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Abstract
Motivated by the continuously growing performance demands for the Isabelle Archive of Formal
Proofs (AFP), we introduce distributed cluster computing to the Isabelle platform. Parallel build
time on a single node has approached 4 h–8 h in recent years: by supporting multiple nodes, without
shared memory nor shared file-systems, we target at a substantial speedup factor to get below the
critical limit of 45 min total elapsed time. Our distributed build tool is part of the regular Isabelle
distribution, but specifically adapted to cope with the structure of projects seen in the AFP.

In this work, we address two main challenges: (1) the distributed system architecture that has
been implemented in Isabelle/Scala, and (2) the build schedule optimization problem for multi-
threaded tasks on multiple compute nodes. We introduce a heuristic tuned to the typical AFP
session structure, which can generate good schedules in a few seconds. We reached a total speedup
factor of over 100, which is a milestone never before reached. Using this approach, we could build
the Isabelle distribution in 8 min 10 s elapsed time, and the AFP in 35 min 40 s, or 1 h 59 min 13 s
including very slow sessions.
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1 Introduction

Motivation. The Isabelle proof assistant is accompanied by the Archive of Formal Proofs
(AFP) [1], an online journal of formal content produced with Isabelle. The AFP is continuously
checked against the underlying Isabelle version (official release or development snapshots).

The AFP was founded 20 years ago: the first entry is from 19-Mar-2004 [21], and in June
2024 there are ≈ 830 entries. The steady growth of AFP content challenges the underlying
Isabelle platform, since proposed changes to Isabelle need to be pushed through all entries of
the AFP. Such changes could affect interfaces of Isabelle/ML, fundamental syntax of the
Isabelle/Pure framework, library content in Isabelle/HOL (e.g. term notation, default proof
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rules). Often, the initial change idea fails: it requires iterated refinement, until it becomes
acceptable to the AFP – not causing too many follow-up changes there.

To retain the very notion of interactive proof development and maintenance, AFP test
runs need to be reasonably fast. The folklore of AFP maintenance tells us that 45 min
is a critical limit of “waiting online” for results, e.g. while doing other maintenance work
elsewhere. Most of its lifetime, though, AFP tests have required much longer than that:
often a rather painful 2 h–4 h. To help a bit, there is a classification of some AFP entries as
slow (sessions that may take ≈ 1 h CPU time on their own account), or very_slow (sessions
that require many hours). These tagged groups are tested less frequently than the main bulk.

In recent years, Isabelle users have been so successful in producing AFP content that
we are now at 4.4 million source lines,1 and the build time has degraded to 4 h–8 h (on a
high-end server machine with many cores). Thus it has become increasingly difficult to
change Isabelle libraries significantly: known problems often remain open for a long time.

That means it is high time to catch up with Isabelle prover technology. This has already
happened several times in the past, e.g. with the introduction of shared-memory parallelism
in Isabelle/ML from 2009 to 2013 [29, 19, 30], and replacement of GNU make by the custom-
made isabelle build tool (after 2012). The next stage is to support distributed parallel
build directly in Isabelle, to regain the 45 min limit for AFP built time.

Problem. The overall task is to organize the Isabelle build process better, to achieve a
significant speedup factor that accommodates interactive development and maintenance:
there needs to be enough headroom for the coming years of AFP growth. One side-condition
is that Isabelle/AFP developments can be very large and thus produce large build results
that need to be handled efficiently. Other side-conditions are given by the underlying ML
system of Isabelle, Poly/ML2 by David Matthews, and its traditional concept of persistent
heap image from old LISP times. That is a convenient programming model from the past,
which allows a growing context of ML code and values produced incrementally, but there
are built-in limitations. ML heaps can only be stacked-up linearly – there can be forks,
but no joins (so the dependency graph of Isabelle sessions always is a tree). Thus, large
developments may often contain redundantly processed theories, to simulate session merges.

Solutions. There are various axes to tackle the problem, and several solutions may be
combined eventually. At first we distinguish internal organization about how Isabelle/ML
works vs. external organization of running ML sessions; the latter is done in Isabelle/Scala.

The past 15 years have seen many internal improvements of Isabelle/ML, notably shared-
memory multiprocessing (e.g. yielding a solid factor of ≈ 5–6 on 8 cores), but also runtime
sharing of ML values. Those have already provided significant improvements to scalability,
but also cause quite some complexity in the Poly/ML platform. Without exceedingly difficult
engineering, significant gains cannot to be expected in this area, according to collected
timings [16].

An external approach is to reorganize Isabelle session structure on the spot. The static
description (via ROOT files) consists of session name, parent, used theories, and optionally
re-used theories from other sessions. There is no need to build ML heaps precisely around
this structure. The Isabelle/jEdit Prover IDE already allows to build a custom heap image,
for the true requirements of the edited session (via isabelle jedit -A -R). The build tool

1 https://www.isa-afp.org/statistics
2 https://www.polyml.org

https://www.isa-afp.org/statistics
https://www.polyml.org
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could do likewise, and load common library theories into one big session used as prerequisite
for AFP, e.g. the union of HOL-Library, HOL-Analysis, and HOL-Algebra.

A less conservative variation is to impose the skip_proofs option on theories that are
re-used from other sessions. This would imitate the theory (object) files known from the
HOL4 prover, which is also based on Poly/ML. In any case, the expected speedup factor is
limited to the currently observed waste factor of ≈ 1.75 in the AFP.

A more promising approach is to allow multiple build hosts, to open the game of distributed
parallel computing: compute clusters may easily consist of hundreds or thousands of nodes,
so a large speedup factor can be expected for the future. This merely requires to manage
distributed builds properly, which is the plan of this work: for small clusters of 10–20 nodes.

Contribution. We introduce Isabelle technology for distributed parallel build of the AFP,
with only minimal requirements on system infrastructure, and support for heterogeneous
hardware that is often found in scientific environments, consisting of fast and slow machines.
We provide build schedule optimizations based on an initial set of empirical data, and evaluate
the resulting schedules and system performance with two more data sets

2 Distributed Build Architecture

Our overall approach is that “Isabelle is the build system of Isabelle”. Regular users often
identify “Isabelle” with the Isabelle/HOL object-logic, but the reality is more complex:
Isabelle is a platform of different languages with different purposes (although with a common
emphasis on λ-calculus and functional programming). Two Isabelle languages are particularly
important: (1) Isabelle/ML as mathematical programming language to implement formal logic,
specification mechanisms, proof tools etc. – that provides only minimal system operations, e.g.
to access external files. (2) Isabelle/Scala as functional language for systems programming,
with full-scale access to file systems, database engines (SQLite or PostgreSQL), external
processes (GNU Bash), operating system tools (rsync, SSH, XZ, Zstd), TCP/IP services etc.
Scala runs on the Java/VM and acts like an abstract operating-system for organization of
Isabelle applications: it works uniformly on Linux, macOS, or Windows (with Cygwin).

So we shall rather identify “Isabelle” with the Isabelle/Scala environment for systems
programming: this is where our main implementation happens.3 Thus we follow the tradition
of the first (more modest) isabelle build tool from September 2012.4

2.1 Re-use the Slurm Cluster Workload Manager?
Quite a lot of systems for compute cluster management have appeared in the past 10–20 years.
In the world of scientific computing, the most popular one is now Slurm [17]. Major centers
for high-performance computing (HPC) often use Slurm as a “meta-operating system”, to
manage queues of user jobs. A running job appears on several compute nodes at the same
time. The user program sees a conventional Linux system with network access; usually there
are additional means to communicate with sibling nodes via message passing (e.g. OpenMPI).

The HPC Linux Cluster of the Leibniz Supercomputing Centre (LRZ) is next door to
TU München in Garching. Thus we were motivated to explore this infrastructure carefully,

3 https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/Build/
;29f2b8ff84f3

4 https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/System/build.
scala;aa1e2ba3c697
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with the help of a student project that produced an Isabelle workload manager based on
Slurm [20], but running on our own Linux computers or virtual machines from the LRZ. The
main lessons from this experiment are:

1. Slurm is primarily for Linux, and unavailable on macOS or Windows.5 This is bad,
because macOS is important in the ITP community, and we intend to test AFP on it
eventually.

2. Slurm set-up is rather complicated, requires special Unix permissions, and is not easy
to extend. In particular, Slurm needs a custom authentication service (system daemon),
demands uniform user and group IDs, and has static cluster configuration that makes it
difficult to add new machines. This is in conflict with typical compute resources found in
academic environments: often there is only non-root access and standard system software.

3. Slurm does provide mechanisms for planning and scheduling jobs, but these are insufficient
for our purpose, as they cannot use as much of our domain-specific information: For
instance, Isabelle sessions can be built in different configurations (regarding ML threads
and heap size). With a prediction model for the required computation time and resources,
a build schedule could be planned in advance and optimized accordingly.

4. Although Slurm is very popular, its feature set turned out insufficient to handle high-end
workstations with different kinds of CPU cores (hot “P-cores” versus cool “E-cores”).

Hence, we decided not to use an off-the-shelf component for cluster management, and
instead do it ourselves in Isabelle/Scala, with minimal requirements and better results.

2.2 System Design based on Isabelle/Scala + SSH + PostgreSQL
Our design makes only minimal assumptions about the system environment:

1. Uniform platform: All build machines (master and worker nodes) operate on the same
platform, after an initial decision if that is Linux, macOS, or Windows – and Intel or
ARM.

2. Repository clones: official Mercurial repositories of Isabelle6 and AFP7 are required at
the root of the overall build process, but regular build hosts get sources via rsync.

3. Local file systems: Working directories reside on fast solid-state storage. Network shares
are neither required, nor desired: too slow and difficult to use concurrently.

4. SSH: The master node can reach all worker nodes via ssh, to access files and to run
processes. SSH users and home directories may vary, but the shell needs to be GNU
bash.

5. PostgreSQL: There is a dedicated PostgreSQL database server8, which is accessible via
LAN/WAN from all build nodes (using TCP/IP directly or tunneled through SSH).

SSH clients and servers are readily available on all platforms, usually from the single source
of the OpenSSH project, which works reliably. In Isabelle/Scala, ssh works as stay-resident
program: a single connection is multiplexed for many requests. The PostgreSQL database
server is available in many forms on many systems, e.g. as a system package on Ubuntu
Linux that requires approx. 10 min to set-up – we are using version 14, e.g. on Ubuntu 22.04

5 https://slurm.schedmd.com/platforms.html
6 https://isabelle.in.tum.de/repos/isabelle
7 https://foss.heptapod.net/isa-afp/afp-devel
8 https://www.postgresql.org
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LTS. Accessing the database server through SSH tunneling (via Isabelle/Scala) avoids the
need to configure extra SSL certificates. The SQL module in Isabelle/Scala provides a simple
programming interface, based on PostgreSQL JDBC for Java. All other system dependencies
are bundled with the Isabelle distribution, notably Scala 3 and OpenJDK 21. This now also
includes the rsync tool, in just one version for all platforms, so that it can speak to itself
reliably over a cluster of dissimilar machines.

These parts are fit together as the distributed parallel build infrastructure for Isabelle as
shown in Figure 1. The cluster topology is given on the command-line via “isabelle build
-H hosts:options . . . ”, based on predefined hosts and host groups from a global registry file
(in TOML format). The master oversees the build process, using database tables that are
shared with all workers. Workers may in principle join and leave the build process freely, but
presently we use a fixed arrangement determined at the build start. The master and workers
all run the same Isabelle/Scala program, with a conventional programming model of critical
regions and functional update of shared state (similar to synchronized variables in Isabelle/ML
and Isabelle/Scala). The distribution of state information happens via the database server,
using our own implementation of transactions with table locking, and efficient propagation
of incremental updates (that works like a version control system, using a relational OUTER
JOIN of recent updates against latest data). Since full transaction locking is rather costly
(minimum ≈ 100 ms, median ≈ 1 s, sometimes much longer), we use the special PostgreSQL
commands LISTEN and NOTIFY for asynchronous IPC messages. This reduces the frequency
of state synchronization for critical regions: the master signals when relevant state updates
have happened, so workers run silently most of the time without polling the database.
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Figure 1 Overview of the distributed Isabelle build system.
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Seen from the master build host, the main build phases of Figure 1 are as follows:
1. Analyze the source structure of selected sessions (as defined in ROOT files), including

full theory dependencies (given by theory headers). The resulting data is transferred to
the database and can later be retrieved by workers. File names are stored with symbolic
paths, relative to the root directories of Isabelle or the AFP.

2. Synchronize the master Isabelle distribution to all workers via ssh and rsync. This
includes Scala/Java build artifacts and thus saves 1.5 min to initialize remote clones. The
command-line isabelle build -A: treats the AFP directory structure analogously, but
other project directories must already be present on each worker node.

3. Initialize the worker Isabelle distributions, by letting each node download required system
components from the Isabelle components store, and finally ensure that all Scala/Java
modules are up-to-date. Afterwards, workers are ready to run.

4. Run a short benchmark session by each worker, if explicit schedules should be used. This
helps to predict overall run-times as discussed below.

5. Run all workers and let them work on the build autonomously, using queue and schedule
information from the database. The master could participate as another worker, but is
disabled by default, as it often resides on a slow workstation.

6. Finalize the build when all pending sessions are finished. This includes HTML and LATEX
presentation for all sessions, based on markup information found in session databases.

For the AFP, being more a scientific journal than a library of code, the presentation is
the main outcome of a successful build. In contrast, the result of running an Isabelle/ML
session is an opaque heap image, which is potentially large. So we compress heap images
with Zstd (portably in Isabelle/Scala) and store them in separate tables of the database as
raw blobs (avoiding extra compression by PostgreSQL). Remote workers check and restore
required heaps from the shared store: local file systems act like a cache for heaps served by
the database.

Care is required to manage ML heaps in a scalable manner. For example, the HOL image
is at ≈ 200 MiB uncompressed, ≈ 50 MiB compressed, with 0.9 s/0.3 s compression/uncom-
pression time (on a fast machine). To give a sense of scale: Committing the compressed
blob requires roughly 1.5 s. Most Isabelle/AFP session images are much smaller, but can
sometimes approach 1 GB. To allow very large applications in the future and circumvent the
PostgreSQL limit of 2 GB for blobs, we store heap images as slices of ≈ 50 MiB.

After several rounds of performance tuning of our Isabelle/Scala implementation, the
PostgreSQL engine works fairly well, both for small-scale synchronized program state, and
large-scale storage of session images. Thus we can work without network shares, and really
treat worker hosts as independent machines (apart from user-level SSH connections).

2.3 Prediction of Run-time per Configuration
A critical component for the schedule generation is an accurate estimation of run-time for a
given configuration. Generally, there is little hope to estimate that without actually running
the session: For instance, the AFP theory Lorenz_C1 contains a single innocent-looking
locale interpretation (three lines), whose run-time is about 50 h CPU-time on average test
hardware. Still, once the run-time is known for some configuration, we can predict others.
We use the build_log database of Isabelle to get data from historic builds. Our estimation
is based on two main principles:
1. Given a job and number of threads, we estimate how the time changes across different

build hosts via a factor derived from an initial benchmark. The benchmark session runs
in single-threaded mode, it should be neither too short nor too long, its content should
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rarely change, and it must be representative. Figure 2 shows the mean square error (MSE)
of all sessions when used as individual benchmarks to scale the run-time of other sessions
across hosts. There is a distinct separation in the build time since most sessions require
HOL, which accumulates to 155 s already. FOLP-ex stands out as the session with lowest
MSE amongst the faster sessions, and only takes about 15 s. All sessions with lower MSE
are much slower. Further experiments with the initial fragment of HOL as benchmark all
exhibited a far higher MSE, and the sessions that stick out have in common that they
manipulate large terms. A likely explanation is that the typical workload seen in most
sessions consists of such term manipulations, and the Isabelle/ML loading in Pure and
bootstrapping of HOL is not representative.

2. If a job has been run with a different number of threads on the same host, we can
interpolate the curve to the unknown point. However, the speedup has lots of variation,
as illustrated by the speedup curve for HOL-Analysis shown in Figure 3. Even though
the speedup factor varies, it always increases up to an optimum at 8–16 threads and then
decreases again due to multithreading inefficiencies. Although one could try to train a
sophisticated prediction model for the speedup, in practice only very few configurations
are known most of the time and robustness is more important than accuracy. Hence
we make use of the only underlying mechanic that we can safely assume: According to
Amdahl’s law [14], in any task only a fraction p of the total work T is parallelizable, so
the total time for n threads is p

n T + (1 − p)T . Thus, we select the prefix for which the
speedup is monotone, estimate p by pT = nm(Tn−Tm)

m−n for any two present timings Tn

and Tm (for n and m threads, respectively), and interpolate according to that. If there
is no such prefix, we use a simple rectified linear interpolation. This approach decreases
the mean relative error (MRE) from 0.52 (linear only) to 0.42.

Our estimation then works as follows: If there is no historic build of a given job, we either
use the session time-out if it is defined, or we take the average time of all jobs. If there are no
other jobs to approximate from, we use dummy data to bootstrap the process. Otherwise, if
there is data for the right job and threads, we just scale it to the right host. Should there be
no data for the given number of threads, we try to interpolate. If there are not enough data
points on the given host to do that, we interpolate on all other hosts individually and scale
the results up to the current host. In case there is no host with enough data points, we unify
the data and scale the individual points up to the current host, and then interpolate. Finally,
if there is only one data point, we use the global speedup curve for the interpolation. Figure 4
shows boxplots of the relative error in the different scenarios outlined above. Unsurprisingly,
the error is lower in the scenarios where less prediction is necessary.

In the final estimation, we are interested in producing a result that does not lead to
underestimations which could be exploited by the schedule optimization – especially since
a delayed task can cause problems for the whole schedule, but faster completion is not a
problem. Hence, we increase the estimations slightly depending on the scenario.

3 The Scheduling Problem

The classic isabelle build tool immediately starts new session jobs whenever there is free
capacity. If there are multiple sessions to select from, the session with the longest build time
in its path of successors is chosen. To estimate the build time, the timing of the previous build
is used, if available. Otherwise the static session timeout serves as a rough approximation of
actual runtime. The configuration of the number of threads for the Isabelle/ML process is a
static parameter, usually given on the command-line.

ITP 2024
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This now works differently: the command-line option “-o build_engine=. . . ” tells which
implementation of build scheduling should be used. The default is merely an upgrade
of the old approach, to work with multiple build hosts. In addition, there is now the
“build_schedule” engine that implements advanced scheduling as described in the following.

While the old strategy was sufficient for a low degree of session-parallelism, it is far from
optimal for parallel builds in a large heterogeneous cluster, where the compute power may
vary greatly across machines. The two different levels of parallelism, as well as non-uniform
memory access and different kinds of processor cores found in current CPUs, make for a very
uneven scheduling problem. Hence, basic approaches to multiprocessor scheduling are not
applicable. Instead, the scheduling problem at hand has been studied as the multi-mode
resource-constrained project scheduling problem (MRCPSP) since the late 1960s [7]. Some
variations of the exact formulation of this problem exist in the literature. Typically, it consists
of finding a schedule for activities A in different modes M, where each configuration (pair
of activity and mode) takes T : A×M → � time, such that the overall makespan (i.e., the
time it takes to process all activities once in any mode) is minimized. The problem is subject
to precedence constraints according to some acyclic precedence relation ≺: A×A → bool,
and there are constrained (renewable and non-renewable) resources R. Each resource has
an associated capacity C : R → �, and a certain amount is required to run a configuration
according to some cost function R: A×M → R → �.

In our case, we need to schedule the build of a selection of sessions as activities, adhering
to the dependency graph that induces the precedence relation. Each session can be run with
different arguments such as the number of ML threads or the maximum ML heap size, though
we only consider threads in this work. The build hosts (machines) define our resources: Each
host has a number of CPU cores, which is a capacity that limits the sum of threads used. A
second capacity is given by the maximum number of sessions that may run in parallel on each
host. Finally, the run-time is determined by the session, build host, and number of threads
as discussed in Section 2.3. Since in the MRCPSP formulation the run-time is independent
of the resource used, we employ one mode per host and possible number of threads.

ITP 2024
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As we may not know the exact run-time and have to estimate it from historical data,
we do introduce some uncertainty. Although stochastic approaches to the problem exist
[26, 18], we work with the deterministic variant since it is simpler and more widely studied,
and because the worst-case time is less of a concern – we are more interested in obtaining
a solution quickly with good average time (which is a situation where this approach is
appropriate [2]). Moreover, there is no need that the schedule stays fixed throughout the
build: Should the actual times deviate (or a better solution be found due to the decreasing
search space), the new schedule can be dynamically adopted. Hence, we re-compute the
schedule periodically during the build.

3.1 Computational Complexity
Already the much simpler scheduling problem (considering identical processors instead of
resources) is NP-complete [27]. Moreover, the MRCPSP (with resources and processors)
remains strongly NP-hard even when restricting the problem simultaneously to one resource,
uniform activity durations, a dependency graph that is a tree, and two processors (or three
when the graph is omitted) [10]. It can also not be approximated by a constant factor in
polynomial time even for a less general variant [9]. In our scheduling problem, in addition to
the dependency graph being a tree, we can assume that T typically exhibits a monotone
behavior: For all sessions, faster CPUs and more Isabelle/ML threads (up to a limit) usually
correspond to less runtime. However, this does not improve complexity as the problem
remains strongly NP-hard even with only two machines, a chain of dependencies, one single
resource, as well as uniform mode, capacity, cost, time, and speed [4].

3.2 Schedule Generation Methods
Due to the practical importance in many fields and industries, a vast number of approaches
exist to the problem (cf. [25] for a recent comprehensive resource). Exact solutions are often
branch-and-cut methods which iteratively constrain the LP-relaxation of the mixed integer
program for the optimal solution [33]. However, these integer programs explode in size:
Due to the linear nature, one variable is required for every possible configuration of every
activity at every time step. In another approach, Bofill et al. [5] use iterative SAT solving
to find the lower bound for which an encoding of the problem is still satisfiable such that
the satisfying assignments correspond to a schedule. Both this implementation as well as a
recent implementation of the linear programming based-approach (as well as [12] and our
own implementation of another mixed integer approach) could find the optimal solution for
a small problem with 28 activities9, but found no reasonable bounds for larger problems.

Meta-heuristic optimization approaches such as genetic algorithms, local search, or
simulated annealing (where neighbor solutions are constructed for an initial feasible solution
to find optima) have become quite popular in the field [23]; these can find approximative
solutions for larger problems. We observed that a local search implementation [11] and one of
the original genetic algorithm approaches [13] found solutions for the small problem very fast,
but struggled for our medium-sized problem (132 activities)10 due to technical limitations.
Using OptaPlanner11 (which combines several meta-heuristics), we could generate a good
solution for this problem in short time, but did not find a solution for our large problem

9 Building all sessions in the Isabelle distribution excluding HOL on one machine, with 1 or 8 threads.
10 Building the whole Isabelle distribution of a cluster of 4 fast machines, with 1 or 8 threads.
11 https://www.optaplanner.org

https://www.optaplanner.org
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(923 activities)12. We found that only some constraint programming solvers were able to
tackle problems of this size. While the open-source Google OR-Tools13 could solve some of
the large problem instances given enough time, IBM ILOG CPLEX14 excelled for this task,
finding a reasonable solution for the large problem in a few minutes.

However, since CPLEX is proprietary software that cannot be bundled with Isabelle, we
focus on heuristic-based schedule generation schemes (SGS) in the present work. These can
also provide an initial solution to aid further optimization, e.g. by providing an upper bound
on the makespan for the constraint programming formulation. SGS yield very fast solutions
at the expense of solution quality by iteratively building a schedule, maintaining a decision
set of activities whose precedence constraints are fulfilled. In the serial SGS, at every step a
configuration is selected according to some priority rule (e.g., selecting the activity with the
most successors in the fastest mode) and scheduled in the earliest possible time. In contrast,
in every time step of the parallel SGS, a priority rule is employed to select from the set of
currently feasible configurations until no more can be scheduled, at which point the scheme
proceeds to the next time step. This latter approach is greedy since activities are scheduled
immediately when they are feasible, which limits the search space, but also means that the
optimal solution may not be found (independently of the priority rule).

3.3 Priority Rules for Isabelle builds
In the literature, a vast amount of priority rules have been explored, and ultimately it
depends on the problem structure which rules perform best. Our exact problem structure
can vary depending on which sessions need to run, and which hardware is available. Still, we
can make some general observations that hold for AFP builds on a typical cluster:
1. Session sizes and in-degrees in the dependency graph (the number of other uses of a

session) weakly follow a scale-free distribution [15], i.e. there are few long-running or
frequently-used sessions, and many sessions which are fast or without dependencies.

2. As machines in research environments often accumulate over the years, there will be
relatively few of the fastest machine, but plenty of slower ones. Moreover, machines with
many cores (server CPUs) typically have far lower clock speed than high-end consumer
CPUs with fewer cores, so the more cores a CPU has the slower they are.

3. As the number of threads for a single session increases, the elapsed time decreases (up to
some limit, typically 16 threads), but the parallel efficiency also degrades.

Hence, it is desirable to build sessions that greatly influence the overall makespan with the
optimal amount of threads on the hardware with fastest individual cores, and sessions that
have little to no impact in single-threaded mode on slow hardware. Due to the scale-free
nature, we can hope that constructing a greedy solution that takes this into account yields a
near-optimal solution. Our heuristics hence employ the notion of critical sessions, which are
sessions that are on a path in the dependency graph whose accumulated time (for optimal
amount of threads) is longer than some cut-off. The cut-off is taken either at some absolute
value, or as a factor of the critical path through the dependency graph. A number of the
fastest hosts is reserved for these critical sessions: Either one for every critical session that
needs to be built in parallel, a fixed fraction of the fastest machines, or all machines faster
than some cut-off. Finally, the uncritical sessions are run with a number of threads that
increases for slower sessions (or is always constant).

12 Building the AFP (without slow sessions) on an experimental cluster of 14 machines, with 1 or 8 threads.
13 https://developers.google.com/optimization
14 https://www.ibm.com/products/ilog-cplex-optimization-studio
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Figure 5 Solution quality (on preliminary data) for the three different parameters of our heuristic.
The x-axis shows the criterion for a critical session, the y-axis how the available machines are split
for critical/uncritical sessions, and the group label shows the threads parameter: The arrow notation
maps run times less than the specified number of minutes on the left hand side to the number of
threads on the right hand side. Darker is better (shorter makespan).

Figure 5 shows a comparison of the resulting makespan for an AFP build, depending
on concrete values for the parameters explained above. The thread distribution is clearly
the most important parameter for this build, and best results are generally achieved with 1
thread up to 1 min, then 4 threads up to 5 min, and 8 threads above that. Which sessions
should be considered critical depends on the other parameters, but an absolute path length
of 10 min to 20 min works well. The machine split only plays a minor role most of the time.

For the final heuristic, we additionally exploit that the number of sessions that may be
scheduled on each host is typically much smaller than the number of CPU cores available
(due to memory requirements), so we construct a parallel SGS where sessions are scheduled
with a larger amount of threads than the minimum if there are unused cores. Additionally, if
there is more capacity than sessions can use in parallel, we immediately schedule all sessions
in their optimal mode. Finally, we sweep over the parameter space to find the best schedule,
which can be done within a few seconds even for our largest problems.

4 Experimental Results

To empirically evaluate our schedules and strategies, we used three data sets with different
hardware and configuration, as shown in Table 1: A preliminary data set used during
development (cf. Section 3), one set collected on a heterogeneous cluster, and a final data set
where we used the Isabelle2024 release on our current hardware.
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Table 1 Experimental setup for data sets used in evaluation. CPU slices have access to 10 cores.

Data Set Preliminary Heterogeneous Release
Measure Period Nov/Dec 2023 Mar 2024 Jun 2024
Isabelle Revision various 08b83f91a1b2 Isabelle2024
Builds/Data Points (Sessions) 38/19 263 41/30 510 36/30 203
Cluster Hardware:

Xeon Silver 4316 Slice, 44 GB DDR4 10 10 –
Intel Core i9-12900K, 64 GB DDR5 4 4 4
Intel Core i9-13900K, 128 GB DDR5 – – 4

We compare four scenarios in the following: Building the Isabelle distribution (medium-
sized problem in Section 3.2), the AFP (without slow, corresponds to the large problem),
the slow AFP (including slow, but not very_slow), or the full AFP. In doing so, we want
to answer the following research questions empirically:

RQ1: Which timings do we achieve, and when should one use explicit schedules?
RQ2: How good is our heuristic compared to the best solver-generated solution?
RQ3: Do the actual builds follow the generated schedule closely?

RQ1. To answer our first question, we compare the resulting build timings for different
scheduling modes of the heterogeneous cluster in Table 2a, and the final results for the release
version on our current hardware in Table 2b. On our current (homogeneous) cluster, the

Table 2 Final build timings from heterogeneous and release data sets, with different build engines.
The solver engine refers to a scheduled build with an initial schedule generated by CPLEX in 5 min.

Distribution
AFP
Slow AFP
Full AFP

(a) Elapsed time for heterogeneous
data set, without benchmarks.

Classic Heuristic Solver
Elapsed Elapsed Elapsed
0:16:23 0:09:16 0:09:29
1:00:25 0:43:11 0:56:12
0:58:16 0:48:03 0:50:13
5:04:32 2:07:56 2:12:01

(b) Elapsed and CPU time for release data set,
including benchmarks.

Classic Heuristic
Elapsed CPU Elapsed CPU
0:08:10 2:49:51 0:09:12 3:58:49
0:42:16 37:22:37 0:35:40 64:57:11
0:49:09 45:52:17 0:40:50 73:49:22
2:07:10 50:53:02 1:59:13 77:01:21

classic build mode performs best for shorter builds, finishing the distribution in 8 min 10 s.
For longer builds, using the schedule generated by our heuristic is 7 min to 8 min faster than
the classic build, finishing the AFP in 35 min 40 s, and 40 min 50 s including slow sessions.
This corresponds to a factor of over 100 between CPU time and elapsed time, though the
CPU time does increase with the amount of parallelism (since the parallelism consumes
additional CPU time). These timings are all within our critical limits of 10 min for the
distribution and 45 min for the AFP, which is a huge improvement. The difference between
the strategies is much more pronounced on the large heterogeneous cluster, as important
jobs can end up on a slow host if assigned blindly. Since this is the case for the classic build,
finishing the full AFP (with very slow sessions) took more than 5 h, compared to about 2 h
otherwise. Finally, starting with a solver-generated schedule (CPLEX in 5 min) resulted in
slightly worse times compared to the heuristic, although the solver always generated a better
initial schedule.

ITP 2024
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Figure 6 Estimate and actual build time (log-scaled) for consecutive builds of the slow AFP, using
the release version and our current hardware (starting with an initially empty build log database).

Even though the heuristic was faster than the classic build for the AFP, it requires
bootstrapping by collecting data from several builds until the estimation can be accurate.
Figure 6 shows how much the actual time deviates from the initially predicated time when
starting with an empty database. After 7–8 builds, the estimate was very close to the actual
build time, and both remained stable consequently. While the bootstrapping could still be
improved by generating schedules that explore more modes, it is sufficient in automated
build environments – for one-shot builds, the classic build engine is better suited anyway.

Heterogeneous Heterogeneous
(4/14 machines) Release Release

(4/8 machines)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Full AFP

Slow AFP

AFP

Distribution

Makespan [h]

Method Lower Bound CPLEX 3 h CPLEX 5 min Heuristic

Figure 7 Comparison of estimated makespan (and best computed lower bound) in different
scenarios on heterogeneous and release data sets, using the full cluster or only the four fastest hosts.

RQ2. Although the true build duration is often better than initially estimated due to the
optimization every 5 min (by default), computing a good schedule is still critical. Hence, for
our second research question we compare the makespan of the initially generated schedules.
We consider the schedule found by our heuristic as well as the best schedule and lower bound
we could generate via CPLEX (on a slow machine) in 5 min, and 3 h, respectively. Figure 7
shows the results. For both data sets, the schedules are reasonably close to each other on
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the full cluster (in the expected ordering). There is still a significant gap to the best lower
bound for the harder scheduling problems (AFP and slow AFP). The solution quality of the
heuristic drops off dramatically when scheduling only for the four fastest machines, where
our assumption is violated that plenty of slower hardware would be available.

RQ3. For our last research question, we want to assess whether generated schedules can be
followed closely in the actual build. To that end, we analyze deviation of session run-time
and session delay (i.e., the difference between planned and actual completion) for builds of
the AFP with pre-generated schedules. All optimizations that would change the schedule
during the build are disabled for this experiment. Figure 8 shows the result. Overall, the
individual run-time deviations were quite low. However, with the solver-generated schedule
a few sessions took several minutes longer, delaying a significant chunk of sessions such
that the schedule finished 13 min late. The heuristically generated schedule had less (and
mostly negative) deviations and accumulated not much delay, finishing within a minute of
the estimated time. While the solver-generated schedule might have accumulated more delay
as it is more tightly packed, the mean deviation was also three times as high compared to
the heuristic, indicating that the run-time estimation was worse. A likely reason for this is
that the data was collected by running builds with the heuristic strategy, so there is more
accurate data for its frequently selected configurations. This also explains why using the
solver resulted in worse timings even though the initially estimated makespan was shorter.
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Figure 8 Accumulated delay and session run-time deviation for AFP builds with fixated schedules
(release data), with histograms.

5 Conclusions

In this work, we introduced a distributed build system for Isabelle tailored to the requirements
of the AFP. Based on the Isabelle/Scala framework in a standard repository clone, the
system requires only SSH access, a fast local file system, and a single PostgreSQL database
server – fully platform-independent. To utilize large heterogeneous clusters as well, we
developed a sophisticated scheduling approach that incorporates build time estimation based
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on previous timings. This involves finding a good solution to the computationally difficult
multi-mode resource-constrained project scheduling problem in a few seconds, which remains
NP-complete under major relaxations [10] (and does not admit constant-factor approximation
in polynomial time [9]). After several rounds of tuning, the scheduling now works exceedingly
well, and with our small clusters of 8–14 machines, we could achieve a speedup factor of over
100 vs. CPU time. This means that the AFP, which (through sheer size) had accumulated a
multithreaded build time of 4 h–8 h on a single high-end server machine, can now be run in
under 45 min again including slow sessions. Even with the very_slow group, the AFP now
takes less than 2 h.

5.1 Related work

Any successful ITP system will eventually struggle with build times, as users are pushing
more and more material into the libraries and archives. Coping with that requires technical
efforts that usually remain unnoticed and unpublished. Subsequently we can only sketch
important work for other proof assistants, with the focus on three kinds of parallelism: (1)
multithreading within a single process, (2) multiprocessing on a single machine, (3) cluster
computing on multiple machines.

The Mizar system and Mizar Mathematical Library have many similarities to
Isabelle and AFP, concerning sizes of content, and the idea of a formally checked journal. The
software technology is quite different, though: Mizar is implemented in Pascal and works like
a multi-pass compiler on intermediate files. This does open possibilities for parallel processing:
Urban [28] uses Perl and GNU make -j to manage the Mizar process for multiprocessing on
a single machine. It might be worth revisiting that approach 10 years later, e.g. with the
help of a distributed make tool. The resulting architecture would be unlike ours, where build
data is stored in the database instead of a (shared) file-system.

Coq lacks a curated collection of applications, and it lacks a uniform build tool. Instead,
every project needs to stand on its own for hosting and tooling. Reichel et al. [24] have
scrutinized Coq build processes of projects found on public repositories: the motivation was
to replay builds on intermediate versions, in order to collect data for automatic proof repair
via machine-learning. As preliminary stage, huge efforts were required to “capture” Coq
builds (they report that 68 % of commits in open-source Coq projects could not be built
without problems). This lack of uniform tooling for Coq makes difficult to foresee eventual
moves towards cluster computing.

The OCaml runtime (on which Coq runs) did not support parallel execution of concur-
rent code until recently, so Coq parallelization had to rely on parallel processes without
shared-memory, e.g. via parallel make for independent files. More involved efforts use local
multiprocessing with message passing for proofs that are irrelevant (opaque), notably Barras
et al. [3]: an explicit directed acyclic graph of Coq proofs tells which parts can be independ-
ently checked in parallel forks of coqc. Coq proof state information is passed along with
the opaque proof task. A distributed version of that will probably require homogeneous
software setup, but this has not been pursued so far. Instead, regression proof selection was
introduced by Celik et al. [6] and later refined and parallelized by Palmskog et al. [22], where
the fine-grained dependency graph of theorems and definitions is analyzed so that only proofs
affected by changes need to be re-checked. However, they do not consider changes in the logic,
which would be very hard to track via dependency graph. For instance, if any tactic changes,
only checking the selected proofs would not be sufficient. Despite those technological efforts,
changes are often not checked well enough.
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The Lean prover [8] and its companion library Mathlib are closer to Isabelle and AFP
than Coq, but Lean makes every effort to do everything in just one language. Consequently,
the “Lean Make” or Lake tool has been implemented in the monadic functional programming
language of Lean. Lake is a sophisticated build and package manager for Lean projects, and
is part of the main code base of Lean 4.15 The corresponding Mathlib 416 is organized as a
Lake project: its current source size is 1.4 million lines or 62 MiB (the AFP has 4.4 million
lines or 216 MiB). Proof-level parallelism is part of regular Lean, with built-in multithreading.
Further scaling in Lake is unclear from skimming through the documentation: we did not
find dedicated papers to explain its concepts.

In practice, users of Lean and Lake usually rely on cached object files for theories rather
than building them afresh, and the build time of the continuous integration for isolated
changes in Mathlib is usually less than 1 h. We could run the whole of Mathlib 4 in 28 min
on one of our fastest machines, plus another 7 min for add-on tests (which in Isabelle/AFP
would be part of regular sessions). As Mathlib grows further towards the current size of AFP,
it will be interesting to see which improvements on Lean build management will emerge.

5.2 Future Work

We can imagine many directions for further improvement of the Isabelle build system.
Some alternative solutions have already been sketched in the introduction: notably ad hoc
reorganization of session structure, similar to existing options isabelle jedit -A -R.
In fact, the Prover IDE opens many further questions of working with quasi-interactive
builds: the user could repair failures incrementally in the IDE, while the build keeps running,
and changed sources would be uploaded to the build database without stopping sessions that
are unaffected. This ultimately means combining ideas from the PIDE editor model [31]
with the build tool, to scale-up editing to the AFP, as was postulated naïvely in 2014 [32].

Revisiting the build schedule problem, we could support near-optimal schedules as
follows. The heuristic developed above can find appropriate schedules in a very short time,
but they are usually not optimal. In contrast, a state-of-the-art CP-solver can yield schedules
with tangibly shorter makespan, but finding optimal solutions often takes much longer than
our target of 45 min for the whole build. We could do the scheduling occasionally (e.g. once
per week), and re-use the result for subsequent versions of the sources. With an optimal
solution generated offline, and only small ongoing changes of the AFP, we can expect even
better quantitative results.

Looking further at the big picture, an important question is how to use compute cluster
resources efficiently within a typical research group, with several independent builds
potentially by multiple users. This could mean to have different categories and priorities
of builds, e.g. responsive ones for quasi-interactive maintenance via the Prover IDE front-end
vs. more traditional batch builds for continuous integration scenarios (occasional updates
by AFP authors). Our cluster resources could be maintained in a global database, and
Isabelle/Scala build process would work with this information to re-arrange schedules on
the spot. Ultimately, we would like to regain good reactivity for interactive work, and avoid
disappointing “CI-clouds” where the queue-time is often longer than the actual build time.

15 https://github.com/leanprover/lean4/blob/master/src/lake/README.md
16 https://github.com/leanprover-community/mathlib4

ITP 2024

https://github.com/leanprover/lean4/blob/master/src/lake/README.md
https://github.com/leanprover-community/mathlib4


22:18 Distributed Parallel Build for the Isabelle Archive of Formal Proofs

References
1 Archive of Formal Proofs (AFP). ISSN 2150-914x. URL: https://www.isa-afp.org/about.
2 Francisco Ballestín. When it is worthwhile to work with the stochastic RCPSP?, 2007.

doi:10.1007/s10951-007-0012-1.
3 Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous processing of Coq documents:

From the kernel up to the user interface. In Interactive Theorem Proving (ITP 2015), volume
9236 of LNCS. Springer, 2015. doi:10.1007/978-3-319-22102-1_4.

4 J. Blazewicz, J. K. Lenstra, A. Kan, and H. G. Rinnooy. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5, 1983. doi:
10.1016/0166-218X(83)90012-4.

5 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Solving the Multi-Mode Resource-
Constrained Project Scheduling Problem with SMT. In International Conference on Tools
with Artificial Intelligence (ICTAI 2016). IEEE, 2016. doi:10.1109/ICTAI.2016.0045.

6 Ahmet Celik, Karl Palmskog, and Milos Gligoric. ICoq: Regression proof selection for large-
scale verification projects. In Automated Software Engineering (ASE 2017). IEEE, 2017.
doi:10.1109/ASE.2017.8115630.

7 Edward Wilson Davis. An exact algorithm for the multiple constrained-resource project
scheduling problem. Yale University, 1968.

8 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In Conference on Automated Deduction (CADE
2015), volume 9195 of LNCS. Springer, 2015. doi:10.1007/978-3-319-21401-6_26.

9 Evgeny R. Gafarov, Alexander A. Lazarev, and Frank Werner. Approximability results for
the resource-constrained project scheduling problem with a single type of resources. Annals of
Operations Research, 213, 2014. doi:10.1007/s10479-012-1106-5.

10 M. R. Garey and D. S. Johnson. Complexity Results for Multiprocessor Scheduling under
Resource Constraints. SIAM Journal on Computing, 4, 1975. doi:10.1137/0204035.

11 Martin Josef Geiger. A multi-threaded local search algorithm and computer implementation
for the multi-mode, resource-constrained multi-project scheduling problem. European Journal
of Operational Research, 256, 2017. doi:10.1016/j.ejor.2016.07.024.

12 Daniel Geiss. Optimal Build Strategies for Isabelle. Technical report, Technische Universität
München, 2023.

13 Sönke Hartmann. Project Scheduling with Multiple Modes: A Genetic Algorithm. Annals of
Operations Research, 102, 2001. doi:10.1023/A:1010902015091.

14 Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41, 2008.
doi:10.1109/MC.2008.209.

15 Fabian Huch. Formal Entity Graphs as Complex Networks: Assessing Centrality Metrics of
the Archive of Formal Proofs. In Conference on Intelligent Computer Mathematics (CICM
2022). Springer, 2022. doi:10.1007/978-3-031-16681-5_10.

16 Fabian Huch and Vincent Bode. The Isabelle Community Benchmark. In Practical Aspects
of Automated Reasoning (PAAR 2022), volume Vol-3201. CEUR-WS, 2022. doi:10.48550/
arXiv.2209.13894.

17 Morris A. Jette and Tim Wickberg. Architecture of the Slurm Workload Manager. In Job
Scheduling Strategies for Parallel Processing (JSSPP 2023), volume 14283 of LNCS. Springer,
2023. doi:10.1007/978-3-031-43943-8_1.

18 Brian Daniel Keller. Models and methods for multiple resource constrained job scheduling
under uncertainty. PhD thesis, University of Arizona, 2009.

19 David Matthews and Makarius Wenzel. Efficient parallel programming in Poly/ML and
Isabelle/ML. In Declarative Aspects of Multicore Programming (DAMP 2010). ACM, 2010.
doi:10.1145/1708046.1708058.

20 Mokhtar Riahi Mohamed. Development of a Distributed Build Platform for Isabelle. Technical
report, Technische Universität München, 2022.

https://www.isa-afp.org/about
https://doi.org/10.1007/s10951-007-0012-1
https://doi.org/10.1007/978-3-319-22102-1_4
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1109/ICTAI.2016.0045
https://doi.org/10.1109/ASE.2017.8115630
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/s10479-012-1106-5
https://doi.org/10.1137/0204035
https://doi.org/10.1016/j.ejor.2016.07.024
https://doi.org/10.1023/A:1010902015091
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1007/978-3-031-16681-5_10
https://doi.org/10.48550/arXiv.2209.13894
https://doi.org/10.48550/arXiv.2209.13894
https://doi.org/10.1007/978-3-031-43943-8_1
https://doi.org/10.1145/1708046.1708058


F. Huch and M. Wenzel 22:19

21 Tobias Nipkow and Cornelia Pusch. AVL Trees. Archive of Formal Proofs, 2004. , Formal
proof development. URL: https://isa-afp.org/entries/AVL-Trees.html.

22 Karl Palmskog, Ahmet Celik, and Milos Gligoric. PiCoq: Parallel regression proving for
large-scale verification projects. In International Symposium on Software Testing and Analysis
(ISSTA 2018), volume 12. ACM, 2018. doi:10.1145/3213846.3213877.

23 Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid metaheuristics
for the resource-constrained project scheduling problem, 2020. doi:10.1016/j.ejor.2019.01.
063.

24 Tom Reichel, R. Wesley Henderson, Andrew Touchet, Andrew Gardner, and Talia Ringer.
Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset. In
Interactive Theorem Proving (ITP 2023), volume 268 of LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITP.2023.26.

25 Christoph Schwindt and Jürgen Zimmermann. Handbook on project management and scheduling,
volume 1. Springer, 2015. doi:10.1007/978-3-319-05443-8.

26 Frederik Stork. Stochastic Resource-Constrained Project Scheduling. PhD thesis, Technische
Universität Berlin, 2001.

27 Jeffery David Ullman. Polynomial complete scheduling problems. In Proceedings of the
Fourth ACM Symposium on Operating System Principles, volume 7 of SIGOPS. ACM, 1973.
doi:10.1145/800009.808055.

28 Josef Urban. Parallelizing Mizar. In Trends in Contemporary Computer Science. Bialystok
University of Technology Publishing Office, 2014. doi:arXiv:1206.0141v2.

29 Makarius Wenzel. Parallel Proof Checking in Isabelle/Isar. In Programming Languages for
Mechanized Mathematics Systems (PLMMS 2009), 2009. URL: https://files.sketis.net/
papers/parallel-isabelle.pdf.

30 Makarius Wenzel. Shared-Memory Multiprocessing for Interactive Theorem Proving.
In Interactive Theorem Proving (ITP 2013), LNCS. Springer, 2013. doi:10.1007/
978-3-642-39634-2_30.

31 Makarius Wenzel. Asynchronous User Interaction and Tool Integration in Isabelle/PIDE.
In Interactive Theorem Proving (ITP 2014), LNCS. Springer, 2014. doi:10.1007/
978-3-319-08970-6_33.

32 Makarius Wenzel. System description: Isabelle/jEdit in 2014. In User Interfaces for Theorem
Provers (UITP 2014), volume 167 of EPTCS, 2014. doi:10.4204/EPTCS.167.10.

33 Guidong Zhu, Jonathan F. Bard, and Gang Yu. A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem. Journal on Computing, 18, 2006. doi:
10.1287/ijoc.1040.0121.

ITP 2024

https://isa-afp.org/entries/AVL-Trees.html
https://doi.org/10.1145/3213846.3213877
https://doi.org/10.1016/j.ejor.2019.01.063
https://doi.org/10.1016/j.ejor.2019.01.063
https://doi.org/10.4230/LIPIcs.ITP.2023.26
https://doi.org/10.1007/978-3-319-05443-8
https://doi.org/10.1145/800009.808055
https://doi.org/arXiv:1206.0141v2
https://files.sketis.net/papers/parallel-isabelle.pdf
https://files.sketis.net/papers/parallel-isabelle.pdf
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.4204/EPTCS.167.10
https://doi.org/10.1287/ijoc.1040.0121
https://doi.org/10.1287/ijoc.1040.0121

	1 Introduction
	2 Distributed Build Architecture
	2.1 Re-use the Slurm Cluster Workload Manager?
	2.2 System Design based on Isabelle/Scala + SSH + PostgreSQL
	2.3 Prediction of Run-time per Configuration

	3 The Scheduling Problem
	3.1 Computational Complexity
	3.2 Schedule Generation Methods
	3.3 Priority Rules for Isabelle builds

	4 Experimental Results
	5 Conclusions
	5.1 Related work
	5.2 Future Work


