
A Formalization of the Lévy-Prokhorov Metric in
Isabelle/HOL
Michikazu Hirata #

School of Computing, Tokyo Institute of Technology, Japan

Abstract
The Lévy-Prokhorov metric is a metric between finite measures on a metric space. The metric was
introduced to analyze weak convergence of measures. We formalize the Lévy-Prokhorov metric
and prove Prokhorov’s theorem in Isabelle/HOL. Prokhorov’s theorem provides a condition for
the relative compactness of sets of finite measures and plays essential roles in proofs of the central
limit theorem, Sanov’s theorem in large deviation theory, and the existence of optimal coupling in
transportation theory. Our formalization includes important results in mathematics such as the Riesz
representation theorem, which is a theorem in functional analysis and used to prove Prokhorov’s
theorem. We also apply the Lévy-Prokhorov metric to show that the measurable space of finite
measures on a standard Borel space is again a standard Borel space.
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1 Introduction

The Lévy-Prokhorov metric is a mathematical tool to analyze asymptotic behaviors of
distributions or measures in terms of weak convergence. Such analysis is one of the important
aspects of probability theory and a foundation of statistics because the knowledge on
asymptotic behaviors provides insights of what will be likely to happen when we collect large
data.

Our motivation of formalizing the Lévy-Prokhorov metric is to prove that the measurable
space of finite measures on a standard Borel space is again a standard Borel space, where a
standard Borel space is a measurable space with certain good properties. Standard Borel
spaces are often used in modern probability theory. The disintegration theorem, which
guarantees the existence of conditional probability kernels, requires the underlying space to
be a standard Borel space. Standard Borel spaces are also a theoretical basis for the theory
of quasi-Borel spaces, a denotational model for higher-order probabilistic programs [8]. We
formalize the Lévy-Prokhorov metric because we need to give a metric on finite measures in
order to show that the space of finite measures is a standard Borel space. Another metric
which metrizes weak convergence is the Wasserstein metric. The Wasserstein metric is applied
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in transportation theory and machine learning. We chose to formalize the Lévy-Prokhorov
metric because the Wasserstein metric may fail to be a metric in the mathematical sense
when the underlying metric is not bounded.

During the proof of our goal, we also prove important mathematical theorems in related
areas. Our work is divided into three parts.

Weak Convergence and the Lévy-Prokhorov Metric. We first formalize the notion of weak
convergence including the Portmanteau theorem, equivalent conditions of weak convergence,
and the topology of weak convergence. We define the notion of weak convergence using
filters as convergence in Isabelle/HOL. We then formalize the Lévy-Prokhorov metric. We
prove the equivalence of the topology of weak convergence and the topology induced by the
Lévy-Prokhorov metric. The proof is different from the common textbook proofs (e.g. [3, 4]).
We obtain a simpler proof thanks to the generalization of weak convergence by filters.

Prokhorov’s Theorem. We show Prokhorov’s theorem using the Lévy-Prokhorov metric.
Prokhorov’s theorem states that a set of (uniformly bounded) finite measures is relatively
compact if and only if it is tight. Prokhorov’s theorem plays essential roles in the proofs of
the central limit theorem, Sanov’s theorem, and the existence of the optimal coupling in
transportation theory. In order to formalize Prokhorov’s theorem, we also prove (a special
case of) Alaoglu’s theorem and the Riesz representation theorem. The Riesz representation
theorem is an important result in functional analysis. While its proof, including related
lemmas, consists of around nine pages in Rudin’s book [22], our formalization takes more
than 2,100 lines of proofs.

Measurable Spaces of Finite Measures. One often considers the measurable space of
measures on some measurable space. Such spaces are used in stochastic processes and
semantics of probabilistic programming. The measurable space of measures is defined
independently from metrics or topologies. We prove that the measurable space of finite
measures is generated from the Lévy-Prokhorov metric. As a consequence, we obtain that
the measurable space of finite measures on a standard Borel space is a standard Borel space.

Our formalization is mainly based on the lecture notes by Gaans [27]. The lecture notes
includes detailed proofs about the Lévy-Prokhorov metric on probability measures. We
extend their definitions and proofs for finite measures.

Related Work
Avigad et al. formalized the notion of weak convergence of probability measures on R and
a special case of Prokhorov’s theorem during the proof of the central limit theorem in
Isabelle/HOL [1]. Compared to their work, our formalization of weak convergence treats
finite measures on any metric spaces, and convergence is generalized by filters. While there is
a simpler proof for the special case of Prokhorov’s theorem that they formalized, Prokhorov’s
theorem that we formalize needs tools in functional analysis, such as the Riesz representation
theorem, and thus requires more effort.

The Lean mathematical library, mathlib [25], includes ongoing formalization of the
weak convergence and the Lévy-Prokhorov metric by Kytölä [15]. Their definition of the
weak convergence is also generalized by filters and treats not only probability measures
but also finite measures. They showed that the Lévy-Prokhorov metric on the set of finite
measures on a pseudo metric space is a pseudo metric. They proved the equivalence of the
topology of weak convergence and the topology induced by the Lévy-Prokhorov metric on the
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space of probability measures. Our work contains more results than their work such as the
equivalence of convergence with respect to the Lévy-Prokhorov metric and weak convergence
(Theorem 10. 3) and Prokhorov’s theorem (Theorem 20).

The Riesz representation theorem in its original form as given by Riesz is formalized by
Narkawicz in PVS [19] and by Narita et al. in Mizar [18].

Paper Outline
In Section 2, we review the basic notions and theorems of topological spaces, metric spaces,
and measurable spaces. In Section 3, we define the weak convergence of measures, the topology
of weak convergence, and the Lévy-Prokhorov metric. We then show their properties. In
Section 4, we explain Prokhorov’s theorem and lemmas used in the proof of Prokhorov’s
theorem. In Section 5, we discuss the measurable space of finite measures.

We do not show Isabelle source code in this paper except for the definition of the topology
of weak convergence and the Lévy-Prokhorov metric in Section 3.4. The definitions and
statements in Isabelle/HOL are almost direct translations from the mathematical notation;
therefore, printing them here would not provide any additional insights.

2 Preliminaries

In this section, we review basic definitions and theorems related to topology, metric spaces,
and measure theory. Most of the results in this section are included in Isabelle/HOL’s
standard library.

2.1 Topology
Topology is a way of expressing nearness of points in a set. Let X be a set and OX a set of
subsets of X. The pair (X,OX) is called a topological space when ∅ ∈ OX , X ∈ OX , and
OX is closed under finite intersections and arbitrary unions. We sometimes write only X for
(X,OX), when the structure is obvious from the context. We follow the standard definitions
of topology, such as,

U ⊆ X is an open set of X
def⇐⇒ U ∈ OX

C ⊆ X is a closed set of X
def⇐⇒ X − C is open

f : X → Y is a continuous map def⇐⇒ ∀U ∈ OY . f−1(U) ∈ OX

for topological spaces X and Y .

2.2 Metric Spaces
While topological spaces express nearness in abstract way, metric spaces specify concrete
distances. Let X be a set and d : X ×X → R. The pair (X, d) is called a metric space if the
following holds.

For all x, y ∈ X, d(x, y) ≥ 0.
For all x, y ∈ X, d(x, y) = d(y, x).
For all x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y.
For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

We sometimes write only X for (X, d). Let (X, d) be a metric space, x ∈ X and ε > 0. The
set ballX(x, ε) = {y ∈ X | d(x, y) < ε} is called an open ball with center x and radius ε. The
set cballX(x, ε) = {y ∈ X | d(x, y) ≤ ε} is called a closed ball with center x and radius ε. We
assume that R is equipped with the standard distance d(x, y) = |x− y| in this presentation.

ITP 2024
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A metric space X induces the topological space (X,Od), where Od consists of arbitrary
unions of open balls. We call a topological space X metrizable if there exists a metric d on
X, which induces X.

2.3 Filter and Convergence
In Isabelle/HOL’s library, the notion of convergence is formalized in a general way using
filters. A filter on I is a set of subsets of I satisfying certain conditions. Filters can, among
other things, describe the set of all elements that are “sufficiently large” or “sufficiently close
to a”. We do not explain the detail of filters, which can be found in [13]. Let I be a set, F a
filter on I, X a topological space, {xi}i∈I ⊆ X, and x ∈ X. The notion “{xi}i∈I converges
to x in X with respect to F”, denoted by (xi −→ x) F in X (limitin in Isabelle/HOL), is
defined by

(xi −→ x) F in X ⇐⇒ For every open neighborhood U of x, eventually xi ∈ U w.r.t. F .

Intuitively, (xi −→ x) F in X means that xi is eventually close to x in X. We call x the
limit if (xi −→ x) F in X. When the topology is obvious from the context, we omit the
topology and write (xi −→ x) F for (xi −→ x) F in X. For instance, there are filters Fseq
on N and (at a) on R corresponding to “for sufficiently large n” and “for x sufficiently close
to a,” respectively. Convergences with respect to these filters have the same meaning as the
usual definitions.

lim
n→∞

xn = x ⇐⇒ (xn −→ x) Fseq in R

⇐⇒ ∀ε > 0. ∃N. ∀n ≥ N. |xn − x| < ε

lim
x→a

f(x) = L ⇐⇒ (f −→ L) (at a) in R

⇐⇒ (∀ε > 0. ∃δ > 0. ∀x. x ̸= a ∧ |x− a| < δ =⇒ |f(x)− L| < ε)

In addition to limit, limit inferior and limit superior are also generalized by filter in Isa-
belle/HOL. Limit inferior and limit superior with respect to F are denoted by LiminfF and
LimsupF , respectively.

A Characterization of Closed Sets by Limits. There is a characterization of closed sets
using convergence with respect to nets (Exercise A.48 [7]). We formalize the following
characterization of closed sets by limit with respect to filters because nets and filters are
equally expressive in terms of convergence (Section 4 [23]).

▶ Lemma 1. Let X be a topological space and C ⊆ X. Then, the following are equivalent.
1. C is closed in X.
2. For all sets I, filters F on I, {xi}i∈I ⊆ C, x ∈ X such that ∅ /∈ F and (xi −→ x) F in X,

we have x ∈ C.
If X is first-countable, then these are also equivalent to the following.
3. For all {xn}n∈N ⊆ C, x ∈ X such that (xi −→ x) Fseq in X, we have x ∈ C.
The implication that 1 implies 2 (and 3) is already included in Isabelle/HOL’s library. We
prove the other implications. The last condition of the above equivalence has already been
formalized for metric spaces. Since metric spaces are first-countable, our result is a relaxed
version of the existing result. There is also a characterization of open sets by limit with
respect to filters. The characterization is easily derived from that of closed sets.
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From the characterization of closed sets, we obtain a condition to decide whether two
topological spaces are equal using limit with respect to filters because topological spaces are
determined by closed sets.

▶ Corollary 2. Let (X,OX) and (X,O′
X) be topological spaces.

If (xi −→ x) F in (X,OX) ⇐⇒ (xi −→ x) F in (X,O′
X) for all I, F , {xi}i∈I , and x,

then OX = O′
X .

If (xn −→ x) Fseq in (X,OX) ⇐⇒ (xn −→ x) Fseq in (X,O′
X) for all {xn}n∈N and x,

and both of (X,OX) and (X,O′
X) are first-countable, then OX = O′

X .

▶ Remark 3. In Isabelle/HOL, we cannot quantify filters as “for any filter F” due to
Isabelle/HOL’s type system. For instance, when showing P ←→ (∀F :: □ filter. Q F), we
need to specify some type □ on which filters are defined. We state Lemma 1 and Corollary 2
by quantifying1 filters as the type F :: ′a set filter when the topology is X :: ′a topology
because we use a filter on V (x) (the set of all open neighbourhoods of x) to prove the lemmas.
Details of the filter are found in the lecture notes by Heil [7].

Finally, we define the Cauchy sequence and related notions.

▶ Definition 4. A sequence {xn}n∈N on a metric space X is called a Cauchy sequence if
∀ε > 0. ∃N. ∀n, m ≥ N. d(xn, xm) < ε.
A metric space is complete if every Cauchy sequence has a limit.
A topological space X is called a completely metrizable space if there exists a complete
metric on X, which induces X.
A topological space X is called a Polish space if X is separable and completely metrizable.

2.4 Measure Theory

The current measure theory library in Isabelle/HOL was first formalized by Hölzl and
Heller [12] and has been extended by several other works [1, 5]. Let M be a set and ΣM a
set of subsets of M . A pair (M, ΣM ) is called a measurable space if ΣM is non-empty and
closed under complements and countable unions. We sometimes write M for a measurable
space (M, ΣM ). A member A ∈ ΣM is called a measurable set. A function f from a
measurable space M to a measurable space N is measurable if f−1(A) ∈ ΣM for all A ∈ ΣN .
Let M be a measurable space, µ : ΣM → [0,∞] is a measure on M if µ(∅) = 0 and
µ(
⋃

n∈N An) =
∑∞

n=0 µ(An) for any disjoint family {An}n∈N ⊆ ΣM . A measure µ on M is
called a finite measure if µ(M) <∞, a sub-probability measure if µ(M) ≤ 1, and a probability
measure if µ(M) = 1. For a measure µ on M and a measurable function f : M → R,

∫
fdµ

denotes the Lebesgue integral of f with respect to µ.
A topological space (X,OX) induces the measurable space (X, σ[OX ]), where σ[OX ] is

the least σ-algebra including all open sets of X. The measurable space (X, σ[OX ]) is called
the Borel space. Notice that a metric space is also treated as a measurable space since it
induces a topological space. The Borel space induced by a metric space (X, d) is denoted by
(X, Σd).

1 The direction 1 implies 2 of Lemma 1, which is already included in Isabelle/HOL’s library, has been
proved for all filters of any type using Isabelle’s polymorphism. That is, P =⇒ Q (F :: ′b filter) can be
stated in Isabelle.

ITP 2024
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3 The Lévy-Prokhorov Metric

Historically, Lévy first introduced a metric, known as the Lévy metric, between cumulative
distribution functions [17]. Later, Prokhorov defined the Lévy-Prokhorov metric between
finite measures analogous to the Lévy metric [21]. In this section, we review the notion of
weak convergence and the Lévy-Prokhorov metric. At the end of this section, we discuss our
formalization of the topology of weak convergence and the Lévy-Prokhorov metric. For a
measurable space X, P(X) denotes the set of all finite measures on X. Note that X can be
a metric space or a topological space since they both induce a measurable space.

3.1 Weak Convergence
The existing formalization of weak convergence in Isabelle/HOL’s standard library is restricted
to sequences on N of probability measures on R. We define the notion of weak convergence
which treats finite measures on any topological spaces. The convergence in our formalization
is generalized by filters.

▶ Definition 5 (Weak Convergence). Let X be a topological space, I a set, F a filter on I,
{µi}i∈I ⊆ P(X), and µ ∈ P(X). We say that {µi}i∈I converges weakly to µ with respect to
F , denoted by (µi ⇒wc µ) F , if

(∫
fdµi −→

∫
fdµ

)
F for all f ∈ Cb(X), where Cb(X) is

the set of all bounded continuous functions from X to R.

The notion of weak convergence has several equivalent statements when X is a metric space.

▶ Theorem 6 (The Portmanteau Theorem). Let X be a metric space, I a set, F a filter on I,
{µi}i∈I ⊆ P(X), and µ ∈ P(X). Then, the following are equivalent.
1. (µi ⇒wc µ) F .
2. For all f ∈ UCb(X),

(∫
fdµi −→

∫
fdµ

)
F .

3. (µi(X) −→ µ(X)) F and for every closed set C, LimsupF {µi(C)}i∈I ≤ µ(C).
4. (µi(X) −→ µ(X)) F and for every open set U , LiminfF {µi(U)}i∈I ≥ µ(U).
5. For every measurable set A ∈ ΣX such that µ (∂A) = 0, (µi(A) −→ µ(A)) F .

The set UCb(X) denotes the set of all bounded uniform continuous functions f : X → R.

The Portmanteau theorem is commonly stated for probability measures rather than finite
measures. Notice that we require the condition (µi(X) −→ µ(X)) F in 3 and 4. This
condition does not appear in the Portmanteau theorem for probability measures. In the
proof for probability measures, we use µi(X) = µ(X) = 1. For finite measures, µi(X) is
not equal to µ(X) in general. Hence, we use the condition (µi(X) −→ µ(X)) F instead of
µi(X) = µ(X) = 1 in order to approximate µi(X) to µ(X) during the proof.

3.2 Topology of Weak Convergence
Let X be a topological space. Topology of weak convergence on X, denoted by OWCX

, is
the coarsest topology on P(X) which makes (λµ.

∫
fdµ) : P(X) → R continuous for all

f ∈ Cb(X). As the name suggests, convergence in the topology of weak convergence is equal
to weak convergence.

▶ Lemma 7. Let X be a topological space, I a set, F a filter on I, {µi}i∈I ⊆ P(X), and
µ ∈ P(X). Then,

(µi −→ µ) F in (P(X),OWCX
) ⇐⇒ (µi ⇒wc µ) F.
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3.3 The Lévy-Prokhorov Metric
In the lecture notes by Gaans, they only treat the case when P(X) is the set of all probability
measures on X. We generalize their definitions and proofs to the set of all finite measures.

▶ Definition 8 (Lévy-Prokhorov Metric). For a metric space (X, d), the Lévy-Prokhorov
metric dP(X) is a metric on P(X) defined by

dP(X)(µ, ν) = inf{α > 0 | ∀A ∈ ΣX . µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α},

where Aα =
⋃

x∈A ballX(x, α).

Note that dP(X)(µ, ν) < ∞ because ∞ ̸= max(µ(X), ν(X)) ∈ {α > 0 | ∀A ∈ ΣX . µ(A) ≤
ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α}. The Lévy-Prokhorov metric is also expressed using open
sets, closed sets, and compact sets.

▶ Lemma 9.

dP(X)(µ, ν) = inf{α > 0 | ∀U : open. µ(U) ≤ ν(Uα) + α ∧ ν(U) ≤ µ(Uα) + α}
= inf{α > 0 | ∀C: closed. µ(C) ≤ ν(Cα) + α ∧ ν(C) ≤ µ(Cα) + α}.

If X is separable and complete, then

dP(X)(µ, ν) = inf{α > 0 | ∀K: compact. µ(K) ≤ ν(Kα) + α ∧ ν(K) ≤ µ(Kα) + α}.

The convergence with respect to the Lévy-Prokhorov metric is equivalent to the weak
convergence when X is separable.

▶ Theorem 10 (Theorem 4.1 and 4.2 [27]). The following hold.
1. (P(X), dP(X)) is a metric space.
Let I be a set, F a filter on I, {µi}i∈I ⊆ P(X) and µ ∈ P(X).
2. (µi −→ µ) F in (P(X),OdP(X)) implies (µi ⇒wc µ) F .
3. If X is separable, (µi −→ µ) F in (P(X),OdP(X)) if and only if (µi ⇒wc µ) F .
The proofs are similar to the one when P(X) is the set of all probability measures and
F = Fseq (i.e., the convergence is not generalized by filters). The Lévy-Prokhorov metric
metrizes the topology of weak convergence when X is separable.

▶ Corollary 11. If X is separable, the Lévy-Prokhorov metric metrizes the topology of weak
convergence, i.e., OWCX

= OdP(X) .

The generalization by filters of weak convergence and Theorem 10 enables us to prove this
lemma easily.

Proof. The metrizability is shown from the equivalence of convergences. From Lemma 7
and Theorem 10, convergences in (P(X),OWCX

) and (P(X),OdP(X)) are equivalent for all
filters. Hence, we have OWCX

= OdP(X) from Corollary 2. ◀

Even though Corollary 11 is a well-known result, only a few books include its proof. We
found two books showing Corollary 11. In the book by Billingsley [3], they directly prove
the equivalence by examining neighborhoods. In the book by Deuschel and Stroock [4],
they prove the equivalence by using the equivalence of convergence with respect to the filter
Fseq (i.e., sequences are defined on N such as {µn}n∈N). As we stated in Corollary 2, their
proof requires the assumption that (P(X),OWCX

) is first-countable. They use the fact
that (P(X),OWCX

) is second-countable (and thus also first-countable) without providing

ITP 2024
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any proof that it is second-countable. If we follow their proof, we will need additional
efforts to show the first countability of (P(X),OWCX

). In our proof, we do not need the
first countability because we generalized the notion of weak convergence and equivalence of
convergence by filters.

Thanks to Corollary 11, we identify (P(X),OdP(X)) with (P(X),OWCX
), when X is a

separable metric space.

▶ Proposition 12 (Proposition 4.4 [27]). If X is a separable metric space, then P(X) is also
a separable metric space.

The proof is similar to the one when P(X) is the set of all probability measures on X. If
{an}n∈N is a dense subset of X, then⋃

k∈N
{r0δa0 + · · ·+ rkδak

| r0, . . . , rk ∈ Q ∩ [0,∞)}

is a countable dense subset of P(X), where δa denotes the Dirac measure centered at a.

3.4 Implementation in Isabelle/HOL
We explain our implementation of the topology of weak convergence and the Lévy-Prokhorov
metric. We sometimes use usual mathematical symbols in source code for readability.

Topology of Weak Convergence

We define the topology of weak convergence by combining existing constants which generate
topological spaces. Let f be a bounded continuous function on X and Of the least topology
on P(X), which makes (λN .

∫
x. f x ∂N) continuous2. Then, (P(X),Of) is written in

Isabelle/HOL as follows:

(P(X),Of) = pullback-topology P(X) (λN .
∫

x. f x ∂N) R,

where

pullback-topology :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ ′b topology ⇒ ′a topology
pullback-topology A f Y = The least topology on A which makes f : A→ Y continuous.

The set of all open sets Of is extracted as follows:

Of = Collect (openin (pullback-topology P(X) (λN .
∫

x. f x ∂N) R)),

where

openin :: ′a topology ⇒ ′a set ⇒ bool, openin X U ⇐⇒ U is an open set of X.
Collect :: ( ′a ⇒ bool) ⇒ ′a set, Collect P = {x. P x}.

Finally, we define the topology of weak convergence (P(X),O[
⋃

f∈Cb(X)Of]).

definition weak-conv-topology :: ′a topology ⇒ ′a measure topology where
weak-conv-topology X ≡ topology-generated-by

(
⋃

f∈{f . continuous-map X R f ∧ (∃B. ∀ x∈topspace X. |f x| ≤ B)} .
Collect (openin (pullback-topology P(X) (λN .

∫
x. f x ∂N) R)))

2 In Isabelle/HOL, the Lebesgue integral of f with respect to N is denoted by
∫

x. f x ∂N.



M. Hirata 21:9

The term continuous-map X R f means that f is a continuous map from X to R and
topology-generated-by receives a set of sets and returns the least topology, including the
received set. The topological space weak-conv-topology X meets the requirements of the
topology of weak convergence.
lemma continuous-map-weak-conv-topology:

assumes continuous-map X R f and
∧

x. x ∈ topspace X =⇒ |f x| ≤ B
shows continuous-map (weak-conv-topology X) R (λN .

∫
x. f x ∂N)

lemma weak-conv-topology-minimal:
assumes topspace Y = P(X)

and
∧

f B. continuous-map X R f =⇒ (
∧

x. x ∈ topspace X =⇒ |f x| ≤ B)
=⇒ continuous-map Y R (λN .

∫
x. f x ∂N)

shows openin (weak-conv-topology X) U =⇒ openin Y U

The first lemma guarantees that weak-conv-topology X makes (λN .
∫

x. f x ∂N) continuous
and the second lemma states that weak-conv-topology X is the least topology in such
topological spaces.

From Lemma 7, weak convergence and convergence in the topology of weak convergence
are equivalent. Thus, we define the notion of weak convergence as an abbreviation of
the convergence in the topology of weak convergence. Then, the usual definition of weak
convergence (Definition 5) is shown as a lemma.
abbreviation weak-conv-on :: ( ′a ⇒ ′b measure) ⇒ ′b measure ⇒ ′a filter ⇒ ′b topology ⇒ bool
where weak-conv-on Ni N F X ≡ limitin (weak-conv-topology X) Ni N F

lemma weak-conv-on-def ′:
assumes

∧
i. Ni i ∈ P(X) and N ∈ P(X)

shows weak-conv-on Ni N F X ←→
(∀ f . continuous-map X R f −→ (∃B. ∀ x∈topspace X. |f x| ≤ B)

−→ ((λi.
∫

x. f x ∂Ni i) −−−→ (
∫

x. f x ∂N)) F)

The term limitin (weak-conv-topology X) Ni N F denotes (Ni −→ N) F in (P(X),OWCX
)

in our presentation.

The Lévy-Prokhorov Metric

To formalize the Lévy-Prokhorov metric in Isabelle/HOL, we use the set-based metric space
library, which has recently appeared in the standard distribution since Isabelle 2023. The
library was ported from HOL Light by Paulson [20]. Another metric space library that has
been used is based on type classes [13]. While set-based metric space enable us to treat metric
spaces with arbitrary carrier sets, type-based metric spaces only work for an entire type.
For each type, there can only be one metric-space instance. This works well for situations
where there is a “canonical” metric space for a type, but it lacks the flexibility to describe,
for instance, the set of all metric spaces with a given carrier set. The library based on type
classes is unsuitable for our use because we use the set of finite measures on a measurable
space, which is not the universe of the type.

In Isabelle/HOL’s library, the set-based metric space is defined with the locale command.
locale Metric-space =

fixes M :: ′a set and d :: ′a ⇒ ′a ⇒ real
assumes nonneg:

∧
x y. 0 ≤ d x y

assumes commute:
∧

x y. d x y = d y x
assumes zero:

∧
x y. [[x ∈ M ; y ∈ M ]] =⇒ d x y = 0 ←→ x=y

assumes triangle:
∧

x y z. [[x ∈ M ; y ∈ M ; z ∈ M ]] =⇒ d x z ≤ d x y + d y z
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The locale command introduces a context. In this case, a set M and a function d are fixed
and the four assumptions hold, i.e., (M, d) forms a metric space in the context of Metric-space.
Notice that the non-negativity and commutativity must hold on not only M but the whole
type universe. These assumptions make it easier to use non-negativity and commutativity
in proofs, and do not change the essential structure of the metric space. Owing to these
assumptions, we need to take care of non-negativity and commutativity even outside the
carrier set when we define a metric space.

We introduced a new locale Levy-Prokhorov which is logically equivalent to Metric-space.
locale Levy-Prokhorov = Metric-space

Remember that the Lévy-Prokhorov metric is defined as follows.

dP(X)(µ, ν) = inf{α > 0 | ∀A ∈ ΣX . µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α},

where Aα =
⋃

x∈A

ballX(x, α).

Hence, we define the Lévy-Prokhorov metric in the context of Levy-Prokhorov as follows:
definition P ≡ {N . sets N = sets (borel-of mtopology) ∧ finite-measure N}

definition LPm :: ′a measure ⇒ ′a measure ⇒ real where
LPm N L ≡

if N ∈ P ∧ L ∈ P then
(
d
{e. e > 0 ∧ (∀A∈sets (borel-of mtopology).

measure N A ≤ measure L (
⋃

a∈A. mball a e) + e ∧
measure L A ≤ measure N (

⋃
a∈A. mball a e) + e)})

else 0

In the definition of P, the projection function sets receives a measure and returns the
σ-algebra on which the measure is defined. The constant mtopology denotes the topological
space induced by (M, d), and borel-of mtopology denotes the Borel space generated from
mtopology. In the definition of LPm, measure N A corresponds to N (A) in usual mathematics
notation. Notice that LPm returns 0 when one of the arguments is not a member of P
because the set to which we apply infimum might be empty when LPm receives an infinite
measure. In Isabelle/HOL, the infimum operator on real numbers does not return ∞ nor
any specific value when applied to the empty set; i.e., the value of

d
∅ is unknown. This is

a problem because LPm needs to be a non-negative function on the whole type universe due
to the definition of Metric-space.

We then prove that (P, LPm) is a metric space in the context of Levy-Prokhorov.
sublocale LPm: Metric-space P LPm

The reader might wonder why we define a new locale Levy-Prokhorov, which is logically
equivalent to Metric-space, rather than using Metric-space directly. If we try to define the
Lévy-Prokhorov metric in the context of Metric-space without introducing a new locale, it
does not work.
context Metric-space
begin

definition P ≡ {N . sets N = sets (borel-of mtopology) ∧ finite-measure N}
definition LPm ≡ ...

sublocale LPm: Metric-space P LPm

end
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The problem is that we try to instantiate Metric-space inside the context of Metric-space.
This causes Isabelle to build an infinite chain; thus, Isabelle does not terminate. This
workaround is explained in the Isabelle tutorial on locales [2].

4 Prokhorov’s Theorem

One of the important results related to the Lévy-Prokhorov metric is Prokhorov’s theorem.
In a typical situation in probability theory or statistics, one may want to know whether
a sequence of measures has a limit or at least has a converging subsequence. Prokhorov’s
theorem is applied to prove the existence of a converging subsequence. The theorem is used
in proofs for various important results such as the central limit theorem, Sanov’s theorem,
and the existence of optimal coupling. The central limit theorem and Sanov’s theorem are
key concepts in probability theory. The central limit theorem states that under appropriate
conditions, the distribution of normalized sample means converges weakly to the standard
normal distribution. Sanov’s theorem is an important result in the large deviation theory
(e.g. Section 3.2 [4]). The theorem describes the asymptotic behavior of atypical samples
and gives evidence why we use the relative entropy (Kullback-Leibler divergence) to evaluate
estimated distributions. Both the central limit theorem and Sanov’s theorem use Prokhorov’s
theorem. In transportation theory, a coupling is a plan how to move resources from supply
areas to demand areas. A coupling is represented as a measure satisfying certain conditions.
An optimal coupling is a coupling that minimizes the total cost of transporting resources. In
the proof of the existence of an optimal coupling, Prokhorov’s theorem is essential [28, 29].

In this section, we discuss Prokhorov’s theorem and related topics.

4.1 Regular Measures
We define the notion of regular measures and tightness of measures. The regularity of
measures gives ways to approximate a measured value µ(A) by open sets, closed sets, and
compact sets. The tightness of measures is used to express a condition in Prokhorov’s
theorem.

▶ Definition 13. Let X be a topological space. A measure µ on X is called:
1. inner regular if µ(A) = sup{µ(C) | C ⊆ A, C is closed} for all measurable sets A,
2. outer regular if µ(A) = inf{µ(U) | A ⊆ U , U is open} for all measurable sets A, and
3. regular if µ is inner regular and outer regular.

▶ Proposition 14. Let X be a metrizable space. Then, any finite measure on X is regular.

▶ Remark 15. This definition of inner regular by Gaans is different from the standard
definition. In general, a measure µ on X is called inner regular if
1’. µ(A) = sup{µ(K) | K ⊆ A, K is compact} for all measurable sets A.
This definition is stronger than the condition 1 in Definition 13, when every compact set is
closed (e.g. when X is metrizable). As we will see soon, Proposition 14 still holds even if we
use the condition 1’ as inner regularity when X is a Polish space (Corollary 19).

Proposition 14 has been already included in the standard Isabelle/HOL’s library. They
assume that X is a Polish space and use the condition 1’ as the definition of inner regular.
Their formalization is restricted to measures on the Borel space of topological space on type
classes; thus, they treat only when X is the universal set such as R. We formalize the general
result when X is an arbitrary metrizable space or a Polish space.

Next, we define tightness.

ITP 2024
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▶ Definition 16 (Tightness). Let X be a topological space and Γ ⊆ P(X). We call Γ tight if
for every ε > 0, there exists a compact set K of X such that µ(X −K) ≤ ε for all µ ∈ Γ. A
measure µ on X is tight if {µ} is tight.

The existing definition of tightness in Isabelle/HOL’s library is restricted to when Γ is a
sequence on N of probability measures on R.

▶ Lemma 17. If X is metrizable and µ is a tight measure on X, then µ(A) = sup{µ(K) |
K ⊆ A, K is compact} for all measurable sets A.

▶ Theorem 18. If X is a Polish space, then any finite measure on X is tight.

▶ Corollary 19. If X is a Polish space and µ is a finite measure on X, then µ(A) =
sup{µ(K) | K ⊆ A, K is compact} for all measurable sets A.

4.2 Prokhorov’s Theorem
We formalize Prokhorov’s theorem. Let Pr(X) = P(X) ∩ {µ | µ(X) ≤ r} for r ≥ 0.

▶ Theorem 20 (Prokhorov’s Theorem). Let X be a Polish space and Γ ⊆ Pr(X) for some
r ≥ 0. Then, the following are equivalent.
1. Γ is relatively compact.
2. Γ is tight.
▶ Remark 21. Actually, the assumption Γ ⊆ Pr(X) is relaxed to Γ ⊆ P(X) in the proof that
1 implies 2. The completeness assumption is not required in the proof that 2 implies 1.
The following corollary is applied to show the existence of a converging subsequence.

▶ Corollary 22. Let X be a separable metrizable space and {µn}n∈N ⊆ Pr(X) for some
r ≥ 0. If {µn}n∈N is tight, then there exists a subsequence {µnk

}k∈N and µ ∈ Pr(X) such
that (µnk

⇒wc µ) Fseq.

Avigad et al. formalized the above corollary when {µn}n∈N is a sequence of probability
measures on R and applied it to prove the central limit theorem [1]. In the case of probability
measures on R, there is a simpler proof using Helly’s selection theorem. In general case, we
need to prove in other way because the proof using Helly’s selection theorem uses cumulative
distribution function; i.e., X needs to be R.

The proof that 1 implies 2 in Prokhorov’s theorem is more straightforward. The proof
that 2 implies 1 requires more effort to prove for us. We do not discuss the details of the
proof. Instead, we explain a key lemma for the proof that 2 implies 1.

▶ Lemma 23. If X is a compact metric space, then Pr is compact.

The proof relies on results from vector space theory such as Alaoglu’s theorem and the Riesz
representation theorem. Although these theorems need to be stated in set-based vector
space in Isabelle/HOL for our use, most of Isabelle/HOL’s vector space library is based on
type classes. The set-based vector space library by Lee [16] includes only basic definitions.
Thiemann and Yamada also formalized a set-based vector space [26]. However, their work
treats only finite-dimensional spaces. Since we are interested in the Lévy-Prokhorov metric
rather than vector space theory, we leave the development of the set-based vector space
library for future work. Thus, we formalize positive linear functionals used in proofs and
their properties without mentioning vector spaces. For Alaoglu’s theorem, we prove a special
case of the theorem.
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Proof. The idea of the proof is to make a homeomorphism between Pr and a compact space.
Let Φ be

Φ =
(
RC(X)

)
∩ {φ | φ is a positive linear functional ∧ φ(1) ≤ r}. (1)

Remember that an element φ of RC(X) is a function φ : C(X)→ R. We denote φ(f) by φf .
Then, the linearity of φ ∈ Φ means that for all α, β ∈ R and f, g ∈ C(X), φαf+βg = αφf +βφg.
The positiveness means that for all f ∈ C(X) such that f ≥ 0, φf ≥ 0.

We assume that Φ is equipped with the subspace topology of the product topology RC(X)

(subspace topology of the weak* topology). We define the function T from Pr to Φ by
T (µ)f =

∫
fdµ. It is easy to check that T (µ) ∈ Φ, and T is a sequential homeomorphic

map. For instance, the linearity of the integral implies the linearity of T (µ). The function
T is bijective by the Riesz representation theorem (Corollary 31). As Gaans stated, Φ is
metrizable3. Thus, T is a homeomorphism4. Furthermore, Φ is compact by the special case
of Alaoglu’s theorem (Theorem 28). Hence, Pr is compact. ◀

▶ Remark 24. In the lecture notes, Gaans stated that the sequential compactness of a closed
subset of Φ follows from its compactness. This statement is true because Φ is metrizable.
However, they did not mention that in their proof.

Prokhorov’s theorem is applied to prove the completeness of the Lévy-Prokhorov metric.

▶ Corollary 25. If X is separable and complete, then (P(X), dP(X)) is complete.

When we prove the existence of a limit of a Cauchy sequence {µn}n∈N ⊆ P(X), we use
Prokhorov’s theorem as Γ = {µn}n∈N. Hence, we need to show that {µn}n∈N ⊆ Γr for some
r ≥ 0. This follows from the fact that {µn}n∈N is a Cauchy sequence.

As a consequence of Corollary 11, Proposition 12, and Corollary 25, we have the following.

▶ Corollary 26. If X is a Polish space, then so is P(X).

4.3 Alaoglu’s Theorem
Alaoglu’s theorem (sometimes called the Banach-Alaoglu theorem) is an important result
in functional analysis. The theorem states that the closed unit ball of the dual space of a
normed vector space is compact. Let Y be a vector space over R and Y ∗ the dual space
of Y . The weak* topology is a topology on Y ∗, which is the coarsest topology that makes
every (λf. f(y)) : Y ∗ → R continuous. The original statement of the Alaoglu’s theorem is
the following.

▶ Theorem 27 (Alaoglu’s Theorem). Let Y be a normed vector space and B∗ = {φ ∈ Y ∗ |
∥φ∥ ≤ r}. Then, B∗ is compact in Y ∗ with respect to the weak* topology.

We do not prove the above form of the theorem due to the lack of set-based vector space
library in Isabelle/HOL. Instead, we prove a special case of Alaoglu’s theorem for our use.

3 Since X is compact, C(X) along with the topology of uniform convergence is separable (Theorem
2.4.3 [24]). Let {gn}n∈N be a dense subset of C(X). Then, the metric on Φ is, for instance, given by

d(φ,ψ) =
∞∑

n=0

1
2n+1 min(1, |φ(gn)− ψ(gn)|).

4 A function f from a first-countable space is continuous iff it is sequentially continuous.

ITP 2024



21:14 A Formalization of the Lévy-Prokhorov Metric in Isabelle/HOL

▶ Theorem 28. If a topological space X is compact, then Φ defined by (1) in the proof of
Lemma 23 is compact.

▶ Remark 29. While the Alaoglu’s theorem says that {φ ∈ C(X)∗ | ∥φ∥ ≤ r} is compact,
Theorem 28 states that Φ = {φ ∈ C(X)∗ | ∥φ∥ ≤ r ∧ φ is positive} is compact. Note that
∥φ∥ = φ(1) when φ ∈ C(X)∗ is positive.

Proof Outline. We formalize the theorem following the proof in the lecture notes by Heil [6].
The proof is simple. We first observe that

∏
f∈C(X) [−r∥f∥, r∥f∥] is compact in RC(X) by

Tychonoff’s theorem. Note that every f ∈ C(X) is bounded because X is compact. We then
show that Φ ⊆

∏
f∈C(X)[−r∥f∥, r∥f∥] and Φ is closed. The fact that Φ is closed is shown by

the characterization of closed sets by limit (Lemma 1). ◀

4.4 The Riesz Representation Theorem
The Riesz representation theorem (sometimes called the Riesz-Markov representation theorem
or Riesz-Markov-Kakutani representation theorem) states that a real-valued (or complex-
valued) positive linear functional is represented by the Lebesgue integration with respect
to a unique measure. We prove the Riesz representation theorem following the book by
Rudin [22].

▶ Theorem 30 (The Riesz representation theorem). Let X be a locally compact Hausdorff
space and φ a real-valued positive linear functional on Cc(X), where Cc(X) is the set of all
continuous functions on X whose closed support is compact. Then, there exists a σ-algebra
M in X and a unique measure µ on (X,M) such that:

φ(f) =
∫

fdµ for all f ∈ Cc(X),
ΣX ⊆M,
µ(K) <∞ for all compact sets K,
µ(A) = inf{µ(U) | A ⊆ U , U is open} for all A ∈M,
µ(A) = sup{µ(K) | K ⊆ A, K is compact} for all open sets A and for all A ∈ M such
that µ(A) <∞, and
µ is a complete measure, i.e., if E ∈M, A ⊆ E, and µ(E) = 0, then A ∈M.

In the book, the proof of the Riesz representation theorem is divided into ten steps and uses
two lemmas. Their proofs consist of around nine pages, whereas we spent more than 2,100
lines for their proofs. The proof requires Urysohn’s lemma on locally compact Hausdorff
space. Although Isabelle/HOL’s library has several forms of Urysohn’s lemmas and lemmas
related to locally compact spaces, the library does not include Urysohn’s lemma on locally
compact Hausdorff space. Hence, we formalized the lemma by ourselves.

We use the following corollary in the proof of Prokhorov’s theorem.

▶ Corollary 31. Let X be a compact metric space and φ be a real-valued positive linear
functional on C(X). Then, there exists a unique measure µ on X such that for all f ∈ C(X),

φ(f) =
∫

fdµ.

5 Measurable Spaces of Finite Measures

In this section, we discuss the measurable space of all finite measures. Measurable spaces on
a set of measures are used in stochastic processes and semantics of probabilistic programs.
In stochastic processes, measures are usually indexed by time or states. A stochastic process
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is interpreted as a measurable function from its index set to the space of measures. In the
semantics of probabilistic programs, the Giry monad G (or sub-Giry monad) gives a standard
semantics of probabilistic programs where G(M) is the measurable space of all probability
measures on M defined independently from metric or topology.

We will show that this type of measurable space of all finite measures is generated from
the topology of weak convergence when the underlying topological space is a Polish space.

▶ Definition 32. Let M be a measurable space. The space of finite measures on M is denoted
by (P(M), ΣP(M)), where ΣP(M) is the least σ-algebra that makes (λµ. µ(A)) measurable for
all A ∈ ΣM .

Note that this definition does not use any metric or topology. In Isabelle/HOL’s library, the
space of all sub-probability measures Psprob(M) and the space of all probability measures
Pprob(M) are already formalized by Eberl et al. [5] (subprob-algebra M and prob-algebra
M, respectively). We have formalized the space of all finite measures in the same way as
subprob-algebra. Subsequently, we have shown that Psprob(M) and Pprob(M) are subspaces
of P(M).

The following lemma follows immediately from the Portmanteau theorem5.

▶ Lemma 33 (Corollary 17.21 [14]). For open U ⊆ X, (λµ. µ(U)) : (P(X),OdP(X)) → R
is lower semi-continuous. For closed C ⊆ X, (λµ. µ(C)) : (P(X),OdP(X)) → R is upper
semi-continuous.

▶ Corollary 34. ΣP(X) ⊆ ΣdP(X) .

Proof. From the definition of ΣP(X), it is sufficient to show that for all A ∈ ΣX , (λµ. µ(A))
is a measurable function from (P(X), ΣdP(X)) to R. It is easy to check the measurability
because by Lemma 33, (λµ. µ(U)) : (P(X), dP(X))→ R is lower semi-continuous for all open
sets U ⊆ X, hence measurable. ◀

The inverse inclusion holds when X is separable and complete.

▶ Theorem 35. If a metric space X is separable and complete, then ΣP(X) = ΣdP(X) .

▶ Corollary 36. If X is a Polish space, then ΣP(X) = Σ(P(X),OWCX
).

We constructed the proof of Theorem 35 by ourselves because we could not find any proof
for the statement. We provide an informal proof here.

Proof of Theorem 35. Since ΣdP(X) is generated from closed balls, it is sufficient to prove
that every closed ball is a member of ΣP(X). Let µ be a finite measure on X and ε ≥ 0. Our
goal is to show that cBallP(X)(µ, ε) ∈ ΣP(X). Let Ob be a countable base of X and ObfU
the set of all finite unions of elements of Ob. Then, ObfU is also countable.

▷ Claim 37.

cBallP(X)(µ, ε) =
⋂

U∈ObfU

(⋂
n∈N

(λν. ν(U))−1
(
−∞, µ

(
U(ε+ 1

1+n )
)

+ ε + 1
1 + n

]
∩

(
λν. ν

(
U(ε+ 1

1+n )
))−1

[
µ(U)−

(
ε + 1

1 + n

)
,∞
))

(2)

5 Remember that for a first-countable space X,
f : X → R is lower semi-continuous iff (xn −→ x) Fseq in X implies f(x) ≤ LiminfFseq{f(xn)}n∈N.
f : X → R is upper semi-continuous iff (xn −→ x) Fseq in X implies f(x) ≥ LimsupFseq

{f(xn)}n∈N.
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If the above claim is shown, cBall(µ, ε) ∈ ΣP(X) follows from the definition of ΣP(X).
The inclusion ⊆ in equation (2) is directly proven by unfolding the definition of the

Lévy-Prokhorov metric. Hence, we show ⊇ of (2). Let us assume that ν is a member of the
right hand side of (2). Then, for all U ∈ ObfU and n ∈ N, we have

ν(U) ≤ µ
(

U(ε+ 1
1+n )

)
+ ε + 1

1 + n
, µ(U) ≤ ν

(
U(ε+ 1

1+n )
)

+ ε + 1
1 + n

. (3)

We show ν ∈ cBallP(X)(µ, ε) by proving that dP(X)(µ, ν) < ε′ for all ε′ > ε. Let ε′ > ε, then
there exists n ∈ N such that ε + 1

1+n < ε′. For an open set A ⊆ X, we have

µ(A) = sup{µ(K) | K ⊆ A, K is compact} (Corollary 19)
≤ sup{µ(U) | U ⊆ A, U ∈ ObfU} (4)

≤ sup
{

ν
(

U(ε+ 1
1+n )

)
+ ε + 1

1 + n
| U ⊆ A, U ∈ ObfU

}
(by (3))

≤ ν
(

A(ε+ 1
1+n )

)
+ ε + 1

1 + n
.

The inequality (4) above is shown as follows: Since Ob is a base of X, there exists O′ ⊆ Ob

such that A =
⋃

U∈O′ U . If K ⊆ A is compact, there exists a finite subset O′
fin ⊆ O′ such

that K ⊆
⋃

U∈O′
fin

U . By the definition of ObfU, we have
⋃

U∈O′
fin

U ∈ ObfU. Thus, (4) holds.

Similarly, we have ν(A) ≤ µ
(

A(ε+ 1
1+n )

)
+ ε + 1

1+n for all open sets A ⊆ X. Hence,

dP(X)(µ, ν) = inf{α > 0 | ∀A: open. µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α}

≤ ε + 1
1 + n

< ε′. ◀

Corollary 36 is applied to prove that the space of finite measures is a standard Borel
space, which is a measurable space generated from a Polish space. Many practical spaces
(e.g. R, N, and countable product spaces of standard Borel spaces) are standard Borel spaces.
Standard Borel spaces have good properties such as Kuratowski’s theorem stating that any
standard Borel space is either a countable discrete space or isomorphic to R. In our previous
work [11], we formalized the notion of standard Borel space. As a consequence of Corollary 26
and Corollary 36, we obtain the following.

▶ Corollary 38. If M is a standard Borel space, then so is P(M).

▶ Corollary 39. If M is a standard Borel space, then Psprob(M) and Pprob(M) are also
standard Borel spaces.

6 Conclusion

We formalized the Lévy-Prokhorov metric and related notions to show that the measurable
space of finite measures on a standard Borel space is a standard Borel space. We also
showed important mathematical theorems such as the Riesz representation theorem and
Prokhorov’s theorem. Our formalization consists of around 11,000 lines (4,400 lines for
the Riesz representation theorem and 6,600 lines for the Lévy-Prokhorov metric) including
comments and blank lines.

Formalization of the large deviation theory and transportation theory could be interesting
future works. Both of these theories depend on Prokhorov’s theorem for the proof of important
theorems in their fields, namely, Sanov’s theorem and the existence of an optimal coupling.
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