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Abstract
Quillen model category theory forms the cornerstone of modern homotopy theory, and thus the
semantics of (and justification for the name of) homotopy type theory / univalent foundations
(HoTT/UF). One of the main tools of Quillen model category theory is the small object argument.
Indeed, the particular model categories that can interpret HoTT/UF are usually constructed using
the small object argument.

In this article, we formalize the algebraic small object argument, a modern categorical version of
the small object argument originally due to Garner, in the Coq UniMath library. This constitutes
a first step in building up the tools required to formalize – in a system based on HoTT/UF –
the semantics of HoTT/UF in particular model categories: for instance, Voevodsky’s original
interpretation into simplicial sets.

More specifically, in this work, we rephrase and formalize Garner’s original formulation of the
algebraic small object argument. We fill in details of Garner’s construction and redefine parts of the
construction to be more direct and fit for formalization. We rephrase the theory in more modern
language, using constructions like displayed categories and a modern, less strict notion of monoidal
categories. We point out the interaction between the theory and the foundations, and motivate the
use of the algebraic small object argument in lieu of Quillen’s original small object argument from a
constructivist standpoint.
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1 Introduction

The tools of model category theory underpin the semantics of homotopy type theory and
univalent foundations (HoTT/UF) (starting with [7, 19]). This work is the first step in
building up this toolkit within HoTT/UF, with the ultimate goal of formalizing and verifying
the semantics of HoTT/UF within HoTT/UF – or more specifically, within the Coq library
UniMath. We focus on formalizing one major tool in the envisioned kit: the algebraic small
object argument. This is the main tool for constructing particular model categories, and it
(or versions) is used to model HoTT/UF in particular categories [19, 5, 8, 11, 10, 6].
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Model category theory and the algebraic small object argument

Model category theory, first introduced by Quillen [25], forms the foundation of modern
homotopy theory. It provides a language and tools for this branch of mathematics, expanding
the use of methods originally developed for the study of topological spaces to other domains:
e.g. (higher) category theory [18, 17, 26], derived algebraic geometry [21], motivic homotopy
theory [23], and now type theory as mentioned above.

A model category consists of two interacting weak factorization systems (WFSs) on
a category, and, in specific examples, these are usually constructed via the small object
argument [25] or variations. In this article, we study and formalize algebraic/natural weak
factorization systems (NWFSs) [14] and the algebraic small object argument [13, 12], categor-
ical improvements to the original versions that are well-suited for formalization. (Though
algebraic weak factorization system is the more modern terminology, we will adhere to the
vocabulary from [13] and refer to them as natural weak factorization systems.)

WFSs, while important for the theory of model categories, are lacking from a categorical
or constructivist viewpoint. The definition and the problems created will be explicated in
Section 3, but in summary a WFS consists of some structure A together with the property
that some other structure B merely exists. NWFSs solve the constructivist problems that
this creates by including both A and B explicitly, as structure, not property. In addition, to
take advantage of machinery from category theory, B is not only given explicitly as structure,
but as arising from (co)algebras of a (co)monad. Though the definition of NWFS is, a
priori, more restrictive than that of WFS, most WFSs of interest to us (e.g. the ones in
[19, 5, 8, 11, 10, 6]) are actually NWFSs. Additionally, NWFSs are an important tool in
recent efforts towards producing constructive models of HoTT/UF [11, 10].

Quillen’s small object argument (SOA) [25] generates a WFS from a sufficiently well-
behaved subclass of maps of a category. Garner introduced a variant, the algebraic small
object argument (ASOA) [13] which produces NWFSs and which takes advantage of the fact
that NWFSs are defined in terms of (co)monads in order to produce a cleaner construction.
The NWFSs of [19, 5, 8, 11, 10, 6] are generated by the ASOA or variations.

Coq and UniMath

Coq in conjunction with the UniMath library (henceforth just UniMath) is a formalization
framework for HoTT/UF. It adds insights from homotopy theory to type theory to produce
a foundation of mathematics that is well-suited for the formalization of mathematics closely
related to homotopy theory, especially the category theory that we are using here.

We only make light use of the additional assumptions that UniMath adds to Coq: we
use functional extensionality and the homotopy levels of propositions and sets, as well as
propositional truncation for the classical theory in Section 3 (though not in the actual ASOA
construction in Section 5), but nothing else (including univalence). We do however take
significant advantage of the technology developed in UniMath for formalizing category theory.
In particular, we use the machinery of displayed categories [2] and the extensive formalization
of monoidal categories [28]. Furthermore, we do expect the univalence axiom to become
important and useful for the further development of model category theory in UniMath.

That being said, some of the high level machinery employed in [13] is not available in the
UniMath library. For example, much of the theory of (co)ends and the two-fold monoidal
categories employed there are not yet available in UniMath. Instead, we make more direct
arguments, making for a more concrete and detailed description of the construction.
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Contributions and related work

We formalize [13, Proposition 4.22] with the “smallness requirement” (in the language of
[13]) that every object is finitely presentable (see Theorem 50), and its prerequisites. Garner
also proves Proposition 4.22 for other smallness requirements. What we have formalized
constitutes the most important parts of the algebraic small object argument construction in
the most general setting with the current available theory, and is still applicable to situations
of interest. See Remark 39 for technical details.

We have modified the proofs to be feasible in UniMath. We use the machinery of
displayed categories [2] to construct various categories used in [13]; this is necessary to
talk about functors commuting strictly (i.e., up to definitional equality), as is done in [13].
Where [13] uses strict monoidal categories, we use the weaker monoidal categories of [28],
to make our constructions more widely applicable. We give the construction of the free
monoid (see Section 5.4) and the proofs of [13, Proposition 4.18] (Section 5.3.1) and [13,
Propositions 4.19 and 4.22] (Section 5.5) more directly. Furthermore, the formalization
provides a more detailed and streamlined account for the proof of [13, Proposition 4.17].

Our formalization has been accepted into the UniMath library in commit 6605a4a.
This paper is based on a master’s thesis by the first-named author [15]. This provides an

expanded account of our formalization with more details and diagrams.

Outline and preliminary remarks

We first introduce the reader to relevant aspects of UniMath in Section 2. We then introduce
WFSs and the SOA in Section 3, pointing out constructive issues. We introduce NWFSs in
Section 4, showing that they fix the issues encountered in WFSs. Finally, we go over the
algebraic small object argument in Section 5, going into some detail on our modifications.

Composition of morphisms in this paper is written in diagrammatic order, adopting the
conventions in the UniMath library (so the composite of f : X → Y and g : Y → Z is written
f · g). Throughout, we assume C to be a cocomplete category.

2 Preliminary theory in HoTT/UF

2.1 Homotopy levels
There is a hierarchy of homotopy n-types in UniMath, indexed by n : N. We use 1-types,
called mere propositions, and 2-types, called sets. A type P is a mere proposition if any
two points are equal (meaning it may be empty): i.e., if there is a term of

∏
x,y:P (x =P y).

We denote the type of mere propositions by hProp [27, hProp]. A type is a set if all of its
identity types are propositions. We denote the type of sets by hSet [27, hSet].

Sometimes, instead of needing a term of a type A, it is sufficient (or perhaps even
necessary!) to only know of the mere existence of a term of A. That is to say, we want a
propositional type witnessing only that “a term of type A exists”, ignoring what this term is
exactly or how it is constructed. This idea is captured in the propositional truncation of A,
denoted ∥A∥. UniMath defines ∥A∥ through an “impredicative encoding” [27, ishinh_UU]

∥A∥ :=
∏

P :hProp

((A → P ) → P ).

▶ Remark 1. It is important to note that we can not (in general) obtain a term of type A

given a term of type ∥A∥. We are effectively losing information when truncating a type. This
is the root cause for the constructive issues arising in the classical theory of WFSs.
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2.2 Category theory
In set-based mathematics, a category consists of a set O of objects, and for each X, Y ∈ O a
set of morphisms hom(X, Y ). In HoTT, one might naively define a category to consist of a
type of objects and types of morphisms. We call this a precategory. Though allowing for basic
constructions like limits [27, Limits.v] or colimits [27, Colimits.v], these are not sufficient
for our purposes.

If we restrict the types hom(X, Y ) to be sets, we get the notion of a category. In the rest
of this paper, we will only be considering categories.

We can add more restrictions to this notion of category to produce univalent categories [1]
or setcategories [4]. Interestingly enough, we never need to assume either of these restrictions
for our categories, which makes our construction applicable to both.

2.3 Displayed categories
It is common practice to construct a new category D out of a category C by adding data
or properties to the objects and morphisms, often expressed in terms of a forgetful functor
F : D −→ C. Instead of mapping the objects and morphisms of D to those of C, it is useful
to index them as families of objects and morphisms “lying over” those of C. This idea is
captured in the notion of displayed categories, analogous to dependent type families in HoTT
[2].

▶ Definition 2 ([27, disp_cat]). A displayed category D over C consists of the following:
(i) For each object X : C, a type DX of “objects over X”;
(ii) For each morphism f : X → Y with X, Y : C, and for each displayed object X : DX

and Y : DY a set of “morphisms from X to Y over f”, denoted by X →f Y ;
(iii) For each object X : C and each X : DX , a displayed identity morphism 1X : X →idX

X;
(iv) For all X, Y, Z : C, X : DX , Y : DY , Z : DZ and f : X → Y , g : Y → Z, a composition

(−) · (−) :
(
X →f Y

)
×
(
Y →g Z

)
→
(
X →f ·g Z

)
;

satisfying displayed versions of associativity and identity axioms.

One can easily construct an “actual” category from a displayed category, analogous to
the construction of dependent pair types from type families in HoTT. UniMath calls the
constructed category Dtot: the total category of D. It provides definitional information on
the relation of Dtot to C, whereas a forgetful functor would provide propositional information.

In the rest of this section, D will always denote a displayed category over C.

▶ Definition 3 ([27, total_category]). The total category Dtot of D is defined to have
Objects:

∑
X:C DX

Morphisms from the dependent pairs (X, X) to (Y, Y ): the set
∑

f :X→Y X →f Y

with the natural unit and composition.

▶ Remark 4. For readability, we will mostly refer to total categories without their explicit
notation. That is to say, we may use D to denote Dtot for a displayed category D.

▶ Example 5 (arrow). The arrow category C2 of C is the total category of a displayed
category over C × C with

Displayed objects over (X, Y ) : C × C as the type of arrows X → Y .
Displayed morphisms between displayed objects f : X → Y and g : A → B over a
morphism (h, k) : (X, Y ) → (A, B) : the proposition f · k =(X→B) h· g.

https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Limits.Graphs.Limits
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Limits.Graphs.Colimits
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Core#disp_cat
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Total#total_category
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Examples.Arrow#arrow
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It is the functor category from the poset 2 := {0, 1} to C.

▶ Example 6 (three). The three category C3 of C is the total category of a displayed category
over C2 with

Displayed objects over f : X → Y : C2:∑
(Ef :C)

∑
(f01:X→Ef )

∑
(f12:Ef →Y )

f01· f12 =(X→Y ) f.

Displayed morphisms between displayed objects (Ef , f01, f12) and (Ef ′ , f ′
01, f ′

12) over
a morphism (g00, g22):∑

g11:Ef →Ef′

(
f01· g11 =(X→Ef′ ) g00· f ′

01

)
×
(
f12· g22 =(Ef →Y ′) g11· f ′

12
)

.

It is the functor category from the poset 3 := {0, 1, 2} to C.

▶ Remark 7. Though both of the previous examples are equivalent to certain functor categories
from posets, defining them in terms of displayed categories provides definitional equalities
that are much simpler to reason with in formalization. From a classical point of view, one
may consider them to be functor categories.

UniMath defines displayed variants of functors and natural transformations, in such a
way that they “lift” to functors and natural transformations on the total categories. We are
mostly interested in one kind of displayed functor: sections of displayed categories. Given a
category C and a displayed category D over C there is a projection functor πD

1 : Dtot −→ C
projecting a pair (X, X) down to X. Morally, a section is a strict right inverse to πD

1 .

▶ Definition 8 ([27, section_disp]). A section from C to D consists of a dependent function
of objects F :

∏
X:C DX and a corresponding dependent function, also denoted F , of type∏

f :X→Y F (X) →f F (Y ), such that F (idX) =F (X)→F (X) 1F (X) and F (f · g) =F (X)→F (Z)
F (f)· F (g) for morphisms f : X → Y and g : Y → Z in C. Such a section lifts to a functor
C −→ Dtot.

▶ Remark 9. For any section F : C −→ D and any X : C, the composite (F · πD
1 )(X) is in

fact definitionally equal to X. There is no way to specify this definitional equality using a
forgetful functor. The definitional equality is much more convenient to reason with, greatly
simplifying the formalization process. Additionally, it is necessary to faithfully capture the
classical theory that we are formalizing: see Remark 27.

We define a notion of natural transformation between sections, again to capture strict
commutation over C (one corresponding to whiskering a natural transformation with πD

1 ).

▶ Definition 10 (section_nat_trans_disp). Let F, F ′ be sections of the displayed category
D over C. A natural transformation of sections from F to F ′ is a family of displayed
morphisms∏

X:C
F (X) →idX

F ′(X),

making the appropriate diagrams commute.
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3 Weak factorization systems

Weak factorization systems consist of two subclasses of morphisms (morphism_class) of a
category C, related through lifting properties, as well as a factorization of all morphisms. We
define the lifting properties in terms of lifting problems and fillers. We use propositional
truncation in both the lifting properties and the factorization.

▶ Definition 11 (filler). For morphisms f, g in C, an (f, g)-lifting problem is a morphism
f → g in C2. More precisely, it is a commutative square as in the left-hand diagram below.

X A

Y B

f g

X A

Y B

f g
l

We call a diagonal map l : Y → A that makes the whole diagram commute a filler.

▶ Definition 12 (lp). Given morphisms f, g in C, we say that that (f, g) has the lifting
property if there merely exists a filler for every (f, g)-lifting problem. That is,

lp :=
∏

f :X→Y

∏
g:A→B

∏
x:f→g

∥∥∥∥∥ ∑
l:Y →A

l is a filler for x

∥∥∥∥∥ .

▶ Remark 13. We use propositional truncation here so that lp is a proposition, as we want
to use it to define subclasses of morphisms: see Remark 17 below. Still, we are able to show
interesting properties using the recursion principle of the propositional truncation (WFS.v).

▶ Definition 14 (rlp, llp). We say that g has the right lifting property with respect to a
subclass of morphisms L if (f, g) has the lifting property for all f ∈ L. We denote the class
of all such g as L□. Dually, we say that f has the left lifting property with respect to a class
R if (f, g) has the lifting property for all g ∈ R. We denote the class of all such f by □R.

▶ Definition 15 (wfs_fact_ax). A pair of subclasses of morphisms (L, R) factors C if for
any f : X → Y there merely exists an object Ef : C and morphisms λf : X → Ef in L and
ρf : Ef → Y in R such that f = λf · ρf .

▶ Definition 16 (wfs). A weak factorization system (WFS) is an ordered pair (L, R) of
subclasses of morphisms in C that factors C and satisfies

L = □R and R = L□.

▶ Remark 17. The definition of a WFS shows why we need the propositional truncation
in the lifting property: the equalities L = □R and R = L□ would otherwise be ill-typed.
Without the propositional truncation, corresponding notions of □R or L□ would not simply
be subclasses of morphisms, but rather subclasses of morphisms with extra data, containing
information about the fillers in any appropriate lifting problem.
In any WFS (L, R), L is left saturated and R is right saturated [22, Prop 14.1.8]. Left
saturation tells us that L contains all isomorphisms (wfs_L_contains_isos) and is closed
under retracts (wfs_L_retract), pushouts (wfs_closed_pushouts), transfinite composition
and coproducts (wfs_closed_coproducts). Right saturation is defined dually. Constructive
issues arise in the last two closure properties. To illustrate, consider the following lemma.

▶ Lemma 18 (wfs_closed_coproducts). Assume the axiom of choice. A WFS (L, R) is
closed under coproducts. That is to say: for a set I and a family of maps { fi : Xi → Yi }i:I
such that fi ∈ L for all i : I, the coproduct f :=

⊔
i:I fi is also in L.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.MorphismClass#morphism_class
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#filler
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#lp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#rlp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#llp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_fact_ax
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_L_contains_isos
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_L_retract
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_pushouts
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_coproducts
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_coproducts
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Proof. Consider a g ∈ R and an (f, g)-lifting problem. By the universal property of the
coproduct, this is equivalent to a (fi, g)-lifting problem for each i : I. We obtain the mere
existence of fillers li : Yi → A through the lifting properties of the fi.⊔

i:I Xi A

⊔
i:I Yi B

⊔
i:I

fi
g

Xi A

Yi B

fi
g

li

Using the axiom of choice, we infer the mere existence of a morphism
⊔

i:I li :
⊔

i:I Yi → A as
a filler for the original lifting problem [24]. ◀

▶ Remark 19 (Constructive issues). Why do we need the axiom of choice in this proof? To put
it shortly: because we lose information through the propositional truncation. We know of the
mere existence of a lift in every individual diagram, but need to put all the lifts together to
infer the mere existence of a lift in a “combined” diagram. We effectively want to construct
a function(∏

i:I

∥∥∥∥∥ ∑
li:Yi→A

fi· li = h × li· g = k

∥∥∥∥∥
)

→

∥∥∥∥∥∥∥
∑

l:
∏

i:I
Yi→A

∏
i:I

fi· l(i) = h × l(i)· g

∥∥∥∥∥∥∥ .

This is precisely the statement of the axiom of choice in UniMath, which says that for any
set X and any L : X → hSet, and any P :

∏
x:X L(x) → hProp, we have∏

x:X

∥∥∥∥∥∥
∑

lx:L(x)

P (x, lx)

∥∥∥∥∥∥
 →

∥∥∥∥∥∥∥
∑

l:
∏

x:X
L(x)

∏
x:X

P (x, l(x))

∥∥∥∥∥∥∥ .

Thus, we are only able to show that the left class of a WFS is closed under coproducts by
assuming the axiom of choice.

As described in Remark 13 and Remark 17, we cannot drop the propositional truncation
in the definition of a WFS to fix this issue. It is resolved in the theory of NWFSs however,
where the added algebraic structure provides a canonical choice function in analogous lifting
problems, see Remark 33 and Lemma 34.

3.1 The small object argument
In this section, we briefly describe the SOA [25], following the account in [16]. We have not
formalized the SOA; this section is intended to motivate and build intuition for the ASOA.

The SOA allows us to construct WFSs given a sufficiently well-behaved subclass of
morphisms. The constructed WFS is related to the generating class J through the lifting
property itself: its right class will be J□, and its left class will be □

(
J□
)
.

For the rest of this paper, we assume J to be a subclass of morphisms in our category C.

▶ Definition 20. A relative J-cell complex is a transfinite composition of pushouts of
morphisms in J . We denote this class by J-cell.

▶ Example 21. The main motivating examples are in the categories of topological spaces
(TOP) and simplicial sets (SSET). In both cases, J is the class of boundary inclusions
(where S−1 := ∅)

J :=
{

jn : Sn ↪→ Dn+1 ∣∣ n = −1, 0, 1, . . .
}

.

We think of pushing out one map of J along a function f : Sn → X (the attaching map) as
producing a relative cell complex X → X ⊔Sn Dn+1: that is, the inclusion of X into X with

ITP 2024
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a copy of Dn+1 (a cell) “glued” to it along f . Then we think of a relative J-cell complex as
the inclusion of a space X into X with many cells attached. In topological spaces, these are
called relative CW-complexes. When X := ∅ they are called CW-complexes.

▶ Remark 22. Assuming the axiom of choice, the class J-cell is a subclass of □
(
J□
)

since
then □

(
J□
)

is closed under pushouts and transfinite compositions.
Let us briefly go over the SOA. We omit an explicit definition of the “smallness” giving

rise to the name small object argument, but we will indicate when we use it.

▶ Theorem 23 (Small object argument (SOA)). Suppose the domains of all the maps in J

are “small” relative to J-cell. Then there is a factorization f 7→ (λf , ρf ) on C such that, for
all morphisms f in C, λf is in J-cell and ρf is in J□.

Proof sketch. Let f : X → Y be a morphism in C. We inductively construct factorizations

X
λα

f−−→ Eα
f

ρα
f−−→ Y

of f , for ordinals α. First, we set λ0
f = idX and ρ0

f = f . Since the composition of 0 morphisms
is an instance of transfinite composition, idX is in J-cell. However, f is not necessarily in J□;
we continuously “improve” this factorization in the inductive step until some ρi

f is in J□.
Consider the factorization f 7→ (λα

f , ρα
f ) corresponding to step α. Let Sα be the set of

all (g, ρα
f )-lifting problems with g ranging over J . For any lifting problem x : Sα, denote by

gx : Ax → Bx the corresponding map in J . We define Eα+1
f and ρα+1

f through the pushout
on the left-hand side of the following diagram. The right-hand side shows the first step in
the transfinite sequence.⊔

x∈Sα Ax Eα
f

⊔
x∈Sα Bx Eα+1

f Y

⊔
x∈Sα gx

⌜
sα

ρα
f

ρα+1
f

α=0

⊔
x∈S0 Ax X

⊔
x∈S0 Bx E1

f Y

⊔
x∈S0 gx

⌜
λ1

f

f

ρ1
f

(1)

We set λα+1
f := λα

f · sα, which is in J-cell by construction.
Note that the inductive process simply repeats the first step, meaning that

ρα
f := ρ1

ρ1
...

ρ1
f

(α times)

This defines the (successor ordinal part of the) transfinite construction of the small object
argument. One can show that the smallness of the domains in J means that there is some
ρα

f which is in J□. Very roughly, the cells being attached to the domain of f at each step
are solutions to lifting problems between J and f ; the smallness guarantees that at some
point, solutions to all possible lifting problems have been added. ◀

▶ Remark 24 (Constructive issues). Besides the use of the axiom of choice mentioned in
Remark 22, we note some other constructive and categorical issues in the argument. In
the categories of topological spaces and simplicial sets, the construction boils down to the
following: at every step in the transfinite construction, we glue on cells for every possible
lifting problem. This means that at every step, we glue duplicate cells, as we can glue all
the cells that we have glued before (in addition to new ones). Thus, the construction never
converges; we simply just stop whenever we have gone far enough, dictated by the smallness
assumption on J . This again implies some sort of choice, and may introduce massive ordinal
sequences (which pose a challenge in itself, see Remark 39). From a categorical perspective,



D. Hilhorst and P. R. North 20:9

we might describe this issue as the fact that this construction has no universal property:
how long you run the construction before stopping is not uniquely determined by the input
morphism f . This is what was noticed and rectified in [13].

4 Natural weak factorization systems

Natural weak factorization systems (NWFSs) are an algebraic refinement of WFSs due to
Grandis and Tholen [14]. An NWFS is based on a functorial factorization, which gives
a canonical, well-behaved choice for the factorizations, as opposed to the structureless
factorization in a WFS, see Definition 15. We impose additional algebraic structure, making
it so that being an L- or R-map is no longer a property like for WFSs, but an algebraic
structure on morphisms. This fixes the constructive issues in the closure properties of WFSs.

4.1 Functorial factorizations
Recall Example 6, defining C3 as a displayed category over C2.

▶ Definition 25 (functorial_factorization). A functorial factorization F over a category
C is a section from C2 to C3.

▶ Remark 26. Compare this with the definition of factorization Definition 15. That was
a section of the composition function ob C3 → ob C2, as opposed to the projection functor
C3 −→ C2.
There are three natural functors d0, d1, d2 : C3 −→ C2 which take a composable pair
X

λf−−→ Ef
ρf−−→ Y to ρf , λf · ρf , and λf , respecively (here d1 coincides with the canonical

projection). We obtain two endofunctors C2 −→ C2 by considering R := F · d0 (which sends
an f to its right map ρf ) and L := F · d2 (which sends an f to its left map λf ).
▶ Remark 27 (The need for sections). With our definition, the left and right functors L and
R are automatically compatible. That is to say, for any morphism f : X → Y , definitional
equalities arising from the definition of a section make for a well-typed (and trivial) equality
L(f)· R(f) =X→Y f .

A more naive approach would be to specify F as a section of d1 in the usual sense:∑
F :C2−→C3

F · d1 = idC2 .

However, with this definition the composite L(f)· R(f) may not have the same domain and
codomain as f . We merely know that their domains and codomains are propositionally equal,
so the equality L(f)· R(f) = f is now ill-typed. One could use the idtoiso function [27],
mapping equalities of objects to isomorphisms between them, but this does not capture the
classical theory, which asks for L(f)· R(f) to be strictly equal, not just isomorphic, to f .

4.2 Natural weak factorization systems
Using only the data of a functorial factorization F , we can view the left and right functors L

and R as a copointed endofunctor (L, Φ) and a pointed endofunctor (R, Λ) by defining:

Φf :=
X X

Ef Y

λf f

ρf

and Λf :=
X Ef

Y Y

f

λf

ρf
. (2)
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▶ Definition 28 (nwfs). A natural weak factorization system (NWFS) is given by a functorial
factorizaton F , together with an extension of (R, Λ) to a monad R = (R, Λ, Π) and the
extension of the (L, Φ) to a comonad L = (L, Φ, Σ). Such an NWFS is said to lie over F .

It will be useful to split this definition into two halves: LNWFS and RNWFS. The former
contains only the data concerning the left comonad, the latter contains only the data
concerning the right monad. We define the notion of LNWFS, an RNWFS is defined dually.

▶ Definition 29 (lnwfs_over, cf. [13, 4.5]). The left half of an NWFS (LNWFS) is given
by a functorial factorization F , with an extension of (L, Φ) to a comonad L = (L, Φ, Σ).

4.3 Algebraic structure
Now we form a category FfC of functorial factorizations on C (Ff) by defining morphisms.

▶ Definition 30 (fact_mor, cf. [13, 3.3]). A morphism of functorial factorizations τ : F → F ′

is a natural transformation between sections.

Since we defined NWFSs as functorial factorizations “with added structure”, we define the
category of NWFSs on C as a displayed category over FfC . We again split this construction
into LNWFSs and RNWFSs, yielding two displayed categories: LNWFSC and RNWFSC
over FfC . Together they form a displayed category NWFSC over FfC .

In order to do this, we require some additional structure on the morphisms in FfC . Take
F, F ′ : FfC . A morphism τ : F → F ′ induces canonical natural transformations τL : L =⇒ L′

and τR : R =⇒ R′ by whiskering with d2 and d0.

▶ Definition 31 (LNWFS, RNWFS, NWFS, cf. [13, 3.3,4.5]). A morphism τ : F → F ′ in FfC is
a morphism of LNWFSs if F and F ′ underlie LNWFSs and τL is a comonad morphism;
a morphism of RNWFSs if F and F ′ underlie RNWFSs and τR is a monad morphism;
a morphism of NWFSs if F and F ′ underlie NWFSs and τ is both a morphism of LNWFSs
and of RNWFSs.

These three properties define the displayed morphisms of displayed categories LNWFSC,
RNWFSC, and NWFSC over FfC.

Similar to a WFS, an NWFS (L, R) has left- and right maps. These are defined to be the
coalgebras of the comonad L and the algebras of the monad R respectively. We denote the
categories of left and right maps of an (L, R) as L-Map and R-Map respectively.

4.4 Fixing the constructive issues
The algebraic structure in NWFSs allows us to construct fillers in lifting problems between
any L-Map and R-Map, fixing the constructive issues in the theory of WFSs.

▶ Lemma 32 (L_map_R_map_elp, cf. [13, 2.15]). Let (L, R) be an NWFS over F , f : X → Y

an L-Map, g : A → B an R-Map. There exists a filler for any (f, g)-lifting problem (h, k).

Proof. The (co)algebra axioms force the (co)algebra αf : f → λf and αg : ρg → g to be of
specific forms. Specifically, they ensure that the morphisms X → X and B → B are in fact
identities in the left-hand diagrams below. Consider then the right-hand diagram, obtained
by applying F to (h, k) and attaching the (co)algebra morphisms. The filler Y → A can be
read off the diagram as s· F (h, k)11· p.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#nwfs
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#lnwfs_over
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#Ff
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#fact_mor
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#LNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#RNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#NWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#L_map_R_map_elp
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X X X X A

Y Ef
Y Ef Eg A

Eg A

B B Y B B

f αf λf f αf λf

h

λg

s
s

ρf

F (h,k)11 p

ρg αg g

p

ρg αg g

k
◀

▶ Remark 33. Note that we construct the actual filler, and not just the mere existence of one.
This is an important difference with WFSs, where we only know of the mere existence of a
filler. We get a canonical choice function for the filler in any given lifting problem between
an L-Map and an R-Map, fixing the problems we had with plain WFSs, see Remark 19. It
allows us to prove analogues of the desired closure properties of WFSs, like the following.

▶ Lemma 34 (nwfs_closed_coproducts). Let I be a set and { fi : Xi → Yi }i:I a family
of maps, such that fi is an L-Map for every i : I. Then

⊔
i:I fi is also an L-Map.

5 The algebraic small object argument

The construction of the ASOA is inductive like its classical counterpart, the SOA. At each
step, we construct an object of LNWFSC . We then apply a general transfinite construction
[20], giving us a full NWFS. There will be many similarities between the constructions, but
also some obvious differences. The construction also resolves the constructive and categorical
issues that we touched upon in Remark 22 and Remark 24.

We will be following Garner [13, 12], rephrasing the theory using univalent foundations
and redefining part of the construction to be more direct and fit for formalization.

5.1 The one-step comonad
Let f : X → Y be a morphism in C. Recall the first step from the iterative process in the
small object argument in equation (1). This construction is in fact functorial, yielding a
functorial factorization F 1: the one-step factorization (one_step_factorization).

There is always a natural transformation Σ1 : L1 =⇒ L1· L1, extending (L1, Φ1) to a
comonad (where L1 := F 1 · d2, the left part of F 1, and Φ1 is the copoint of L1 given in
2), giving us an object of LNWFSC : the one-step comonad (one_step_comonad), c.f. [12,
Section 5.2]. The pointed endofunctor (R1, Λ1) does not, in general, extend to a monad, so
we do not yet obtain an object of NWFSC .

The first step in the algebraic small object argument corresponds with the first step in
the classical counterpart. The “left part” of the initial factorization already satisfies the
properties we need, while the “right part” of the first step has to be “fixed”.

5.2 Monoidal categories
Now we construct an NWFS from our one-step comonad L1. This uses Kelly’s free monoid
construction. In [13], this takes place in a strict monoidal category. We instead use a more
general notion of weak monoidal categories, formalized in UniMath in [28]. This is because in
UniMath it is not possible to sensibly define strict monoidal categories, where associators and
unitors are equalities on objects, unless one is working with setcategories (categories whose
types of objects are sets). By using weak monoidal categories, our construction applies to
more general categories (in particular, univalent categories).
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Garner in fact uses two-fold monoidal categories, which comprise two interacting monoidal
structures. This fits the theory perfectly, but is not yet formalized in UniMath, so we formalize
only one monoidal structure. We only need one result relating to the other, which we prove
directly (LNWFS_comon_structure_whiskercommutes). This simplifies our construction.

5.2.1 The monoidal structure on LNWFSC

The idea behind the construction is to define a monoidal structure on FfC, such that a
monoid corresponds with an object in RNWFSC . This monoidal structure lifts to one on
LNWFSC, so that a monoid in LNWFSC corresponds with an object of NWFSC. We
define the unit of the monoidal structure on FfC to be the initial object I mapping

X
f−−→ Y 7→ X

idX−−→ X
f−−→ Y. (Ff_lcomp_unit, cf. [13, Theorem 4.14])

For two functorial factorizations F, F ′, we define their tensor product F ′ ⊗ F to be

X
f−−→ Y 7→ X

λf ·λ′
ρf−−−−−→ E′

ρf

ρ′
ρf−−→ Y. (Ff_lcomp, cf. [13, Theorem 4.14])

▶ Lemma 35 (Ff_monoidal, Ff_monoid_is_RNWFS, cf. [13, Theorem 4.14]). The pair (⊗, I)
defines a monoidal structure on FfC. A monoid structure on F : FfC corresponds to an
object of RNWFSC over F .

Noting how ⊗ acts on the right functor, the second claim boils down to the fact that a monad
is a monoid in the category of endofunctors. Garner mentions the lifting of the monoidal
structure to LNWFSC in the more general setting of two-fold monoidal categories [13, 4.11],
but in the absence of this theory in UniMath, we take a direct approach. Proving this took
about 1000 lines of formalization (LNWFSMonoidalStructure.v), and is the file that takes
the longest to compile on various setups (see for example the discussion in PR 1858).
▶ Remark 36. The machinery used to lift the monoidal structure on FfC to one on LNWFSC
is that of displayed monoidal categories [3, disp_monoidal]. It allows one to define a monoidal
structure on (the total category of) a displayed category over some monoidal category, by
defining diplayed analogues of the monoidal data in the base category.

▶ Lemma 37 (LNWFS_tot_monoidal, LNWFS_tot_monoid_is_NWFS, cf. [13]). Let L, L′ :
LNWFSC over F, F ′ : FfC respectively. Then there is an LNWFS structure on F ⊗ F ′.
There is also an LNWFS structure on I, lifting (⊗, I) to a monoidal structure on LNWFSC.
Furthermore, a monoid L : LNWFSC over some F : FfC corresponds with an object of
NWFSC over F .

▶ Remark 38. The classical small object argument boils down to a transfinite tensor product

Lα := L1 ⊗ L1 ⊗ . . . ⊗ L1 : f 7→ λα
f .

This is not satisfactory, as it leaves us with the same issues discussed before, see Remark 24.
We fix this by defining the iterative step with a coequalizer, associating duplicate cells
(next_pair_diagram_coeq), and a simple convergence condition, removing the need for
arbitrary truncation (T_preserves_diagram_on).

5.3 The iterative step
Garner generalized a transfinite construction by Kelly [20] to generate a monoid in a monoidal
category V, given certain “smallness requirements” on a generating object T : V and on V
itself. The construction defines a sequence indexed by the category of small ordinals [13,
4.16], converging at some limit ordinal.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSHelpers#LNWFS_comon_structure_whiskercommutes
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_lcomp_unit
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_lcomp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_monoid_is_RNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure
https://github.com/UniMath/UniMath/pull/1858
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Monoidal.Displayed.Monoidal#disp_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure#LNWFS_tot_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure#LNWFS_tot_monoid_is_NWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#next_pair_diagram_coeq
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#T_preserves_diagram_on
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▶ Remark 39 (Limitations of ordinals in UniMath). What limit ordinal Garner’s generalized
sequence converges at [13, 4.16] is dictated by the hypothesis in [13, Proposition 4.19],
requiring that “T ⊗(−) preserves λ-filtered colimits”, which is reduced to smallness requirement
(*) in [13]. We limit ourselves to the first (finitely filtered) limit ordinal ω by replacing (*)
with finite presentability, and substituting the hypothesis on T with (V3).

We do this since the theory of (filtered) ordinals has not been developed enough in
UniMath (or HoTT in general [9]). This is still sufficient to apply the theorem to important
examples in, for instance, SSET and [5].

Formalizing requirement [13, (†)] or other ordinals should only involve adapting the proofs
in (GenericFreeMonoidSequence.v), most notably up to the convergence of the sequence
(T_preserves_diagram_impl_convergence_on), with appropriate hypotheses.

5.3.1 The transfinite sequence
For this section, we assume V to be a monoidal category that has all connected colimits
and T to be a pointed object in V, with point t : I → T . In the algebraic small object
argument, V will be LNWFSC and T will be L1. It is easier and more performant to define
this sequence on an abstract monoidal category in formalization, but it is useful to keep our
main application in mind, particularly in the cases of TOP or SSET.

We assume the following “smallness requirements” on V and T .
(V1) V has ω-colimits and coequalizers.
(V2) V is right closed (so the functor (−) ⊗ A preserves colimits for all A : V).
(V3) The functor T ⊗ (−) preserves ω-colimits and coequalizers.

Given objects X0 := A, X1 := T ⊗A in V and σ0 := idT ⊗A : T ⊗X0 → X1, we inductively
define a transfinite sequence, called the free T -algebra sequence for A [13, 4.16]. For a
successor ordinal α+ := α + 1 we define Xα++ and σα+ : T ⊗ Xα+ → Xα++ as the following
coequalizer:

Xα+
T ⊗ Xα T ⊗ Xα+ Xα++

T ⊗ (T ⊗ Xα)

t⊗Xα+

T ⊗(t⊗Xα)

σα

σα+

T ⊗σα

For any step α, we define xα : Xα → Xα+ to be (t ⊗ X)· σα. The full sequence becomes

T ⊗ X0 T ⊗ X1 . . . T ⊗ Xα

X0 X1 X2 . . . Xα Xα+ . . .

σ0 σ1 σα
t⊗X0

x0 x1 x2

t⊗Xα

xα

(3)

▶ Remark 40. The morphism t ⊗ Xα is actually a morphism I ⊗ Xα → T ⊗ Xα, so the
diagram is actually ill-typed. By definition, there is a natural isomorphism to correct for
this. Morphisms like this one are left out for simplicity, reading closer to the notion of strict
monoidal categories, but they are accounted for in the formalization.

▶ Remark 41. In the examples in TOP and SSET, the functor T ⊗ (−) corresponds to
“gluing cells”. Then Xα corresponds to “α steps of gluing cells to A, without duplicates.” The
coequalizers σα are continuous maps that identify duplicate cells with ones glued previously.

The sequence is defined inductively, using the previous two objects and the previous morphism
to define the next morphism and object. In order to do this properly, with definitional
equalities, we introduce a helper type, capturing the data of one “triangle” in the sequence.
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▶ Definition 42 (pair_diagram). A “pair diagram”, corresponding to the “triangle” of step
α in the sequence displayed in equation (3), is an object of C3 of the form

Xα
t⊗Xα−−−−→ T ⊗ Xα

σα−−→ Xα+.

▶ Remark 43. The only real data in this object are Xα, Xα+ and σα : T ⊗ Xα → Xα+.
Indeed, one can define the (α + 1)-th pair diagram using only the data from the α-th pair dia-
gram. The inductive definition allows us to make sure left object of the (α+1)-th pair diagram
is in fact definitionally equal to the right object of the α-th pair diagram. Assumptions (V1)
and (V3) ensure this sequence converges (T_preserves_diagram_impl_convergence_on),
cf. [13, Proposition 4.17]. The limit when A := I yields a T -algebra (T ∞, τ∞), consisting of
an object T ∞ : V and a morphism τ∞ : T ⊗ T ∞ → T ∞, which we will show is a monoid.
▶ Remark 44. Intuitively, keeping TOP or SSET in mind, we may view the object T ∞ as
the “space with all cells attached”. The T -algebra map τ∞ describes how one more step of
attaching cells (through tensoring with T ) can be collapsed back into T ∞ itself.

5.4 Obtaining the free monoid
In [12, Proposition 27], the forgetful functor from the category of T -algebras to V is used to
obtain a monoid. Instead, we define the monoid structure more directly, allowing for a much
more direct and intuitive construction. There is an obvious choice for the unit η∞ : I → T ∞:
the canonical inclusion into the colimit X0 ↪→ T ∞. It remains to find a multiplication. By
assumption (V2), we have

T ∞ ⊗ T ∞ ∼= colim(Xα ⊗ T ∞).

We define the multiplication µ∞ : T ∞ ⊗ T ∞ → T ∞ by defining a family of morphisms
{ τα : Xα ⊗ T ∞ → T ∞ } that forms a cocone on { Xα ⊗ T ∞ }.

▶ Lemma 45 (Tinf_pd_Tinf_map). There is a family of maps { τα : Xα ⊗ T ∞ → T ∞ } such
that the following diagram commutes for any α.

T ⊗ Xα ⊗ T ∞ Xα+ ⊗ T ∞

T ⊗ T ∞ T ∞

σα⊗T ∞

T ⊗τα τα+

τ∞

▶ Remark 46. Intuitively, the τα “collapse α steps of gluing cells into T ∞”. The diagram tells
us that it does not matter if we first collapse α steps of cells into T ∞, and then the last step,
or if we first collapse the last step into the first α steps, and then collapse that into T ∞.
We define the τα inductively (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map), with
obvious choices for τ0 and τ1. In the inductive step, we use assumption (V2) to define τα++
as the unique map out of the coequalizer

Xα+ ⊗ T ∞ Xα++ ⊗ T ∞

T ⊗ Xα ⊗ T ∞ T ⊗ Xα+ ⊗ T ∞

T ⊗ T ⊗ Xα ⊗ T ∞ T ⊗ T ∞ T ∞

t⊗Xα+⊗T ∞

∃!τα++

T ⊗t⊗Xα⊗T ∞

σα⊗T ∞ σα+⊗T ∞

T ⊗τα+

T ⊗σα⊗T ∞
τ∞

The required commutativity constraint on τα++ can be read off the diagram directly. The
smallness assumptions allow one to show that (T ∞, η∞, µ∞) is indeed a monoid in V
(Tinf_monoid).

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#pair_diagram
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#T_preserves_diagram_impl_convergence_on
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#Tinf_pd_Tinf_map
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#Tinf_monoid
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5.5 Smallness requirements on LNWFSC and L1

We used assumptions on V and T that we now need to show for V = LNWFSC and T = L1.
We show (V1) and (V2) and reduce (V3) to a much weaker requirement, only involving the
subclass of morphisms J used to define L1. In this section, we do not have access in UniMath
to some of the categorical machinery (e.g., the full theory of (co)ends) used in [13], so our
arguments are more direct.

5.5.1 Cocompleteness of LNWFSC

Issues commonly arise in the displayed nature of LNWFSC over FfC, or that of C3 over
C2, requiring definitional equalities where naive arguments only produce propositional ones.
Consider the image of a morphism f : X → Y under an ω-chain of functorial factorizations
{ Fα }, as well as its colimit, in the left-hand diagram below.

X X X X∞

E0
f E1

f E2
f E∞

f

Y Y Y Y ∞

X

E0
f E1

f E2
f · · ·

Y

The colimit exists (three_colims), but its domain X∞ and codomain Y ∞ need not be
definitionally equal to X and Y respectively. We merely know they are isomorphic. We could
correct the domain and codomain with these isomorphisms to define an object of C3 over f ,
and in turn a colimit F∞ : FfC . However, this is quite cumbersome to work with as we want
to define a comonad structure on the left functor of F∞ to define colimits in LNWFSC .

Instead, recall what the actual data is in functorial factorizations and transformations
between them: the middle objects in the image, and the morphisms between them. We
“collapse” the (definitional) equalities in the left-hand diagram to form the right-hand diagram
above. Let E∞

f be the colimit of the Eα
f . We always get a map E∞

f → Y , but a map X → E∞
f

can only be defined when the colimit is non-empty and connected, namely as the canonical
inclusion of X → Eα

f → E∞
f for an arbitrary α. Indeed, we have the following.

▶ Lemma 47 (ColimFfCocone, ColimLNWFSCocone, cf. [13, Prop. 4.18]). Both FfC and
LNWFSC have all connected, non-empty colimits, where colimits in FfC are constructed as
described above, and colimits in LNWFSC lie over those of the projected diagrams in FfC.

5.5.2 Right closure of LNWFSC

Here too, Garner uses a high level argument [13, Proposition 4.18], but we take a more direct
approach. One can show that the functor (−) ⊗ A : FfC −→ FfC preserves colimits for any
A : FfC quite easily. The following lemma then proves requirement (V2).

▶ Lemma 48 (Ff_iso_inv_LNWFS_mor). Let L, L′ : LNWFSC over F, F ′ : FfC respectively.
Let τ : F → F ′ be an isomorphism. Then τ−1 is a morphism of LNWFSs whenever τ is.

5.5.3 Reducing the smallness requirement on L1

To reduce requirement (V3) to a simpler one, we mostly follow [12, Proposition 32]. The last
part of this reduction has again been rephrased to be more direct and fit for formalization,
using low level arguments (OneStepMonadSmall.v). In the end, the smallness requirement
we are left with is phrased in terms of presentable objects in a category.
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https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Examples.Three#three_colims
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSCocomplete#ColimFfCocone
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSCocomplete#ColimLNWFSCocone
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSHelpers#Ff_iso_inv_LNWFS_mor
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.OneStepMonadSmall
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▶ Definition 49 (presentable). Let X : C. Then X is called ω-presentable if and only if
the covariant hom-set functor hom(X, −) : C −→ SET preserves ω-colimits.

▶ Theorem 50 (small_object_argument). Let J be a subclass of morphisms in a cocomplete
category C, such that any g ∈ J is ω-presentable in C2. Then there exists an NWFS in C.

▶ Remark 51. Besides using arbitrary ordinals and not just ω, Garner describes another,
more involved smallness requirement [13, (†), Proposition 4.22]. Still, the case where we
work is sufficient for us. See also Remark 39.

6 Scaling

Besides the strategies we used to make our formalization mathematically feasible, we also
used the following strategies to make our formalization computationally feasible.

Proper use of abstraction: Ending a lemma with Qed, makes it opaque, preventing the
proof checker from unfolding it in other proofs. This significantly speeds up the proof
checker, and the formalization process as a whole. The abstract tactic allows one to
construct opaque terms within a proof. This alone sped up the compile time for the
(FFMonoidalStructure.v) file from 30 minutes to 30 seconds on one setup.
Avoiding rewrite: Though useful, this tactic produces large and unwieldy proof terms,
which take a long time to verify. Instead we often used the etrans and apply tactics.
Removing cbn, simpl, unfold or other “unfolding” tactics from finished proofs: These
unfolded terms take much longer to type check. Avoiding the rewrite tactic allows us to
completely remove these tactics from finished proofs, as tactics like etrans and apply
do not consider the precise syntactic form of a goal term, but only consider its value up
to definitional equality.
Sectioning and local opacity: Compile times were also reduced by using context variables
and proper sectioning. Local opacity (through the Opaque vernacular, used in e.g.
(LNWFSClosed.v)) provided the benefits of opaque proof terms when the precise definition
of a certain construction was not needed in a file, without enforcing opacity globally.

7 Conclusion

We have rephrased and formalized Garner’s algebraic small object argument [13] using
machinery more appropriate for formalization in UniMath, like displayed categories and weak
monoidal categories.

Let us briefly go over some of the main differences in the argument by Garner and this
work. First, we filled in many details which [13] left implicit. For example, the explicit
construction of lifting of the monoidal structure on FfC to LNWFSC was left out in [13],
but took over 1000 lines of formalization and is the file that takes the longest to compile in
the entire formalization.

Secondly, we introduced more modern language, in the form of displayed categories [2]
and a weak notion of monoidal categories [28].

Thirdly, we left out a lot of complex theory that Garner uses. This is, again, partly due to
the limited available results in UniMath, but it contributes to the accessibility of the proofs.
Complex constructions like two-fold monoidal categories are left out, Garner’s construction
of the free monoid is replaced with a more direct and intuitive one.

The formalization gave more insight into the details of the theory, pointing out constructive
issues in the theory of WFSs and showing how few assumptions Garner’s algebraic small

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.OneStepMonadSmall#presentable
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.SmallObjectArgument#small_object_argument
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSClosed
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object argument really needs. In the formalization of the construction, we never assumed any
categories to be setcategories (as they are in any classical theory, including [13]) or univalent
categories.

There is still some work that may be done in the formalization of Garner’s article,
for example overcoming our limitations mentioned in Remark 39 and Remark 51. Other
than that, there are further results beyond the main theorem of [13] that could be formal-
ized, for instance [13, Proposition 5.4]. Some theory on this has already been formalized
(algebraically_free), but once complete more examples could be worked out as well.
Beyond that, our ultimate goal is to use this to formalize semantics of HoTT/UF within
UniMath.
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