
A Generalised Union of Rely–Guarantee and
Separation Logic Using Permission Algebras
Vincent Jackson #

The University of Melbourne, Australia

Toby Murray #

The University of Melbourne, Australia

Christine Rizkallah #

The University of Melbourne, Australia

Abstract
This paper describes GenRGSep, an Isabelle/HOL library for the development of RGSep logics
using a general algebraic state model. In particular, we develop an algebraic state models based on
resource algebras that assume neither the presence of unit resources or the cancellativity law. If a
new resource model is required, its components need only be proven an instance of a permission
algebra, and then they can be composed together using tuples and functions.

The proof of soundness is performed by Vafeiadis’ operational soundness method. This method
was originally formulated with respect to a concrete heap model. This paper adapts it to account
for the absence of both units as well as the cancellativity law.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Concurrency; Theory of computation → Separation logic

Keywords and phrases verification, concurrency, rely-guarantee, separation logic, resource algebras

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.23

Supplementary Material
Software (Mechanised Proof): https://github.com/vjackson725/GeneralRGSep/tree/itp24 [22]

archived at swh:1:dir:e759950d2ebd7571c86913f8296dfb29aa24a108

1 Introduction

This paper describes GenRGSep, an Isabelle/HOL [35] library for the development of RGSep
logics [39, 37], using a general algebraic state model. This library bases its state model on
permission algebras, the most generic form of resource algebra [8]. Permission, multi-unit and
single-unit separation algebras [12, 3] are developed as a type-class hierarchy that enables
the integration of permissions and values into a common algebraic language. This allows
for useful resource models to be developed from simple components and then automatically
applied to RGSep. The soundness of GenRGSep has been formally verified by an operational
soundness proof that generalises a method of Vafeiadis’ [38] to work without the cancellativity
law.

This project is motivated, in part, by a desire to have a general separation logic framework
for verifying concurrent code in Isabelle/HOL. There are several very general frameworks
for the development of separation logics for the verification of concurrent programs in other
theorem provers: for example, VST [2] and Iris [25]. There is, as yet, none in Isabelle/HOL.
While this work is not yet as comprehensive as these projects, we hope it will provide a good
foundation for the future development of such projects in Isabelle/HOL.

In order to achieve generality, we develop separation logic from resource algebras, an
abstract algebraic model of resources [8]. A resource algebra is a specific sort of partial
semigroup or monoid, which defines a model of separated resources. There are many variations,

© Vincent Jackson, Toby Murray, and Christine Rizkallah;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.jackson@student.unimelb.edu.au
https://orcid.org/0000-0002-8737-4202
mailto:toby.murray@unimelb.edu.au
https://orcid.org/0000-0002-8271-0289
mailto:christine.rizkallah@unimelb.edu.au
https://orcid.org/0000-0003-4785-2836
https://doi.org/10.4230/LIPIcs.ITP.2024.23
https://github.com/vjackson725/GeneralRGSep/tree/itp24
https://archive.softwareheritage.org/swh:1:dir:e759950d2ebd7571c86913f8296dfb29aa24a108;origin=https://github.com/vjackson725/GeneralRGSep;visit=swh:1:snp:e72ee116f86e47757d405779e79638178e413d3a;anchor=swh:1:rev:f35714d61e01b378ec363cc3f5fd6f5965a54beb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Generalised Union of Rely–Guarantee and Separation Logic

usually on which unit elements the algebra is guaranteed to have (no guarantee, some unit
for every resource, or a universal unit), and whether the logic admits the cancellativity law.
The resource algebra approach has been used in many projects [12, 26, 3, 28, 25, 29].

All Isabelle/HOL separation algebras up to this point assume the existence of resources
that act like a unit for resource addition. Similar to VST [3], GenRGSep is based on a type-
class hierarchy of resource algebras which includes permission algebras, that do not require
units to exist. This approach treats permissions as first-class citizens that compositionally
integrate with other resources and into larger structures.

The RGSep family of logics [39, 37] combines the rely–guarantee method [24, 23] and
concurrent separation logic [31, 7]. The rely–guarantee method is a method of concurrent
program verification that requires rely and guarantee relations for each proces. The rely
relation establishes how the shared state can be changed by the environment (other processes),
and the guarantee relation establishes how the current process can change the shared state.
Concurrent separation logic is a method of concurrent program verification that requires all
state to either be local: in which case it can be separated into pieces which are acted upon
by parallel processes separately, or shared, in which case, it must obey a resource invariant.
RGSep combines the benefits of both methods: the separate reasoning about local state of
concurrent separation logic and the fine-grained concurrency of rely–guarantee.

This paper introduces GenRGSep, a generalisation of RGSep to non-cancellative resource
algebras without units, and prove its soundness. Our paper is structured as follows: in
Section 2, we review the construction of resource algebras and describe the particular
issues we encountered in translating them to Isabelle/HOL. In Section 3, we describe our
GenRGSep language, which in addition to standard programming constructs, includes
external nondeterminism and non-deterministic do statements [19, 20], and the RGSep
logic for it. We also review explicit stabilisation [37, 41], which simplifies reasoning about
stability. In Section 4.2, we discuss the soundness proof for GenRGSep, using an extension
of a method by Vafeiadis [38]. This method encounters some problems with the combination
of non-cancellative resource models and external-nondeterminism, which we demonstrate
how to address.

Contributions

The paper presents the following contributions:
1. an encoding of an Isabelle/HOL type-class hierarchy for permission and separation

algebras that allows for the compositional construction of resource models;
2. the formalisation of the soundness of RGSep over general permission algebras in Isa-

belle/HOL; and
3. a re-examination of Vafeiadis’ operational soundness method, showing how to extend it

to non-cancellative resource algebras.

2 Formalising the Foundations

We construct separation logic from the foundations of an algebraic model of separated
resources; these are often called separation algebras or resource algebras [8, 3]. In particular,
we define three structures as type-classes in Isabelle/HOL: permission algebras, multi-unit
separation algebras, and (single-unit) separation algebras. We will refer to these collectively
as resource algebras, and to the elements of these algebras as resources. The axioms for these
structures are listed in Figure 1.

V. Jackson, T. Murray, and C. Rizkallah 23:3

class perm-alg(#, +) =
partial-add-assoc: a # b −→ b # c −→ a # c −→ (a + b) + c = a + (b + c)
partial-add-commute: a # b −→ a + b = b + a

disjoint-sym: a # b −→ b # a

disjoint-add-rightL: b # c −→ a # b + c −→ a # b

disjoint-add-right-commute: b # c −→ a # b + c −→ b # a + c

positivity: a # a′ −→ b # b′ −→ a + a′ = b −→ b + b′ = a −→ a = b

class multi-sep-alg(#, +, unitof) =
perm-alg(#, +) +
unitof-disjoint: (unitof a) # a

unitof-add: (unitof a) # b −→ (unitof a) + b = b

class sep-alg(#, +, unitof, 0) =
multi-sep-alg(#, +, unitof) +
zero-disjoint : 0 # x

zero-unit : 0 + x = x

class cancel-perm-alg(#, +) =
perm-alg(#, +) +
cancel-right: a # c −→ b # c −→ a + c = b + c −→ a = b

Figure 1 Resource algebra axioms.

2.1 Resource Algebras

A permission algebra (perm-alg), is a partial commutative semigroup, where + is the semigroup
operator and # (disjoint) specifies when + is defined. The + operator and # obey a number
of laws, namely: the disjointness relation is commutative, the disjoint parts of a resource
remain disjoint to (other) resources disjoint to the whole (that is, y # z and x # y + z

implies x # y), and the disjoint parts of a resource remain disjoint to the other parts of
that resource when added to (another) resource disjoint from the whole (that is, y # z and
x # y + z implies x + y # z). In addition, resources that contain each other as parts are
equal (positivity).

A multi-unit separation algebra (multi-sep-alg) is a permission algebra with an additional
operation unitof : α ⇒ α, which produces the unit of the given resource of the algebra. A
separation algebra (sep-alg) is a multi-unit separation algebra with the single unit, 0.

Resources form an order: a resource is strictly less than another (≺) if they are not equal
and there is some resource that adds to the first to make the second (a ̸= b∧ (∃c. a + c = b)).
A resource is less than or equal to another (⪯) if they are equal or there is some third
resource that adds to the first to make the second (a = b∨ (∃c. a + c = b)). These definitions
form an order, but this order is not necessarily Isabelle/HOL’s standard order instance.
Note that the order is anti-symmetric by virtue of the law of positivity. Note also that, in a
multi-unit separation algebra, we have that a ⪯ b←→ (∃c. a # c ∧ a + c = b), because units
are guaranteed to exist.

Permission algebras are useful for representing values with constraints on how those
values may be used. The classic model is fractional permissions [6, 5] (PQ in Figure 2), where
1 represents the ability to change the value, and fractional quantities (0 < x < 1) represent
only the ability to read the value. By placing this permission in a tuple with the discrete
permission algebra (α discr, Figure 2), we obtain a model of these read-write values.

ITP 2024

23:4 A Generalised Union of Rely–Guarantee and Separation Logic

Fractional Permissions
typedef PQ := {x ∈ Q. 0 < x ≤ 1}

instance PQ : perm-alg
a # b := a + b ≤ 1
a + b := min (a + b) 1

Multiplicative Unit

datatype 1 = 1

instance 1 : perm-alg
a # b := ⊥
a + b := undefined

Discrete Type

typedef α discr := (UNIV : α set)

instance α discr : multi-sep-alg
a # b := a = b
a + b := a

unitof a := a

Functions
instance (α⇒ (β : perm-alg)) : perm-alg

f # g := ∀x. (f x) # (g x)
a + b := λx. (f x) + (g x)

instance (α⇒ (β : multi-sep-alg)) : multi-sep-alg
unitof f := λx. unitof (f x)

instance (α⇒ (β : sep-alg)) : sep-alg
0 := λx. 0

Tuples

instance ((α : perm-alg)× (β : perm-alg)) : perm-alg
(a1, a2) # (b1, b2) := (a1 # b1) ∧ (a2 # b2)
(a1, a2) + (b1, b2) := (a1 + b1, a2 + b2)

instance ((α : multi-sep-alg)× (β : multi-sep-alg)) : multi-sep-alg
unitof (a1, a2) := (unitof a1, unitof a2)

instance ((α : sep-alg)× (β : sep-alg)) : sep-alg
0 := (0, 0)

Option Type

datatype α option = Some α | None
instance (α : perm-alg) option : sep-alg

a # b :=
case (a, b) of

(None, b)⇒ True
| (a, None)⇒ True
| (Some x, Some y)⇒ (x # y)

a + b :=
case (a, b) of

(None, b)⇒ b
| (a, None)⇒ a
| (Some x, Some y)⇒ Some (x + y)

unitofa := None
0 := None

Figure 2 Resource algebras instances for basic types.

V. Jackson, T. Murray, and C. Rizkallah 23:5

The multiplicative unit (1, Figure 2) is another permission algebra; it acts as an indivisible
permission. By placing this permission in a tuple with the discrete permission algebra
(α discr, Figure 2), we obtain a model of non-duplicable values.

Using these type-classes, we can develop compositional instances for standard data-types,
such as sums (+), tuples (×), functions (⇒), and options (α option). Note that such
instances have already been described in previous literature [12]. For this paper, it is
sufficient to note the following: tuples inherit the (least specific) class of their components,
options transform permission algebras to separation algebras, and functions inherit the class
of their co-domain.

Given these instantiations, it becomes simple to create various complex separation algebras
built from these simple ones. For example, the standard heap model is encoded as

(α, β) heap := α ⇀ (β discr× 1),

where α ⇀ β := α ⇒ β option. One key point to structuring our type-class hierarchy in
this manner, distinguishing permission algebras from multi-unit algebras from separation
algebras, is to allow flexibility for the proof engineer. For example: to change the previous
heap instance to use fractional permissions [6, 5], one only needs to swap the 1 for PQ.

3 The GenRGSep Logic

Using these resource algebras, we can construct a generic RGSep [39, 37], a combination of
separation logic and rely–guarantee, to reason over programs in resource models other than
the standard heap model.

3.1 Language

The language (Figure 3) includes skip statements (skip), sequencing (c1; c2), parallel (c1 ∥ c2),
and do-loops (do c od). Atomic statements (⟨b⟩) are specified by a relation between states
(b), and execution is blocked when the state is not in the domain of the relation. Inspired
by CSP [20], we also distinguish between internal (c1 + c2) and external (c1 2 c2) non-
determinism. We have chosen to include both internal and external non-determinism, and
also relational atomic actions, because they provide a generic foundation upon which to
build more concrete languages. The standard while-loop and if-then-else constructs can be
encoded using external non-determinism, blocking guards, and do loops.

The state model for this language is composed of two parts: local and shared state.
Thus we represent our state as a tuple, the left representing the local state and the right
representing the shared state. Local state splits among the processes on parallel composition,
whereas shared state is shared identically between the processes. Note that we choose not to
explicitly model a store, because such an abstraction is not present in low-level state models.

The relational atomic statement, in particular, allows the definition of the specific atomic
actions appropriate for whichever resource model the logic is instantiated with. For the same
reason, the relation acts over a pair of local and shared state, which allows the resource
models for local and shared state to differ. Moreover, this removes the requirement from
standard RGSep that the shared part of the pre- and postconditions must pick out the shared
state precisely.

ITP 2024

23:6 A Generalised Union of Rely–Guarantee and Separation Logic

Logical Variables
r, g, b (state relations)

p, q (state predicates)

Commands
c ::= skip (skip)
| c1; c2 (sequence)
| c1 + c2 (internal non-det.)
| c1 2 c2 (external non-det.)
| c1 ∥ c2 (parallel)
| ⟨b⟩ (relational atomic action)
| do c od (do loop)

Abbreviations
[p] := ⟨λx y. p x ∧ x = y⟩ (guard)

while p do c done := do ([p]; c) 2 [¬p] od (while loop)
if p then c1 else c2 fi := ([p]; c1) 2 ([¬p]; c2) (if-then-else)

Small-Step Semantics

(h, c1) ∼α; (h′, c′
1)

(h, c1; c2) ∼α; (h′, c′
1; c2)

SeqL (h, skip; c2) ∼τ; (h, c2)
SeqR

(h, c1) ∼α; (h′, c′
1)

(h, c1 + c2) ∼α; (h′, c′
1)

INDetL
(h, c2) ∼α; (h′, c′

2)
(h, c2 + c2) ∼α; (h′, c′

2)
INDetR

(h, skip 2 c2) ∼τ; (h, c2)
ENDetSkipL (h, c1 2 skip) ∼τ; (h, c1)

ENDetSkipR

(h, c1) ∼τ; (h′, c′
1)

(h, c1 2 c2) ∼τ; (h′, c′
1 2 c2)

ENDetTauL
(h, c2) ∼τ; (h′, c′

2)
(h, c2 2 c2) ∼τ; (h′, c1 2 c′

2)
ENDetTauR

(h, c1) ∼a; (h′, c′
1)

(h, c1 2 c2) ∼a; (h′, c′
1)

ENDetL
(h, c2) ∼a; (h′, c′

2)
(h, c2 2 c2) ∼a; (h′, c′

2)
ENDetR

(h, skip ∥ skip) ∼τ; (h, skip)
ParSkip

(h, c1) ∼α; (h′, c′
1)

(h, c1 ∥ c2) ∼α; (h′, c′
1 ∥ c2)

ParL
(h, c2) ∼α; (h′, c′

2)
(h, c2 ∥ c2) ∼α; (h′, c1 ∥ c′

2)
ParR

(h, c) ∼α; (h′, c′)
(h, do c od) ∼α; (h′, c′; do c od)

DoStep
¬ enabled c h

(h, do c od) ∼τ; (h, skip)
DoEnd

b h h′

(h, ⟨b⟩) ∼Upd; (h′, skip)
Atomic

where enabled c h holds when there is some head atomic command ⟨b⟩ in c where h is in the domain
of b.

Figure 3 Language syntax and small-step semantics.

V. Jackson, T. Murray, and C. Rizkallah 23:7

3.2 Semantics
We give the language a small step semantics (Figure 3) with the relation (h, c) ∼α; (h′, c′).
This should be interpreted as: starting with state h and program c, an α-step can be taken
to state h′ and program c′.

Steps are divided into two sorts of actions: τ -actions that represent internal decisions a
process makes that are not directly observable by other processes and observable actions
that are visible to other processes. Examples of τ -actions include the outcome of a non-
deterministic choice and the end of a while loop. An example of an observable action is heap
updates. This distinction is reflected by the fact that, when we connect these semantics to
RGSep, it will be the observable actions that generate the guarantee. As is traditional, we
will use the variable α to stand for any action and the variable a to stand for any observable
action.

We only have one observable action: Upd, for atomic update actions. The distinction
between internal and update commands is all that is necessary to prove soundness with
respect to the operational semantics.

3.3 Separation Logic
We shallowly embed the predicates in Isabelle/HOL, rather than constructing a deeply em-
bedded predicate language. The definitions of separating conjunction, separating implication,
and the empty predicate are standard.

(∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)
p ∗ q := λx. ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p x1 ∧ q x2

(−∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)
p−∗ q := λh. ∀h1. h # h1 −→ p h1 −→ q (h + h1)

emp : ((α : perm-alg)⇒ bool)
emp := λx. x # x ∧ (∀a. a # x −→ a + x = a)

Slightly less standard (notationally) is the connective (∗∧). This is defined as

(∗∧) : ((α : perm-alg)× (β : perm-alg)⇒ bool)⇒ (α× β ⇒ bool)⇒ (α× β ⇒ bool)
p ∗∧ q := λ(x, y). ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p (x1, y) ∧ p (x2, y),

and plays the role of the RGSep separating conjunction. We define this connective separately,
as the standard permission algebra instance for tuples splits both the left and right parts of
the tuple, not only the left part (the local resources), which is what RGSep requires.

Note also that, as we wish to formalise RGSep shallowly, we do not have Vafeiadis’
boxed-predicates, which are a syntactic construct which demarcates predicates on the shared
state. To regain the ease of reasoning that predicates acting on just the local or shared
state provide, we define two liftings L and S from predicates on local and shared states,
respectively, to predicates on the overall state

L : (α⇒ bool)⇒ (α× β ⇒ bool)
L p := p ◦ fst

S : (β ⇒ bool)⇒ (α× β ⇒ bool)
S p := p ◦ snd

Unlike Vafeiadis, our S does not enforce that the local state is empty, as units are not
guaranteed to exist in a permission algebra.

ITP 2024

23:8 A Generalised Union of Rely–Guarantee and Separation Logic

Using these, we can prove that ∗∧ is indeed the standard RGSep separating conjunction,
by showing that the connective separates over local state, L p ∗∧ L q = L(p ∗ q), and is
additive over shared state, S p ∗∧ S q = S(p ∧ q).

3.4 Stabilisation Predicate Transformers

In our formalisation of RGSep, instead of adding side-conditions to the reasoning rules
asserting that our pre- and postconditions are stable (invariant under the action of the rely,
guarantee, or both), we instead use stabilisation predicate transformers [37, 41]. These ease
reasoning about stability in RGSep, because they semi-distribute over ∗∧. This means that
the stability of a predicate can be proven from the stability of its parts, unlike stability
side-conditions, which do not distribute at all with ∗∧. They are defined using relational
weakest precondition (wlp) and strongest postcondition (sp) predicate transformers [11],
defined as follows: wlp r q := (λx. ∀y. r x y −→ q y) and sp r p := (λy. ∃x. r x y ∧ p x).

If we know we have a state that meets the predicate q, and we wish to know what the
state could have been before the interference of the environment, we calculate the weakest
assertion stronger than q and stable under r (the weakest stronger stable assertion, wssa).
If we know we have a state that meets the predicate p, and we wish to know what the
state might be after the interference of the environment, we calculate the strongest assertion
weaker than p and stable under r (the strongest stable weaker assertion, sswa). These are
defined as follows:

wssa r q := wlp ((=)×R r∗) q sswa r p := sp ((=)×R r∗) p.

where r1 ×R r2 := λ(x1, x2) (y1, y2). r1 x1 y1 ∧ r2 x2 y2, and thus ((=)×R r∗) is the relation
that leaves the local state the same, and changes the shared state by the reflexive transitive
closure of r.

Useful facts are that wssa is an interior operator and sswa is a closure operator,

wssa r p −→ p

wssa r (wssa r p)←→ wssa r p

(p −→ q) ∧wssa r p −→ wssa r q

p −→ sswa r p

sswa r (sswa r p)←→ sswa r p

(p −→ q) ∧ sswa r p −→ sswa r q;

they distribute or semi-distribute over the logical connectives

wssa r (p ∧ q)←→ wssa r p ∧wssa r q

wssa r p ∨wssa r q −→ wssa r (p ∨ q)
wssa r p ∗∧ wssa r q −→ wssa r (p ∗∧ q)

sswa r (p ∧ q) −→ sswa r p ∧ sswa r q

sswa r (p ∨ q)←→ sswa r p ∨ sswa r q

sswa r (p ∗∧ q) −→ sswa r p ∗∧ sswa r q;

and they do not interact with local state

wssa r (L p)←→ L p sswa r (L p)←→ L p;

and this is the case even under a ∗∧ for sswa

sswa r (L p ∗∧ q)←→ L p ∗∧ sswa r q.

V. Jackson, T. Murray, and C. Rizkallah 23:9

r, g ⊢ { p } skip { sswa r p }
Skip

r, g ⊢ { p1 } c1 { p2 } r, g ⊢ { p2 } c2 { p3 }
r, g ⊢ { p1 } c1; c2 { p3 }

Seq

sp b (wssa r p) ⊆ sswa r q ∀f. sp b (wssa r (p ∗∧ f)) ⊆ sswa r (q ∗∧ f) ⊤×R g ⊆ b

r, g ⊢ {wssa r p } ⟨b⟩ { sswa r q }
Atomic

r, g ⊢ { p } c1 { q1 }
r, g ⊢ { p } c2 { q2 }

r, g ⊢ { p } c1 + c2 { q1 ∨ q2 }
INDet

r, g ⊢ { p } c1 { q1 }
r, g ⊢ { p } c2 { q2 }

r, g ⊢ { p } c1 2 c2 { q1 ∨ q2 }
ENDet

(r ∪ g2), g1 ⊢ { p1 } c1 { q1 } (r ∪ g1), g2 ⊢ { p2 } c2 { q2 }
sswa (r ∪ g2) q1 ⊆ q′

1 sswa (r ∪ g1) q2 ⊆ q′
2

r, (g1 ∪ g2) ⊢ { p1 ∗∧ p2 } c1 ∥ c2 { q′
1 ∗∧ q′

2 }
Par

r, g ⊢ { sswa r i } c { sswa r i }
r, g ⊢ { i } do c od { sswa r i }

Do
r, g ⊢ { p } c { q } sswa (r ∪ g) f ⊆ f ′

r, g ⊢ { p ∗∧ f } c { q ∗∧ f ′ }
Frame

r, g ⊢ { p1 } c { q1 } r, g ⊢ { p2 } c { q2 }
r, g ⊢ { p1 ∨ p2 } c { q1 ∨ q2 }

Disj

r, g ⊢ { p1 } c { q1 } r, g ⊢ { p2 } c { q2 } for all local states hl, cancellative hl

r, g ⊢ { p1 ∧ p2 } c { q1 ∧ q2 }
Conj

r′, g′ ⊢ { p′ } c { q′ } p ⊆ p′ q′ ⊆ q r ⊆ r′ g′ ⊆ g

r, g ⊢ { p } c { q }
Weaken

where
cancellative : (α : perm-alg)⇒ bool

cancellative z := ∀x y. x # z ∧ y # z ∧ x + z = y + z −→ x = y.

Figure 4 The GenRGSep Logic.

3.5 RGSep Reasoning
The RGSep judgement, r, g ⊢ { p } c { q }, should be interpreted as follows: if we can rely
on the environment changing the shared state according to r, and we start in a state that
satisfies the precondition p, then successful execution of the program c will result in a state
that satisfies the postcondition q, only changing the shared state according to g. The rules
for this judgement can be found in Figure 4.

4 Soundness

To prove soundness, we must extend the individual small-step rules above to a semantics of
the execution of the entire program. We apply Vafeiadis’ operational soundness approach
[38], where the program execution not only integrates the transitive closure of small steps,
but requires that each small step be closed under framing by a local state. We generalise this
approach to permission algebras, which means that we do not assume either the presence of
units or the cancellativity law (Figure 1).

4.1 Safety
The inductive judgement safe establishes that a program c can: take n steps from the state
(hl, hs), where hl is the local state and hs is the shared state; under interference from rely
relation r; while ensuring the guarantee g for each Upd step; and that the state satisfies the
postcondition q if c has terminated. (Note also that rely steps are counted as steps.) The
formal definition of safe is as follows:

ITP 2024

23:10 A Generalised Union of Rely–Guarantee and Separation Logic

▶ Definition 1 (Safety).
Inductively:
1. 0: safe 0 c hl hs r g q always holds;
2. Suc n: safe (Suc n) c hl hs r g q holds if

a. Post-condition Safety:
c = skip −→ q (hl, hs),

b. Rely Safety:
∀h′

s. r hs h′
s −→ safe n c hl h′

s r g q,

c. Guarantee Safety:
∀α hlx h′

lx h′
s c′. α ̸= τ ∧ hl ⪯ hlx ∧ ((hlx, hs), c) ∼α; ((h′

lx, h′
s), c′) −→ g hs h′

s

d. Opstep Safety
∀α h′

l h′
s c′. ((hl, hs), c) ∼α; ((h′

l, h′
s), c′) −→ safe n c h′

l h′
s r g q, and

e. Frame Safety
∀α h′ c′ hlf . ((hl + hlf , hs), c) ∼α; (h′, c′) −→

(∃h′
l. h′

l # hlf ∧ h′ = h′
l + hlf ∧ (α = τ −→ h′

l = hl) ∧ safe n c h′
l h′

s r g q).

The function of each clause is as follows: taking zero steps is always safe, and when a step
is taken; if execution has terminated (c = skip) the postcondition is established, taking a
rely step is safe, taking a local step under any expanded state ensures the guarantee, taking
a local step is safe, and finally taking a local step under a frame is also safe and a framed
local tau step steps to the same (unframed) local state.

We make a number of changes to Vafeiadis’ original definition. By adding actions, we
can distinguish between τ actions, that do not induce a guarantee step, and observable
actions, that do. This also means that g is not forced to be reflexive by internal actions.
Moreover, it allows us to combine non-cancellative models with operations such as external
non-determinism, which have τ actions that do not collapse part of the program. (Compare
sequencing and internal non-determinism, which destroy their connectives upon the τ move.
See Paragraph 4.2.1.1 for more discussion of this.)

As we only have a single atomic statement, we do not need abort conditions to prevent
multiple acquisitions of the same lock. If multiple locks are desired, these can be added either
by the extension of the proof, as Vafeiadis does, or by instantiation with the appropriate
resource model.

4.2 Soundness
For each language construct, a theorem is proven that the safety of the sub-commands shows
the safety of the overall command. In addition, it is shown that framing by ∗∧ and weakening
the precondition preserves safety. This then allows us to show the soundness of the RGSep
proof system.

▶ Theorem 2 (Soundness).

r, g ⊢ { p } c { q } −→ p (hl, hs) −→ safe n c hl hs r g q

Proof Sketch. The proof is by induction over the RGSep rules [37]. Each safe-preservation
rule discussed above corresponds to an RGSep proof rule, and proves it essentially directly,
with occasional weakening of the postcondition. ◀

V. Jackson, T. Murray, and C. Rizkallah 23:11

4.2.1 Proving Operational Soundness Without Cancellativity
Perhaps surprisingly, Vafeiadis’ approach to soundness almost generalises to non-cancellative
models without any amendment. That is, the respective safety preservation rule for each com-
mand can be proven without issue, except for external non-determinism and the conjunction
rule. The reason for this is that, while the frame safety condition appears to require that we
cancel a non-cancellative resource, it does not actually make the true claim of cancellativity:
that the resources are equal. It only requires that we can safely continue from some unframed
resource.

4.2.1.1 External Non-determinism

One place where the original proof breaks is in the τ -substep rules for external non-
determinism (Figure 3), ENDetTauL and ENDetTauR. Here, we do find that, using the
original definition of safe, which does not distinguish between actions, we need to appeal
to cancellativity. External non-determinism, uniquely, has a rule which executes a τ -step,
but keeps the primary operation (2) over that executed sub-command after execution. This
creates issues with the inductive proof of safety, as τ -steps always produce equal heaps,
but Vafeiadis’ original frame safety condition only required that we find some smaller heap.
Thus, in the soundness proof of 2, in, for example, the left-step case, we would have that
safe n hl hs r g q and

((hl + hlf , hs), c1) ∼τ; ((h′
l + hlf , hs), c′

1),

(from the inductive frame safety hypothesis), but be required to prove safe n h′
l hs r g q.

This problem is resolved by strengthening the existential heap condition in frame safety, to
require that h′

l = hl in the case of a τ move.

4.2.1.2 Cancel and The Conjunction Rule

A more fundamental appeal to cancellativity appears in the safety proof of the conjunction
rule. When proving the frame safety condition, as there are two safe assumptions, we obtain,
by reduction of the hypotheses, two safe assumptions

safe n c′ h′
l h′

s r g q1 ∧ safe n c′ h′′
l h′

s r g q2

and the relation

hl + hlf = h′
l + hlf ,

but are required to find a single h∗
l such that

h∗
l + hlf = h′

l + hlf ∧ safe n c′ h∗
l h′

s r g (q1 ∧ q2).

There is no way to satisfy the inductive step, because the two safe assumptions disagree on
their local states, but the inductive step requires them to be equal.

This is another appearance of the well-studied precision side-condition for the conjunction
rule [16], as cancellativity is an instance of the precision law:

((=) a ∗∧ (=) c) ∧ ((=) a ∗∧ (=) c) −→ ((=) a ∧ (=) b) ∗∧ (=) c.

Thus we make the pessimistic assumption that, when applying conj, every possible local
state is cancellative.

ITP 2024

23:12 A Generalised Union of Rely–Guarantee and Separation Logic

4.2.1.3 Atomic

Lastly, care must be taken with atomic, as the natural framing condition to apply to the
relation is the frame property [42],

p (x, z) ∧ x # f ∧ b (x + f, z) xfz ′ −→
∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, z′) ∧ b (x, z) (x′, z′) ∧ q (x′, z′),

but this is stronger than necessary to prove safety, and rules out useful atomic commands.
We only require that

p (x, z) ∧ x # f ∧ b (x + f, z) xfz ′ −→ ∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, y′) ∧ q (x′, z′),

which does not require that b also admits the unframed step. Note that this condition can
be written more neatly as ∀f. sp b (p ∗∧ f) ⊆ (q ∗∧ f).

5 Related Work

5.1 Resource Algebras

The resource algebra approach to building separation logic was introduced by Calcagno et al.
[8], although similar ideas had been applied much earlier to relevant logic by Routley and
Meyer [32, 4]. There are two main styles to formalising these algebras either represent the
partial plus operation with a ternary relation or have a total plus operation and a binary
disjointness relation that marks when the monoid/semigroup laws actually hold. Iris [25]
takes yet another approach, and has a total plus operation and total laws, but has a validity
predicate which marks when the output of plus is not a meaningful resource.

Calcagno et al. introduce both separation algebras and permission algebras, but assume
only a single unit (for separation algebras) and the cancellativity property (for both).
Separation algebras were revisited by Dockins et al. [12], who formalised them in ternary
style in Coq [34], noted that the algebraic structure could be weakened to include multiple
units, and distilled many useful laws that extend the basic resource algebra laws. Klein et
al. [26] implemented separation algebra and separation logic as an Isabelle/HOL type-class,
in disjoint-plus style, which pairs well with Isabelle/HOL’s simplifier. Appel et al. [3]
constructed a permission–separation algebra type-class hierarchy in ternary style in Coq for
VST. This implementation weakens the positivity axiom from Dockins et al. to account for
the lack of the cancellativity law. Krebbers [28] formalised separation algebras in disjoint-plus
style in Coq, and built a C memory model on top of them. Lastly, Iris [25] develops a
very powerful concurrent separation logic in Coq, based on a generalisation of resource
algebras called a Camera, that allow for the approximation of impredicative invariants using
step-indexing.

5.2 RGSep

Vafeiadis’ original soundness proof for RGSep was proven using cancellative separation
algebra, by a pen-and-paper proof [37]. Vafeiadis later proved the soundness of RGSep for the
heap model, using a much simpler proof method [38]; this proof was mechanically formalised
in Coq and Isabelle/HOL.

V. Jackson, T. Murray, and C. Rizkallah 23:13

5.3 Explicit Stabilisation
Explicit stabilisation, or, the connectives wssa and sswa, were originally defined by Vafeiadis
[37] to analyse where stabilisation needed to occur in an RGSep proof. However, they
were defined impredicatively. Wickerson et al. [41, 40] noted that they could be defined
predicatively: respectively, as the weakest precondition and strongest postcondition of the
transitive closure of the destabilising relation (e.g. the rely). They applied them to rely–
guarantee, RGSep, and GSep, a proof system for reasoning about sequential programs with
modules. They were applied to the verification of barriers by Dodds et al. [14], where they
were noted to improve the ease of reasoning about stability, because they could be distributed
through the separating conjunction.

5.4 Separation Logic Frameworks
There are many frameworks for the verification of programs using separation logic. RGSep
was integrated into the automated verification tool SmallfootRG [9]. It employs symbolic
execution to automatically prove the correctness of program assertion. It is specific to the
abstract heap model. SmallfootRG was formalised [36] in the HOL4 theorem prover [33],
again for the heap model. The Verified Software Toolchain (VST) [2] is a toolchain and
framework for the verification of C code. Its foundations are built on permission algebras in
Coq. Iris [25] is a particularly powerful concurrent separation logic framework, that provides
an algebraic model of ghost state for the verification of concurrent code and protocols.
However, the Iris logic cannot simply embedded into Isabelle/HOL, as the later modality
is incompatible with the law of excluded middle, and thus incompatible with standard
Isabelle/HOL predicates.

In Isabelle/HOL, Dodds et al. [13] implement deny–guarantee, a close relative of RGSep;
they use a separation algebra approach, but assume a singular unit and cancellativity.
Separation Algebras have been formalised by Klein et al. [26, 27], but they assume a
single unit, which prevents them from developing permissions separately, and also prevents
the development of the multi-sep-alg instance for discr and sums. Lammich and Meis
[30] develop imperative separation logic specifically for heaps. Lammich [29] develops a
Concurrent Separation Logic in Isabelle/HOL based on Klein et al.’s Isabelle/HOL library,
which, as noted earlier assumes a single unit. Lastly, Eilers et al. [15, 10] develop a Relational
Information Flow Concurrent Separation Logic, which is specific to a combination of a
fractional heap, guard state, and guard condition heap.

6 Conclusion and Future Work

In this paper, we have introduced a new Isabelle/HOL library for the development of RGSep
logics. It provides a foundation for future verification of concurrent code in in Isabelle/HOL.

In the future, we would like to generalise the semantics of safe to a proper failure trace
semantics, where update actions record the state update that occurs. We believe Vafeiadis’
soundness method [38] should generalise quite nicely to this, as it resembles the method of
Aczel traces [1], except that extra traces are added to allow for intermittent framing.

Moreover, we would like to replace do-od with µ-recursion, as it appears in later CSP
languages [20]. This would allow for a simple implementation of general recursion, and
remove the notion of enabled from our semantics. This is frustrated by the fact that the
standard Hoare rule for recursion [18, 21] requires non-well-founded induction on the triple.
This could be solved by adding concurrent specification statements [17] to our language.

ITP 2024

23:14 A Generalised Union of Rely–Guarantee and Separation Logic

References
1 P Aczel. On an inference rule for parallel composition. Private communication to Cliff Jones,

February 1983. URL: https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/
PHGA-traces.pdf.

2 Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor, Programming
Languages and Systems, pages 1–17. Springer, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-642-19718-5_1.

3 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon
Stewart, Sandrine Blazy, and Xavier Leroy. Chapter 6 - Separation algebras. In Program
Logics for Certified Compilers. Cambridge University Press, 1 edition, April 2014. doi:
10.1017/CBO9781107256552.

4 Katalin Bimbó, Jon Michael Dunn, and Nicholas Ferenz. Two manuscripts, one by Routley, one
by Meyer: The origins of the Routley–Meyer semantics for relevance logics. The Australasian
Journal of Logic, 15(2), 2018. doi:10.26686/ajl.v15i2.4066.

5 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, page 259–270, New York, NY, USA,
2005. Association for Computing Machinery. doi:10.1145/1040305.1040327.

6 John Boyland. Checking interference with fractional permissions. In Radhia Cousot,
editor, Static Analysis, pages 55–72. Springer, Berlin, Heidelberg, 2003. doi:10.1007/
3-540-44898-5_4.

7 Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM SIGLOG News,
3(3):47–65, aug 2016. doi:10.1145/2984450.2984457.

8 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract
separation logic. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pages 366–378, 2007. doi:10.1109/LICS.2007.30.

9 Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis. Modular safety checking for
fine-grained concurrency. In Hanne Riis Nielson and Gilberto Filé, editors, Static Analysis,
pages 233–248. Springer, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-74061-2_15.

10 Thibault Dardinier. Formalization of commcsl: A relational concurrent separation logic for
proving information flow security in concurrent programs. Archive of Formal Proofs, March
2023. https://isa-afp.org/entries/CommCSL.html, Formal proof development.

11 Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program semantics. Springer-
Verlag, Berlin, Heidelberg, 1990. doi:10.1007/978-1-4612-3228-5.

12 Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras
and share accounting. In Zhenjiang Hu, editor, Programming Languages and Systems, pages
161–177. Springer, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-10672-9_13.

13 Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee reasoning.
Technical Report UCAM-CL-TR-736, University of Cambridge, Computer Laboratory, January
2009. doi:10.48456/tr-736.

14 Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars Birke-
dal. Verifying custom synchronization constructs using higher-order separation logic. ACM
Transactions on Programming Languages and Systems, 38(2), jan 2016. doi:10.1145/2818638.

15 Marco Eilers, Thibault Dardinier, and Peter Müller. CommCSL: Proving information flow
security for concurrent programs using abstract commutativity. Proceedings of the ACM on
Programming Languages, 7(PLDI), jun 2023. doi:10.1145/3591289.

16 Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction rule in
concurrent separation logic. Electronic Notes in Theoretical Computer Science, 276:171–190,
September 2011. doi:10.1016/j.entcs.2011.09.021.

17 Ian J. Hayes. Generalised rely-guarantee concurrency: an algebraic foundation. Formal Aspects
Computing, 28(6):1057–1078, 2016. doi:10.1007/S00165-016-0384-0.

https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.26686/ajl.v15i2.4066
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-540-74061-2_15
https://isa-afp.org/entries/CommCSL.html
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.48456/tr-736
https://doi.org/10.1145/2818638
https://doi.org/10.1145/3591289
https://doi.org/10.1016/j.entcs.2011.09.021
https://doi.org/10.1007/S00165-016-0384-0

V. Jackson, T. Murray, and C. Rizkallah 23:15

18 C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In E. Engeler, ed-
itor, Symposium on Semantics of Algorithmic Languages, pages 102–116. Springer, Berlin,
Heidelberg, 1971. doi:10.1007/BFb0059696.

19 C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, aug 1978. doi:10.1145/359576.359585.

20 C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985. URL:
http://www.usingcsp.com/cspbook.pdf.

21 C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In Essays in Computing
Science, chapter 6. Prentice-Hall, Inc., USA, 1989. doi:10.5555/63445.C1104361.

22 Vincent Jackson. General RGSep. Software, swhId: swh:1:dir:e759950d2ebd7571c869
13f8296dfb29aa24a108 (visited on 2024-08-22). URL: https://github.com/vjackson725/
GeneralRGSep/tree/itp24.

23 C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, oct 1983. doi:10.1145/
69575.69577.

24 Cliff B. Jones. Development Methods for Computer Programs including a Notion of In-
terference. PhD thesis, Oxford University, June 1981. Printed as: Programming Re-
search Group, Technical Monograph 25. URL: https://www.cs.ox.ac.uk/publications/
publication3768-abstract.html.

25 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:e20, 2018. doi:10.1017/S0956796818000151.

26 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separation algebra. In Lennart
Beringer and Amy Felty, editors, Interactive Theorem Proving, pages 332–337. Springer, Berlin,
Heidelberg, 2012. doi:10.1007/978-3-642-32347-8_22.

27 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Separation algebra. Archive of Formal
Proofs, May 2012. https://isa-afp.org/entries/Separation_Algebra.html, Formal proof
development.

28 Robbert Krebbers. Separation algebras for C verification in Coq. In Dimitra Giannakopoulou
and Daniel Kroening, editors, Verified Software: Theories, Tools and Experiments, pages
150–166. Springer, Cham, 2014. doi:10.1007/978-3-319-12154-3_10.

29 Peter Lammich. Refinement of parallel algorithms down to LLVM. In June Andronick and
Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving
(ITP 2022), volume 237 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1–24:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITP.2022.24.

30 Peter Lammich and Rene Meis. A separation logic framework for imperative HOL. Archive
of Formal Proofs, November 2012. https://isa-afp.org/entries/Separation_Logic_
Imperative_HOL.html, Formal proof development.

31 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Science,
375(1):271–307, 2007. Festschrift for John C. Reynolds’s 70th birthday. doi:10.1016/j.tcs.
2006.12.035.

32 Richard Routley and Robert K. Meyer. The semantics of entailment. In Hugues Leblanc,
editor, Truth, Syntax and Modality, volume 68 of Studies in Logic and the Foundations of
Mathematics, pages 199–243. Elsevier, 1973. doi:10.1016/S0049-237X(08)71541-6.

33 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,
volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer, Berlin, Heidelberg,
2008. doi:10.1007/978-3-540-71067-7_6.

34 The Coq Development Team. The Coq reference manual – release 8.19.1. https://coq.inria.
fr/doc/V8.19.1/refman, 2024.

ITP 2024

https://doi.org/10.1007/BFb0059696
https://doi.org/10.1145/359576.359585
http://www.usingcsp.com/cspbook.pdf
https://doi.org/10.5555/63445.C1104361
https://archive.softwareheritage.org/swh:1:dir:e759950d2ebd7571c86913f8296dfb29aa24a108;origin=https://github.com/vjackson725/GeneralRGSep;visit=swh:1:snp:e72ee116f86e47757d405779e79638178e413d3a;anchor=swh:1:rev:f35714d61e01b378ec363cc3f5fd6f5965a54beb
https://archive.softwareheritage.org/swh:1:dir:e759950d2ebd7571c86913f8296dfb29aa24a108;origin=https://github.com/vjackson725/GeneralRGSep;visit=swh:1:snp:e72ee116f86e47757d405779e79638178e413d3a;anchor=swh:1:rev:f35714d61e01b378ec363cc3f5fd6f5965a54beb
https://github.com/vjackson725/GeneralRGSep/tree/itp24
https://github.com/vjackson725/GeneralRGSep/tree/itp24
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://www.cs.ox.ac.uk/publications/publication3768-abstract.html
https://www.cs.ox.ac.uk/publications/publication3768-abstract.html
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-642-32347-8_22
https://isa-afp.org/entries/Separation_Algebra.html
https://doi.org/10.1007/978-3-319-12154-3_10
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/S0049-237X(08)71541-6
https://doi.org/10.1007/978-3-540-71067-7_6
https://coq.inria.fr/doc/V8.19.1/refman
https://coq.inria.fr/doc/V8.19.1/refman

23:16 A Generalised Union of Rely–Guarantee and Separation Logic

35 Lawrence C. Paulson Tobias Nipkow, Markus Wenzel, editor. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2002. doi:10.1007/3-540-45949-9.

36 Thomas Tuerk. A formalisation of smallfoot in HOL. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,
pages 469–484. Springer, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-03359-9_32.

37 Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report UCAM-CL-
TR-726, University of Cambridge, Computer Laboratory, July 2008. doi:10.48456/tr-726.

38 Viktor Vafeiadis. Concurrent separation logic and operational semantics. Electronic Notes
in Theoretical Computer Science, 276:335–351, 2011. Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXVII). doi:10.1016/j.
entcs.2011.09.029.

39 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.
In Luís Caires and Vasco T. Vasconcelos, editors, CONCUR 2007 – Concurrency Theory,
pages 256–271. Springer, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-74407-8_18.

40 John Wickerson. Concurrent verification for sequential programs. Technical Report UCAM-CL-
TR-834, University of Cambridge, Computer Laboratory, May 2013. doi:10.48456/tr-834.

41 John Wickerson, Mike Dodds, and Matthew Parkinson. Explicit stabilisation for modular
rely-guarantee reasoning. In Andrew D. Gordon, editor, Programming Languages and Systems,
pages 610–629. Springer, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-11957-6_32.

42 Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, pages
402–416. Springer, Berlin, Heidelberg, 2002. doi:10.1007/3-540-45931-6_28.

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-03359-9_32
https://doi.org/10.48456/tr-726
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.48456/tr-834
https://doi.org/10.1007/978-3-642-11957-6_32
https://doi.org/10.1007/3-540-45931-6_28

	1 Introduction
	2 Formalising the Foundations
	2.1 Resource Algebras

	3 The GenRGSep Logic
	3.1 Language
	3.2 Semantics
	3.3 Separation Logic
	3.4 Stabilisation Predicate Transformers
	3.5 RGSep Reasoning

	4 Soundness
	4.1 Safety
	4.2 Soundness
	4.2.1 Proving Operational Soundness Without Cancellativity

	5 Related Work
	5.1 Resource Algebras
	5.2 RGSep
	5.3 Explicit Stabilisation
	5.4 Separation Logic Frameworks

	6 Conclusion and Future Work

