, the return value and final state will
satisfy the postcondition Φ. If the postcondition does not bind a return value, we simply
write {P} e {Q}.

2.2 Sequences
A sequence [30] starting at location l : loc links together a list D : list val of values and
stores a given default pointer e : loc in the final node, giving its predicate the type signature
loc → list val → loc → iProp. A standard definition of lists is similar to this, but would
restrict it by demanding the last pointer to be a NULL pointer. Since our goal is to specify
intrusive structures, we decouple the values from the shape of the sequence and define a
representation predicate Seq.pred with signature loc → list loc → loc → iProp, which only
links together a list of locations:

Seq.pred s [] e ≜ s 7→ e Seq.pred s (l :: L) e ≜ s 7→ l ∗ Seq.pred l L e.

Our API for sequences includes a function to create a new intrusive sequence, push a new
location to the front of the sequence, pop the first location, and to retrieve the next location
in the sequence:

M. Hermes and R. Krebbers 19:7

Seq.new start end := start← end

Seq.push start new := new ← ! start; start← new

Seq.pop start := let rem = ! start in start← ! rem ; rem

Seq.next start := ! start

As alluded to by the naming, the predicate and functions are enclosed in a module named Seq.
If the context makes it clear enough, we abbreviate the representation predicate Seq.pred by
Seq, and drop the module name in the function names. We do so for all data structures that
follow. The specifications for the operations on sequences are as follows:

{ s 7→ _ } new s e { Seq s [] e }
{ l 7→ _ ∗ Seq s L e } push s l { Seq s (l :: L) e }
{ Seq s (l :: L) e } pop s { p. p = l ∗ Seq s L e ∗ p 7→ _ }
{ Seq s L e } next s { p. p = nth 0 (L ++[e]) ∗ Seq s L e }

Recall that nth n L returns the n-th element of a list or None if there is no such element.
The specification clarifies that to create a new sequence at location s, the caller needs to
own the location s and provide a pointer e to be stored inside s. The function push likewise
requires the caller to have ownership of the location that is added to the sequence, and pop
will return ownership of the popped location. This means that the operations do not perform
allocation or deallocation of nodes, but are used to manage locations of the sequence.

We want to highlight the specification of next, as its postcondition, maybe unexpectedly,
seems to return the sequence unchanged. In a non-empty cycle Seq s (l :: L) e the call next s

returns the location l. Intuitively, the caller would now continue to operate on the sequence
Seq l L e. Formally, this is done using the following “splitting” property:

Seq s1 (L1 ++s2 :: L2) ⊣⊢ Seq s1 L1 s2 ∗ Seq s2 L2 e (1)

Here, ⊣⊢ expresses interderivability of separation logic assertions, making it possible to use
the rule in both directions. This means that one can use the rule in left-to-right direction
to obtain a Seq predicate for any position in the list, then push or pop elements there, and
finally use the right-to-left direction to reattain the Seq predicate for the whole sequence.

2.3 Cyclic Lists
We can now use the previously defined sequences to define intrusive cyclic lists. For this,
we simply make use of the fact that we can freely choose the pointer stored at the end of a
sequence and use it to point back to the start:

Cycle.pred c L := Seq c L c

The Cycle predicate satisfies the following “rotation” property, derived from the “splitting”
property for Seq (1), reflecting its cyclic structure:

Cycle c (c′ :: L) ⊣⊢ Cycle c′ (L ++[c]) (2)

The API for cyclic lists is similar to the one for sequences, but includes a function that
checks if a list is empty. This is done by comparing the starting location of the cycle to the
location it points to. If the two are equal, the cycle is considered empty. Once we attach
data to the intrusive cycle, the starting location takes the special role of a sentinel node.

ITP 2024

19:8 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

Cycle.new start := Seq.new start start

Cycle.is_empty start := ! start = start

Cycle.insert := Seq.push

Cycle.remove := Seq.pop

Cycle.next := Seq.next

Many of the functions are directly defined in terms of the sequence functions. The specifica-
tions are as follows, where is_nil returns a boolean reflecting if a list is empty:

{ c 7→ _ } new c { Cycle c [] }
{ Cycle c L } is_empty c { b. b = is_nil L ∗ Cycle c L }
{ Cycle c L ∗ l 7→ _ } insert c l { Cycle c (l :: L) }
{ Cycle c (l :: L) } remove c { p. p = l ∗ Cycle c L ∗ p 7→ _ }
{ Cycle c L } next c { p. p = nth 0 (L ++[c]) ∗ Cycle c L }

Similar to sequences, we can use the specification of next in combination with the “rotation”
property (2) to insertion and remove elements at arbitrary positions in the cycle.

2.4 Doubly-linked cyclic Lists
We now come to the more interesting example of intrusive doubly-linked cyclic lists, or
dcycles for brevity. Conceptually, a dcycle is composed of a cyclically arranged nodes, each
node containing two pointers, one to the next node, and one to the previous node. Another
way to split a dcycle into two parts, is to collect all the forward pointers in a cycle, and all
the backward pointers in a separate cycle.

l0

l0 + 1

l1 l2

l1 + 1 l2 + 1

Figure 1 Each node of the dcycle consists of
two pointers, one pointing to the next, and one
pointing to the previous node.

l0

l0 + 1

l1 l2

l1 + 1 l2 + 1

Figure 2 The dcycle can be decomposed into
two cycles, one containing all the next pointers
(white), and one with all the prev pointers (grey).

Both combined make up the doubly-linked cyclic list. It is this latter view that motivates our
choice for the representation predicate for dcycles, since it allows us to re-use the previous
cycle specification in a straightforward way:

DCycle.pred c L := Cycle c L ∗ Cycle (c + 1) (rev_add_1 L)

The function rev_add_1 reverses the list of locations and adds 1 to every location, generating
the cycle of backward pointers. By this definition, a node of the dcycle DCycle.pred c L

at location l ∈ L owns the resources l 7→ next ∗ (l + 1) 7→ prev, where next points to the
next node in the dcycle and is owned by the underlying cycle Cycle c L, and prev points to

M. Hermes and R. Krebbers 19:9

the previous one, and is owned by the cycle Cycle (c + 1) (rev_add_1 L) (Figure 2). Basic
operations on dcycles are implemented in a way that leverages the functions already provided
by the underlying cycles. For readability, we introduce some notation for operations used in
accessing the next and previous pointer of a node: given a location l in a dcycle, we write
l.next for l + 0 and l.prev for l + 1.

DCycle.new c := Cycle.new c.next ; Cycle.new c.prev

DCycle.is_empty c := Cycle.is_empty c.next

DCycle.next c := Cycle.next c.next

DCycle.prev c := (Cycle.next c.prev) + (−1)
DCycle.insert0 c new := let next = DCycle.next c in

Cycle.insert next.prev new.prev ;
Cycle.insert c.next new.next

DCycle.remove0 c := let nn = DCycle.next (DCycle.next c) in
let l0 = Cycle.remove c.next in
Cycle.remove nn.prev ; l0

The function insert0 and remove0 are used to insertion and remove the node that comes
after the current node. We can also define functions insert1 and remove1, which do the
same operations in the other direction of the dcycle. We omit these here, but they can be
found in the Coq mechanization. The specifications of the dcycle functions are:

{ c 7→ [_, _] } new c { DCycle c [] }
{ DCycle c L } is_empty c { b. b = is_nil L ∗ DCycle c L }
{ DCycle c L } next c { p. p = nth 0 (L ++[c]) ∗ DCycle c L }
{ DCycle c L } prev c { p. p = nth 0 (rev L ++[c]) ∗ DCycle c L }
{ DCycle c L ∗ l 7→ [_, _] } insert0 c l { DCycle c (l :: L) }
{ DCycle c (l :: L) } remove0 c { p. p = l ∗ DCycle c L ∗ p 7→ [_, _] }

We often need to make use of a “rotation” property, which analogously to the similar property
for cycles (2), allows us to cyclically rotate the locations of the dcycle:

DCycle c (c′ :: L) ⊣⊢ DCycle c′ (L ++[c]) (3)

To illustrate in how far the chosen definition of the dcycle representation predicate allows for
modular reasoning, let us consider what happens during the verification of DCycle.remove0.
Its specification as given above is:

{ DCycle c (l :: L) } DCycle.remove0 c { p. p = l ∗ DCycle c L ∗ p 7→ [_, _] }

The function DCycle.remove0 first makes two calls to DCycle.next. The specification of
DCycle.next keeps the initial DCycle predicate unaltered, so we make use of the rotation
property. Next, there are two calls to the function Cycle.remove, each separately effecting
one of the two underlying cycles of the dcycle. At this point, we would like to use the already
verified specification of Cycle.remove from Section 2.3. Fortunately, we can achieve this by
unfolding the definition of the DCycle predicate:

DCycle c (l :: L)
⊣⊢ Cycle c (l :: L) ∗ Cycle (c + 1) (rev_add_1 (l :: L))

This then allows us to reason on the separate cycles and make use of the Cycle.remove
specification twice.

ITP 2024

19:10 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

2.5 Deques
We now illustrate how the intrusively treated dcycles can be used to implement and verify a
deque data structure. A deque represents a linearly arranged list of elements, supporting
push and pop operations for the addition and removal of elements at both the front and the
end of the list. The cyclic nature of dcycles makes it convenient to implement a deque, since
we can use the first node as a sentinel. Using a dcycle as the underlying structure, defining
the representation predicate is also rather simple: we associate the nodes of the dcycle with
the data that is supposed to be stored next to it:

Deque.pred c D := ∃L. DCycle c L ∗∗l,d∈L,D (l − 1) 7→ d

Since a node of the underlying dcycle at location l stores two pointers, the data is stored at
location l − 1. From the entry-point c of the dcycle (which does not get any data), we can
then make changes at the head and tail of the deque. Creation, push and pop operations for
the deque are defined as follows:

Deque.new () := let l = alloc 2 None in DCycle.new l ; l

Deque.push_front x c := let lx = alloc 3 x in DCycle.insert0 c (lx + 1)
Deque.push_back x c := let lx = alloc 3 x in DCycle.insert1 c (lx + 1)

Deque.pop_front c := if DCycle.is_empty c then None else
let next = DCycle.next c in
let x = ! next.data in
let rem = DCycle.remove0 c in
free 3 (rem− 1) ; Some x

Deque.pop_back c := if DCycle.is_empty c then None else
let prev = DCycle.prev c in
let x = ! prev.data in
let rem = DCycle.remove1 c in
free 3 (rem− 1) ; Some x

Here, l.data is notation for l− 1. Note that Deque.new only makes an allocation for an array
of length 2, since it only creates the sentinel node of the underlying dcycle, which does not
get to hold any data.

Thanks to the already verified specifications for the operations on dcycles, available
lemmas about the big separating conjunction in the library of Iris, and the usage of the
proof automation framework Diaframe [26], verifying the specifications of the deque API
surmounts to less than 30 lines of proof in Coq.

3 Intrusive Binary Search Trees

In this section, we discuss and specify intrusive trees (Section 3.1), akin to those found in
the Linux kernel [32, 22], where they are used for the implementation of the red-black trees.
In the introduction (Section 1) we gave an example where the replacement of an element
in a list was split into two parts: first, finding the right position in the intrusive list and
returning a pointer to that location, and second, using this pointer to make the replacement
in the corresponding data field. In the case of binary search trees, our implementation of the
insertion operation will likewise be done in two steps. It first uses a function locate to find
the correct position for the insertion – making use of the intrusive structure for navigation –
and then carry out the insertion in this position. Again, it will be our goal to show that the
verification of the final insertion operation can be done modularly (Section 3.3).

M. Hermes and R. Krebbers 19:11

Since locate searches for – and potentially stops – at an arbitrary position inside a tree,
we need to deal with partially traversed binary trees. In Section 3.3 we will show how we can
deal with this by using the “magic wand as frame” approach [7], which we have also adapted
(Section 3.2) to deal with the verification of properties of the functional locate function.

3.1 Representation Predicates

To illustrate a use of binary search trees, our overall goal will be to use them to implement a
map data structure, which keeps track of key-value pairs by making use of an underlying
binary search tree.

To start, we specify the intrusive tree structure, which relates a tree t : tree loc labeled
with locations – each one the location of a node of the heap representation of the tree – to
the root-location l : loc of the tree.

Tree.pred : loc→ tree loc→ iProp
Tree.pred l Leaf := l 7→ None
Tree.pred l (Node p t1 t2) := l 7→ Some p ∗ Tree.pred p t1 ∗ Tree.pred (p + 1) t2

In the above, we make use of polymorphic typed trees in Coq, since we will use them with
different types for the labels.

tree (A : Type) ::= Leaf : tree A | Node : A→ tree A→ tree A→ tree A

We also define standard map and inorder functions on those trees. So far we have only
specified the intrusive binary tree shape. To get binary search trees, our next step is to
add a key of type K to every node in the tree, changing the signature to take trees of type
tree (K ∗ loc), and to enforce the binary search tree invariant. We restrict our attention to
binary search trees that use natural numbers as their keys (i.e. K = nat), and we rely on a
Coq predicate BST_inv_nat : tree nat → Prop to describe binary search trees on the level of
Coq. Combining the above, the desired heap predicate for binary search trees is:

BST.pred : loc→ tree (K * loc)→ iProp
BST.pred l t := Tree.pred l (π1 t) ∗ BST_inv_nat (π2 t) ∗ ∗(k,l)∈inorder t (l + 2) 7→ k

The predicate is a separating conjunction of three parts:
The shape of the tree, which must hold for the tree of locations that we get from the first
projection π1 t = map fst t of the tree t : tree (K * loc) of key-location pairs.
The binary search tree invariant, which must hold for the tree of natural numbers that
we get from the second projection π2 t = map snd t of the tree.
A big separating conjunction over every key-location pair (k, l) in the tree t, and indicating
where the key is stored. Notably, the structure of the tree plays no role here.

Using binary search trees, we can now specify finite maps K fin−⇀ val of key-value pairs. This
is first done by specifying a finite map connecting keys and locations, which can then be
used to attach data to the locations.

MapNode.pred : loc→ (K fin−⇀ loc) → iProp
MapNode.pred l m := ∃t. BST.pred l t ∗ m = to_map t

Map.pred : loc→ (K fin−⇀ val) → iProp
Map.pred l m := ∃m′. MapNode.pred l m′ ∗∗(l,v)∈m′,m (l − 1) 7→ v

ITP 2024

19:12 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

The specification of the insertion operation for intrusive maps is then:

{new 7→ [None, None, k] ∗ MapNode l m }
MapNode.insert l new

{ml. MapNode l (⟨k := new⟩m)
∗ if m(k) = Some l′ then ml = Some l′ ∗ l′ 7→ [_, _, k] else ml = None }

Here, ⟨k := new⟩m is the map m extended with the key-value pair (k, new) (the value of k is
overwritten if it already exists). Note that by definition of Tree.pred the location l is always
the entry point of the tree and not subject to any changes the function insert makes.

To verify the above, we make immediate use of the specification of insertion for trees,
which will be discussed in Section 3.3. After using it we are left with proof obligations about
the mathematical trees, which can be resolved by previously established lemmas, and lemmas
from the library. Finishing the example, we can then use the above to verify the insertion
operation on maps that have values attached:

{Map l m} Map.insert l k v {Map l (⟨k := v⟩m)}

In the next two subsections we cover the definition and verification of the locate and insertion
functions on binary search trees, first as functional versions on the level of the meta-theory
(Section 3.2), and then implemented in the imperative object language (Section 3.3).

3.2 Functional Implementation of Tree Functions
To specify representation predicates for binary search trees we made use of polymorphic trees
on the level of Coq. To give specifications for the locate and insert operations, we also need
to implement functional versions of them. Our choice of implementing insert by making
use of locate, instead of the more standard recursive definition, will lead to an interesting
challenge when it comes to verifying that insert preserves the binary search tree invariant.
Dealing with this is the main technical aspect we would like to highlight in this section.

We again try to keep things polymorphic and assume an arbitrary type K of keys, and a
boolean comparison function p : K → K → bool. Functional implementations of locate and
insert are then given by the following Coq code:

1 Fixpoint locate (k : K) (Γ : tree K → tree K) (t’ : tree K) : (tree K → tree K) ∗ tree K :=
2 match t’ with
3 | Leaf ⇒ (Γ , Leaf)
4 | Node k’ l r ⇒ if p k k’ then locate k (λ h, Γ (Node k’ h r)) l
5 else if p k’ k then locate k (λ h, Γ (Node k’ l h)) r
6 else (Γ , t’)
7 end.
8

9 Definition insert (k : K) (t : tree K) : tree K :=
10 match locate k id t with
11 | (Γ ’, Leaf) ⇒ Γ ’ (Node k Leaf Leaf)
12 | (Γ ’, Node _ l r) ⇒ Γ ’ (Node k l r)
13 end.

The argument Γ : tree K → tree K of locate is used as a form a functional zipper [11] or
context – it keeps track of the tree that is left behind, as we traverse down in search of the
key. We can also think of the function Γ as a partial tree with one hole, waiting for a tree as
input in order to be completed to a full tree. Since not all functions correspond to partial

M. Hermes and R. Krebbers 19:13

trees that result from traversing down a tree (e.g. λt, Node t t), we define a predicate
ctx to define properly formed contexts. The constructors capture the ways in which locate
enlarges the context during a recursive call.

1 Inductive ctx : (tree K → tree K) → Prop :=
2 | ctx_id : ctx id
3 | ctx_ht k t Γ : ctx Γ→ ctx (λ h, Γ (Node k h t))
4 | ctx_th k t Γ : ctx Γ→ ctx (λ h, Γ (Node k t h)).

Making use of the comparing function p we define the binary search tree invariant BST for
trees over K, and make the assumption that p is asymmetric and antisymmetric to ensure
that the invariant has the expected properties.

1 Inductive BST_inv : tree K →Prop :=
2 | BST_Leaf : BST_inv Leaf
3 | BST_Node x l r : BST_inv l → (∀ y, y ∈ to_set l → p y x) →
4 BST_inv r → (∀ y, y ∈ to_set r → p x y) →
5 BST_inv (Node x l r).

The above is the invariant which we specialized to natural numbers (BST_inv_nat) in Sec-
tion 3.1. Next we want to prove that insert preserves the BST invariant, since this is a
property that will be needed in the verification of the imperative implementation of insert.

Compared to the recursive implementation of insert, the usage of locate complicates
this verification. A specification for locate needs to faithfully capture that the function can
potentially stop in the middle of a tree, leaving behind a partially traversed tree and the
root of a tree that has the sought after key.

To formally capture partially traversed trees, we define the predicate BST_ctx.
1 Definition BST_ctx (Γ : tree K → tree K) C C’ :=
2 forall t, BST_inv t → to_set t ⊆ C → BST_inv (Γ t) ∧ to_set (Γ t) ⊆ C’.
3

4 Lemma BST_ctx_locate_spec {k Γ t Γ ’ t’} C :
5 locate k Γ t = (Γ ’, t’) →
6 BST_inv t ∧ BST_ctx Γ ({k} ∪ to_set t) ({k} ∪ C) →
7 BST_inv t’ ∧ BST_ctx Γ ’ ({k} ∪ to_set t’) ({k} ∪ C).

The assertion BST_ctx Γ C C’ expresses that for every BST t with keys in the set C, passing
it to Γ will yield another binary search tree Γ t whose keys are a subset of C ′.

The above specification of locate can now be shown by induction on the BST invariant
of the input tree t and making sure that the induction hypothesis generalizes over Γ. It also
makes use of some properties of BST_ctx, which establish base cases and compositionality,
and readily follow from the definition:

C ⊆ C ′ → BST_ctx id C C ′

(∀y. y ∈ C → p y k)→ BST_inv t→ BST_ctx (λh, Node k h t) C ({k} ∪ C ∪ to_set t)
(∀y. y ∈ C → p k y)→ BST_inv t→ BST_ctx (λh, Node k t h) C ({k} ∪ C ∪ to_set t)
BST_ctx Γ A B → BST_ctx Γ′ B C → BST_ctx (Γ′ ◦ Γ) A C

To prove that insert preserves the BST invariant, we only need the special case of the above
lemma, where Γ = id and C = to_set t This gives us:

1 locate k id t = (Γ ’, t’) → BST_inv t →
2 BST_inv t’ ∧ BST_ctx Γ ’ ({k} ∪ to_set t’) ({k} ∪ to_set t).

By case analysis on the tree t, we can then show the desired preservation property of insert:
1 Lemma BST_inv_insert k t : BST_inv t → BST_inv (insert k t).

ITP 2024

19:14 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

3.3 Locate and Insertion on Binary Search Trees
We come to a minimal API for binary search tree, only including a function to create a new
tree and one to insert a new element. We again introduce notations for accessing the fields
of a node: l.left for l + 0, l.right for l + 1, and l.key for l + 2.

BST.new l := l← None
BST.locate pos k := match ! pos with

None ⇒ pos

| Some l⇒ let k′ = ! l.key in
if k < k′ then BST.locate l.left k

else if k > k′ then BST.locate l.right k

else pos

end

BST.insert root new := let new_key = ! new.key in
let pos = BST.locate root new_key in
match ! pos with
None ⇒ pos← new ; None
| Some l⇒ new.left← ! l.left ;

new.right← ! l.right ;
pos← new ; Some l

end

Running locate to find a key k in the tree t, will return a value with the location of the node
in t that contains the key k, or None if no such node exists. Notably, if the key is found,
this means we get a pointer to a node in the tree. The challenge is now to find a way to
give a specification for locate, since it must somehow mention this pointer to an internal
node of the tree. This is not yet possible with the tree predicate we have given so far. The
specification of locate should assure that the function will always successfully run on a BST.

{ BST l t } locate l k { l′. Φ l′ }

We still need to determine the predicate for the postcondition Φ. On the one hand, it will
need to express that the returned pointer l′ is the root of some subtree, which can be done by
using the BST predicate. But apart from this subtree, Φ also has to account for the remainder
of the initial tree t. Instead of coming up with a new data structure in Coq to describe these
partial trees, we deal with this by following the “magic wand as frame” approach [7], which
makes use of the separating implication −∗ and functions Γ to define partial trees.

part_BST : loc→ (tree (nat ∗ loc) → tree (nat ∗ loc))→ loc→ iProp
part_BST l Γ p := ∀t′.

(
BST.pred p t′ ∗ BST_inv_nat (π1(Γ t′))

)
−∗ BST.pred l (Γ t′)

In the predicate part_BST l Γ p, the location l is the root of the partial tree, p is the location
which is missing a subtree, and Γ can intuitively be viewed as the remaining partial tree.
Formally, during the proof, we require Γ to correspond to proper contexts, so we use the ctx
predicate to enforce this. We can now formulate the specification for locate as follows:

ctx Γ→ tree.locate k s id t = (Γ′, t′)→
{ BST l t } locate l k {l′. part_BST l Γ′ l′ ∗ BST l′ t′ }

Here, tree.locate is the functional implementation of locate in Coq (Section 3.2). The
verification of the above specification is done by induction on the tree t. Since locate is

M. Hermes and R. Krebbers 19:15

running a loop, we will need a loop invariant. A first proof attempt quickly reveals that
during a loop of locate, the precondition involving BST can usually not be restored, since the
tree is only partially traversed. But we can generalize the precondition to fix this issue.

ctx Γ→ tree.locate k s Γ t = (Γ′, t′)→
{ part_BST l Γ p ∗ BST p t } locate p k {p′. part_BST l Γ′ p′ ∗ BST p′ t′ }

The above can then be proven by induction on the tree t while making sure to generalize over
all other parameters. The specification of locate can then be used to verify the insertion
function, only requiring a case distinction on the tree, and no further proof by induction.

{new 7→ [None, None, k] ∗ BST l t } insert l new { BST l (tree.insert k new t) }

The proof makes use of the fact that the functional implementation of insertion preserves
the BST invariant of the tree, which was discussed in Section 3.2.

4 Mechanization

All of the above presented data structures, specification and related proofs have been fully
mechanized in the Coq proof assistant, making use of the Iris framework for separation logic.
Apart from some notational short hands, the definitions and theorem statements in the paper
directly reflect their counterparts in Coq.

In the verification, we additionally make use of Diaframe [26], which is a proof automation
framework for Iris. It employs a goal-directed proof search strategy which can be extended
by the user. The object programming language we use and study with Iris is HeapLang,
which is the standard language provided by Iris, and is used without further adjustments.
Regarding Diaframe, we added a few lines of code to enhance some simple handling of pointer
arithmetic. These latter lines can be found in the Setup.v file.

The proofs remain rather simple for the sequences and cyclic lists, but start to get slightly
more involved once we layer the intrusive lists in the case of the dcycles (Section 2.4). The
representation predicate needs to be unfolded and its constituents manipulated in very
deliberate ways, by making use of the rotation property of the cycle predicate. The same
can be said about the verification in the case of the binary search trees. Here, the main
formalization overhead (Util.v) was in relation to the underlying mathematical trees, which
turns out to be significantly larger than the corresponding one for lists. This was mainly due
to the choice of implementing insertion via locate, which required different proof approaches
compared to the recursive version, but allowed us to discuss the problem of internal pointers
in tree structures.

5 Related Work

Intrusive Data Structures. As part of effort in verifying Google’s pKVM hypervisor
for Android, Pulte et al. [29] verify the buddy allocator [1] used in the hypervisor. The
corresponding C code makes use of intrusive lists (list_head), which are specified as part of
the main invariant in the verification. The intrusive data structure is however not identified
and specified as an independent structure. Lee et al. [21] consider intrusive data structures
in the context of Rust, where they focus the issue of type-checking intrusive structures in
ownership type-systems.

ITP 2024

19:16 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

Linked List in Separation Logic. Linked lists are a standard data structure covered in any
introduction to separation logic [3, 5, 30]. They also serve as a natural target to benchmark
verification tools and verifications can therefore for example be found in among others
Bedrock [9], Charge [4], VST [3, 6], Viper [27] and Verifast [31, 12]. In all of these cases, lists
are specified in a non-intrusive way, similar to is_int_list in the introduction (Section 1).

Magic Wand as Frame. Cao et al. [7] utilize the magic wand to describe partial data
structures, which avoids the introduction of another recursively defined predicate to specify
these kinds of data “frames”. While we have adopted their approach for defining partial trees
by usage of the magic wand, our definition still differs. They define a partial tree that only
represents the partial tree shape. We however actually define a partial binary search tree, i.e.
the values in our partial structure define are sorted according to the BST invariant.

Higher-Order Representation Predicates in Separation Logic. Charguéraud [8] showcases
how higher-order representation predicates can be used to describe polymorphic mutable
data structures. He covers a wide range of standard structures, which includes mutable
lists, list segments, records, trees and arrays. Similarly to the example we have given in
Section 1, he treats the example of a function to read the n-th cell of a mutable list, and uses
a predicate designating a list segment to be able to formulate the specification. Likewise, he
continues by treating trees and showing techniques of how to represent trees with holes, i.e.
trees, where the ownership of possibly several subtrees has been detached. Charguéraud uses
recursively defined predicates to describe the structures with holes, whereas we have made
use of the “magic wand as frame” approach. Lists are treated non-intrusively, and he does
not cover cyclic data structures or binary search trees.

6 Conclusion

In this paper, we have presented an approach to specify intrusive data structures by first
separately specifying the underlying node structure before the addition of data. One key
feature of intrusive data structures is that they can be combined: they can be used to keep
track of data across multiple intrusive data structures. With our given approach, this can
easily be captured, since we can combine specifications of intrusive data structures. We
illustrated this by using two cyclic lists to track data, effectively giving us the implementation
of a deque (Section 2.5).

Throughout the presented examples, we have chosen a modular approach when it came to
specifying the list and tree data structures. This is particularly evident in the specifications of
the cyclic and doubly-cyclic lists. But this was not only limited to specifications; whenever we
implemented a new function on a data structure, we made sure to reuse operations provided
by any underlying structure. As a consequence, verifying the specifications of the presented
data structures also ended up decomposing in a modular way. Since our mechanization makes
use of the Iris framework and Diaframe, most proofs get simplified to the point where the
only proof obligations that were left were related to the logical representations of the data.

Looking ahead, it remains to be determined to which extent this modular approach can
be applied to more complex graph-like structures. The Linux kernel makes use of a task
structure [25], which contains multiple intrusive list node occurrences (list_head) and with
the addition of other intrusive structures, and the buddy allocator in pKVM [1, 2] makes
use of intrusive lists to keep track of free blocks. So there are natural examples of data
structures in which many intrusive structures are embedded. Some scaling challenges will

M. Hermes and R. Krebbers 19:17

probably appear when tying the mathematical structures – which outline the shape and
carry information about the location of nodes – to the heap representations of the intrusive
structures. In the dcycle example (Section 2.4) this happened by the usage of the rev_add_1
function. Many similar functions, or a complex relation, will most likely be needed in order
to specify a structure that involves several embedded intrusive data structures.

References
1 Android Open Source Project. Buddy allocator in pKVM, 2024. URL: https://github.com/

torvalds/linux/blob/master/arch/arm64/kvm/hyp/nvhe/page_alloc.c.
2 Android Open Source Project. Source code of the hyp_pool structure used in the pKVM

implementation of the buddy allocator, 2024. URL: https://github.com/torvalds/linux/
blob/bf3a69c6861ff4dc7892d895c87074af7bc1c400/arch/arm64/kvm/hyp/include/nvhe/
gfp.h#L12.

3 Andrew W. Appel. Program Logics for Certified Compilers. Cambridge University Press, 2014.
4 Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! In ITP, pages 315–331,

2012. doi:10.1007/978-3-642-32347-8_21.
5 Lars Birkedal and Aleš Bizjak. Lecture notes on Iris: Higher-order concurrent separation logic,

2024. URL: https://iris-project.org/tutorial-material.html.
6 Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel.

VST-Floyd: A Separation Logic Tool to Verify Correctness of C Programs. JAR, 61(1):367–422,
2018. doi:10.1007/s10817-018-9457-5.

7 Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W Appel. Proof Pearl: Magic
Wand as Frame, 2018.

8 Arthur Charguéraud. Higher-order representation predicates in separation logic. In CPP,
pages 3–14, 2016. doi:10.1145/2854065.2854068.

9 Adam Chlipala. Mostly-automated verification of low-level programs in computational separa-
tion logic. In PLDI, pages 234–245, 2011. doi:10.1145/1993498.1993526.

10 Marc Hermes. Coq Mechanization of “Modular Verification of Intrusive List and Tree Data
Structures in Separation Logic”, 2024. doi:10.5281/zenodo.12575047.

11 Gérard P. Huet. The zipper. JFP, 7(5):549–554, 1997. doi:10.1017/S0956796897002864.
12 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank

Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA
Formal Methods, pages 41–55, 2011. doi:10.1007/978-3-642-20398-5_4.

13 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In
ICFP, pages 256–269, 2016. doi:10.1145/2951913.2951943.

14 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. JFP, 28:e20, 2018. doi:10.1017/S0956796818000151.

15 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning. In POPL, pages 637–650, 2015. doi:10.1145/2676726.2676980.

16 Kernel Newbies. How does the kernel implements linked lists?, 2017. URL: https:
//kernelnewbies.org/FAQ/LinkedLists.

17 Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. MoSeL: A general, extensible modal
framework for interactive proofs in separation logic. PACMPL, 2(ICFP):77:1–77:30, 2018.
doi:10.1145/3236772.

18 Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The Essence of Higher-Order Concurrent Separation Logic. In ESOP, pages 696–723,
2017. doi:10.1007/978-3-662-54434-1_26.

ITP 2024

https://github.com/torvalds/linux/blob/master/arch/arm64/kvm/hyp/nvhe/page_alloc.c
https://github.com/torvalds/linux/blob/master/arch/arm64/kvm/hyp/nvhe/page_alloc.c
https://github.com/torvalds/linux/blob/bf3a69c6861ff4dc7892d895c87074af7bc1c400/arch/arm64/kvm/hyp/include/nvhe/gfp.h#L12
https://github.com/torvalds/linux/blob/bf3a69c6861ff4dc7892d895c87074af7bc1c400/arch/arm64/kvm/hyp/include/nvhe/gfp.h#L12
https://github.com/torvalds/linux/blob/bf3a69c6861ff4dc7892d895c87074af7bc1c400/arch/arm64/kvm/hyp/include/nvhe/gfp.h#L12
https://doi.org/10.1007/978-3-642-32347-8_21
https://iris-project.org/tutorial-material.html
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.5281/zenodo.12575047
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://kernelnewbies.org/FAQ/LinkedLists
https://kernelnewbies.org/FAQ/LinkedLists
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26

19:18 Modular Verification of Intrusive List and Tree Data Structures in Separation Logic

19 Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order
concurrent separation logic. In POPL, pages 205–217, 2017. doi:10.1145/3009837.3009855.

20 Olaf Krzikalla and Ion Gaztanaga. Boost.intrusive, part of Boost C++ documentation,
2024. Chapter 17, version 1.84.0. URL: https://www.boost.org/doc/libs/1_84_0/doc/
html/intrusive.html.

21 Keunhong Lee, Jeehoon Kang, Wonsup Yoon, Joongi Kim, and Sue Moon. Enveloping Implicit
Assumptions of Intrusive Data Structures within Ownership Type System. In PLOS, pages
16–22, 2019. doi:10.1145/3365137.3365403.

22 Linux Kernel. Source code of red-black trees, 2021. URL: https://github.com/torvalds/
linux/blob/v6.8/include/linux/rbtree_types.h#L5.

23 Linux Kernel. Source code of linked lists library, 2023. URL: https://github.com/torvalds/
linux/blob/v6.8/include/linux/list.h.

24 Linux Kernel. Source code of container_of macro, 2023. URL: https://github.com/
torvalds/linux/blob/v6.8/include/linux/container_of.h.

25 Linux Kernel. Source code of task_struct, 2024. URL: https://github.com/torvalds/
linux/blob/v6.8/include/linux/sched.h#L748.

26 Ike Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: Automated verification
of fine-grained concurrent programs in Iris. In PLDI, pages 809–824, 2022. doi:10.1145/
3519939.3523432.

27 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Verification Infra-
structure for Permission-Based Reasoning. In VMCAI, pages 41–62, 2016. doi:10.1007/
978-3-662-49122-5_2.

28 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In CSL, volume 2142, pages 1–19, 2001. doi:10.1007/3-540-44802-0_1.

29 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and
Neel Krishnaswami. CN: Verifying Systems C Code with Separation-Logic Refinement Types.
PACMPL, 7(POPL):1:1–1:32, 2023. doi:10.1145/3571194.

30 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74, 2002. doi:10.1109/LICS.2002.1029817.

31 Jan Smans, Bart Jacobs, and Frank Piessens. VeriFast for Java: A Tutorial. In Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, volume 7850, pages 407–442.
Springer, 2013. doi:10.1007/978-3-642-36946-9_14.

32 The Linux Kernel. What are red-black trees, and what are they for?, 2007. URL: https:
//docs.kernel.org/core-api/rbtree.html.

https://doi.org/10.1145/3009837.3009855
https://www.boost.org/doc/libs/1_84_0/doc/html/intrusive.html
https://www.boost.org/doc/libs/1_84_0/doc/html/intrusive.html
https://doi.org/10.1145/3365137.3365403
https://github.com/torvalds/linux/blob/v6.8/include/linux/rbtree_types.h#L5
https://github.com/torvalds/linux/blob/v6.8/include/linux/rbtree_types.h#L5
https://github.com/torvalds/linux/blob/v6.8/include/linux/list.h
https://github.com/torvalds/linux/blob/v6.8/include/linux/list.h
https://github.com/torvalds/linux/blob/v6.8/include/linux/container_of.h
https://github.com/torvalds/linux/blob/v6.8/include/linux/container_of.h
https://github.com/torvalds/linux/blob/v6.8/include/linux/sched.h#L748
https://github.com/torvalds/linux/blob/v6.8/include/linux/sched.h#L748
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/3571194
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-36946-9_14
https://docs.kernel.org/core-api/rbtree.html
https://docs.kernel.org/core-api/rbtree.html

	1 Introduction
	2 Intrusive List Structures
	2.1 Preliminaries
	2.2 Sequences
	2.3 Cyclic Lists
	2.4 Doubly-linked cyclic Lists
	2.5 Deques

	3 Intrusive Binary Search Trees
	3.1 Representation Predicates
	3.2 Functional Implementation of Tree Functions
	3.3 Locate and Insertion on Binary Search Trees

	4 Mechanization
	5 Related Work
	6 Conclusion

