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Abstract
We present an Isabelle/HOL formalization of narrowing for E-unifiability, reachability, and infeasibil-
ity. Given a semi-complete rewrite system R and two terms s and t, we show a formalized proof that
if narrowing terminates, then it provides a decision procedure for R-unifiability for s and t, where R
is viewed as a set of equations. Furthermore, we present multiset narrowing and its formalization for
multiset reachability and reachability analysis, providing decision procedures using certain restricted
conditions on multiset reachability and reachability problems. Our multiset narrowing also provides
a complete method for E-unifiability problems consisting of multiple goals if E can be represented
by a complete rewrite system.
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1 Introduction

Narrowing [13,18,23] generalizes rewriting in the sense that matching is replaced by unification.
Narrowing is a widely used technique for solving E-unification problems using term rewriting
systems, where equational unification (or E-unification) is concerned with making terms
equivalent w.r.t. an equational theory E [4]. For example, consider E = {f(x, 0) ≈ x}. Then,
two terms f(y, z) and 0 are not syntactically unifiable, but they are E-unifiable using the
substitution θ := {y 7→ 0, z 7→ 0} because f(y, z)θ = f(0, 0) ≈E 0. Given a complete rewrite
system R representing E, narrowing is known to be complete for E-unification in the sense
that for every solution of a given E-unification problem for s and t, a more general solution
can be found by narrowing [18]. It is also known that the semi-completeness of R suffices for
the completeness of narrowing w.r.t. E-unification [23,30].

In logic programming [20] and constraint based theorem proving [19, 25], it is often
sufficient to decide the solvability of E-unification problems, called E-unifiability [29]. Given
a set of equations E and two terms s and t, it is generally undecidable whether there exists a
substitution σ such that sσ ≈E tσ holds or not [4]. It is a natural question to ask when this
E-unifiability problem is decidable. E-unifiability using narrowing was considered in [29]
using a complete rewrite system R. However, it focuses on the complexity result of narrowing
w.r.t. E-unifiability, where narrowing is used as a complete semi-decision procedure for
E-unifiability.

Given a semi-complete rewrite system R corresponding to E, we present a new formalized
proof that (ordinary) narrowing may provide a decision procedure for E-unifiability if it
terminates. Roughly speaking, if the narrowing procedure terminates, then it either reaches
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the success state or not. If it reaches the success state, then we show that it yields an
E-unifier. Otherwise, we show that there is no E-unifier. We provide this correctness proof
of narrowing for the E-unifiability problem in the proof assistant Isabelle/HOL.

Narrowing was originally studied in the context of equational unification, but later it was
also studied in the context of the reachability problem [14, 22, 27, 28]. Given a rewrite system
R and two terms s and t, the reachability problem is stated as follows: is there a substitution
σ such that sσ →∗

R tσ? We say that this reachability problem is satisfiable if there is such a
substitution σ. If no such a substitution exists, then this problem is said to be infeasible [21].

Narrowing is known to be weakly complete [22] for reachability analysis in the sense that
it can find all R normalized solutions if some reasonable executability assumptions on R
are provided. In [28], the authors proposed a semi-decision procedure, called back-and-force
narrowing, for solving reachability goals, which is guaranteed to find a solution if it exists.

In this paper, we provide a formalized proof of some sufficient conditions of satisfying
reachability problems using ordinary narrowing. Also, given a semi-complete TRS R and two
terms s and t, where t is a strongly-irreducible term [7] (e.g. a constructor term), we show
a formalized proof that if narrowing terminates, then it can provide a decision procedure
whether the reachability problem from s to t is satisfiable or infeasible.

Ordinary narrowing (without special encoding) has some limitations on E-unifiability
and reachability analysis. In particular, it is not (directly) applicable to E-unifiability and
reachability analysis consisting of multiple goals. E-unification consisting of multiple goals is
considered in [15,24] using inference rules, but they are not concerned with E-unifiability
consisting of multiple goals. Meanwhile, reachability analysis consisting of multiple goals is
considered in [22,28], but they are not concerned with E-unification/E-unifiability.

One may also use narrowing with special encoding for considering multiple narrowing
goals. For example, if u1 (resp. v1) and u2 (resp. v2) are E-unifiable, then f̄(u1, u2) and
f̄(v1, v2) are also E-unifiable, where f̄ is a new symbol. This encoding is applicable to
narrowing-based E-unification/E-unifiability consisting of multiple goals (cf. [9, 11, 12]),
but has some limitations on reachability and multiset reachability analysis, which will be
discussed later in this paper.

We present multiset narrowing based on multiset rewriting in order to generalize narrowing
in multiset setting because identical elements (or states) in a multiset can reach different
elements (or states). For example, consider the multiset S = {f(x, y), f(x, y)}, the (renamed)
rewrite system R = {f(a, b) → d, f(a, z1) → g(z1), f(z2, a) → d, g(a) → c}, the target
multiset G = {c, d}, and a variant of a reachability problem: is there a substitution σ such
that Sσ can reach G by R? If we simply use the rule f(a, b) → d using the substitution
{x 7→ a, y 7→ b}, then f(x, y)σ reaches d but it does not reach c using the rewrite steps
by R. Using multiset narrowing discussed later in this paper, we can find a substitution
σ = {x 7→ a, y 7→ a}, which allows Sσ to reach G using the rewriting steps by R, i.e., multiset
narrowing provides a means to solve multiset reachability problems.

Furthermore, both E-unifiability and reachability analysis are considered in the unified
multiset narrowing framework. Our multiset narrowing works on multisets of ordinary
terms for multiset reachability analysis, multisets of equational terms for E-unification/E-
unifiability along with certain restricted cases of reachability analysis, and multisets of pairs
of terms for reachability analysis. It is applicable to E-unification problems and (ordinary)
reachability problems consisting of multiple goals, which is generic in the sense that it simply
encapsulates (ordinary) rewriting/narrowing for multiset rewriting/narrowing. In particular,
it provides a complete method for E-unification and E-unifiability consisting of multiple
goals, where E is represented by a complete rewrite system.
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Meanwhile, Isabelle [26] is a generic proof assistant, i.e., a computer program that allows
its users to express concepts in mathematics and computer science and to prove them
using a logical calculus. While formalization of term rewriting has been done extensively in
Isabelle (e.g., IsaFoR [1]), formalization of narrowing has not been done much yet in proof
assistants including Isabelle. Our formalization of narrowing is built on IsaFoR (Isabelle/HOL
Formalization of Rewriting). The relevant Isabelle theory files inside IsaFoR1 under the
directory thys/Narrowing are as follows:

Narrowing.thy Equational_Narrowing.thy
Multiset_Narrowing.thy Equational_Narrowing_Unification.thy
Equational_Narrowing_Reachability.thy Multiset_Narrowing_Unification.thy
Multiset_Narrowing_Reachability.thy

In the remainder of this paper, we provide hyperlinks (marked by §) to an HTML
rendering for our formalized proofs in Isabelle/HOL.

2 Preliminaries

The definitions and results in this section can be found in [3, 6, 10, 18, 23]. We consider
first-order terms over some signature F (consisting of function symbols f, g, h, . . . with fixed
arities) and some infinite set of variables x, y, z, . . . ∈ V . A position within a term is a list of
indices where ε denotes the empty position, also called the root position. The set of positions
of a term are defined as Pos(x) = {ε} and Pos(f(t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈
Pos(ti)}. Given p ∈ Pos(t), we write t|p for the subterm of t at position p, i.e., t|ε = t and
f(t1, . . . , tn)|ip = ti|p. The set of positions Pos(t) of a term t is partitioned into function
positions FPos(t) and variable positions VPos(t), where FPos(t) = {p ∈ Pos(t) | t|p /∈ V}.
For p ∈ Pos(t), we denote by t[s]p the term that is obtained from t by replacing the subterm
at position p by s.

The set of variables occurring in a term t is denoted by V(t).
A substitution σ is a mapping from V to T (F ,V) such that {x ∈ V |xσ ̸= x} is finite. This

set is called the domain of σ, which is denoted by Dσ, while the set of variables introduced
by σ is denoted by Iσ. Substitutions are extended to mappings from T (F ,V) to T (F ,V) in
the obvious way. In the remainder of this paper, we also write sσ := σ(s) for substitutions σ

and terms s, and (σ ◦ θ)(s) := sθσ for substitutions θ, σ and terms s.
The restriction σ ↾V of a substitution σ to V is defined as follows:

σ ↾V x =
{

xσ if x ∈ V
x otherwise

}
A variable renaming is a bijective substitution from V to V. We write σ = τ [V] if

σ ↾V= τ ↾V and σ ⩽ τ [V] if there is a substitution θ such that θ ◦ σ = τ [V].
An equation is a pair (s, t) of terms, written s ≈ t. We denote by ≈E the least congruence

on T (F ,V) that is closed under substitutions and contains a set of equations E. If s ≈E t

for two terms s and t, then s and t are E-equivalent.
A substitution σ is a unifier of two terms s and t if sσ = tσ. It is a most general unifier

(or mgu for short) if for every unifier θ of s and t, there exists a substitution λ such that
θ = λ ◦ σ. Two terms s and t are E-unifiable if there exists a substitution σ such that
sσ ≈E tσ.

1 http://cl-informatik.uibk.ac.at/isafor/#downloads
http://cl-informatik.uibk.ac.at/experiments/ITP2024/ceta_with_narrowing.zip for this paper.
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A TRS R is a set of ordered pairs of terms, called rules, where a rule is usually written
ℓ→ r. For each rule ℓ→ r, we assume that the set of variables occurring in ℓ includes the set
of variables occurring in r, i.e., V(ℓ) ⊇ V(r). The induced rewrite relation is written as →R
and can be defined either via positions or via contexts: s→R t if there is some ℓ→ r ∈ R
and substitution σ such that s|p = ℓσ and t = s[rσ]p for some p ∈ Pos(s) (or equivalently
s = C[ℓσ] and t = C[rσ] for some context C).

A substitution σ is normalized (w.r.t. a TRS R) if xσ is a normal form for every x ∈ Dσ.
A substitution σ is normalizable (w.r.t. a TRS R) if xσ has a normal form for every x ∈ Dσ.

A TRS R is confluent if ∗
R← · →∗

R ⊆ →∗
R · ∗

R←. A TRS R is strongly normalizing (SN)
if there is no infinite reduction sequence t1 →R t2 →R t3 →R · · · . A TRS R is weakly
normalizing (WN) if every term has a normal form. A TRS R is complete if it is confluent and
strongly normalizing. A TRS R is semi-complete if it is confluent and weakly normalizing.

A term t is strongly irreducible (w.r.t. R) if tσ is a normal form (w.r.t. R) for all normalized
substitutions σ.

A multiset is a collection of elements in which elements can occur more than once. More
formally, a multiset is a function from an element set S to the natural numbers, giving the
multiplicity of each element. This paper is only concerned with finite multisets.

3 Narrowing

▶ Definition 1. A term t is narrowable into a term t′ if there exist a position p ∈ FPos(t),
a variant2 ℓ→ r of a rewrite rule in R, and a substitution σ such that

σ is a most general unifier of t|p and ℓ,
t′ = t[r]pσ.

Then, we write t ⇝[p,ℓ→r,σ] t′ or simply t ⇝σ,R t′ (or more simply ⇝). The relation
⇝ is called narrowing. Also, we write t ⇝∗

σ,R t′ if there exists a narrowing derivation
t = t1 ⇝σ1,R t2 ⇝σ2,R · · ·⇝σn−1,R tn = t′ such that σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If n = 1, then
σ = ε.

▶ Lemma 2 (Lifting Lemma). Let R be a TRS. Suppose that we have terms s and t, a
normalized substitution θ and a set of variables V such that V(s) ∪ Dθ ⊆ V and t = sθ. If
t→∗

R t′, then there exist a term s′ and substitutions θ′, σ such that
s⇝∗

σ,R s′,
s′θ′ = t′,
θ′ ◦ σ = θ[V ],
θ′ is normalized. §

Now, we may add a fresh binary function symbol ≈? and a fresh constant ⊤ to the set of
function symbols and assume that R contains the rewrite rule x ≈? x→ ⊤

▶ Definition 3. Equational terms are the terms of the following form s ≈? t, where s and t

do not contain any occurrences of ≈? and ⊤.

We may use the lifting lemma for equational terms because equational terms are simply
some specific type of terms. We often denote equational terms using uppercase letters, such
as S, T , U , etc, while ordinary terms are denoted by lowercase letters, such as s, t, u, etc.
We assume that if S is an equational term, then Sσ is also an equational term for any
substitution σ. In other words, any substitution does not allow to introduce the special
symbols ≈? and ⊤ in its range.

2 See Definition 3.1 in [23] for details.

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Narrowing.html#lem:lifting_lemma
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In our Isabelle/HOL formalization, the definition of narrowing (see Definition 1) is done
using inductive_set in Isabelle. Here, s narrows into t iff (s, t, δ) ∈ narrowing_step.3

inductive_set narrowing_step where

"(t = (replace_at s p (snd rl)) · δ ∧ ω • rl ∈ R ∧ (vars_term s ∩ vars_rule rl = {}) ∧ p ∈
fun_poss s ∧mgu (s|p) (fst rl) = Some δ)⇒ (s, t, δ) ∈ narrowing_step"

Above, the renaming ω is applied to the rule rl, expressed by ω • rl, so that no variable
shares between s and rl. This corresponds to a variant of a rewrite rule l→ r in Definition 1,
where l → r is denoted here by rl. For renaming, we use the earlier formalization of
permutation for renaming [17] in IsaFoR. Now, we formalize whether a narrowing derivation
s ⇝∗

σ t holds or not, which cannot simply use the reflexive and transitive closure of the
relation derived from narrowing_step because σ should be combined and computed for the
narrowing steps from s to t.

definition narrowing_derivation where

"narrowing_derivation s s′ σ ←→ (∃n. (∃f τ. f 0 = s ∧ f n = s′ ∧ (∀i < n.((f i), (f (Suc i)),

(τ i)) ∈ narrowing_step) ∧ (if n = 0 then σ = V ar else σ = compose (map (λi.(τ i))[0.. <

n]))))"

Above, s⇝∗
σ t is true, denoted by (s, t, σ) ∈ narrowing_derivation, if there are functions f

and τ forming the chains of narrowing steps and their corresponding narrowing substitutions,
where the end points of the chain formed by f are s and t, respectively, and σ is the
composition of all substitutions of the chain formed by the function τ . (Here, if the length of
the chain is 0, then σ is simply the identity substitution (i.e., σ = V ar).)

Next, we need to formalize equational terms in Definition 3 in order to formalize the
results in Sections 4 and 5. Formalization of equational terms needs some special treatment
because of the new symbols ≈? and ⊤. Also, s and t in an equational term s ≈? t should
not contain any occurrences of ≈? and ⊤. We introduce two function symbols using locale
additional_function_symbols. Here, the binary function symbol .= corresponds to ≈? in
Definition 3. In the following, a term t is a wf_equational_term if t is either the constant ⊤
(i.e., Fun ⊤ [ ]) or it is an equational term of the form u ≈? v, where the binary symbol ≈?

and the constant ⊤ do not occur in any of u and v.

locale additional_function_symbols = fixes DOTEQ :: "′f" ("
.=") and TOP :: "′f" ("⊤")

begin

definition wf_equational_term where

“wf_equational_term t ←→ ((t = F un ⊤ [ ]) ∨ (∃u v. t = F un
.= [u :: (′f,′ v) term, v ::

(′f,′ v) term] ∧ (
.=, 2) /∈ funas_term u ∧ (

.=, 2) /∈ funas_term v) ∧ (⊤, 0) /∈ funas_term u ∧
(⊤, 0) /∈ funas_term v))"
...
end

Above, the term is represented by the datatype in IsaFoR:

datatype (α, β) term = V ar β | F un α ((α, β) term list)

where α and β are type parameters.

3 Here, R is added as an argument of narrowing_step implicitly using a locale in Isabelle .

ITP 2024
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In the Narrowing directory (below the thys directory in IsaFoR), Narrowing.thy is concerned
with narrowing without using equational terms, while Equational_Narrowing.thy is concerned
with equational narrowing using equational terms. Note that R in the former file denotes the
usual rewrite system with the condition that for each ℓ→ r ∈ R, V(ℓ) ⊇ V(r) and ℓ is not a
variable, while R in the latter file additionally includes the rule x ≈? x→ ⊤, written by a
pair (Fun .= [Var x, Var x], Fun ⊤ [ ]) in our formalization. We may also need to consider
the original rewrite system from R excluding the rule x ≈? x→ ⊤, where the binary symbol
.= and the constant ⊤ do not occur in the original rewrite system. We use the Isabelle’s
locale [5] to specify these in Equational_Narrowing.thy.

locale equational_narrowing = narrowing R + additional_function_symbols DOTEQ TOP" +
for R :: "(′f, ′v:: infinite) trs"
. . .

fixes R′ :: "(′f, ′v:: infinite) trs"
and F :: "′f sig"
and D :: "′f sig"
and x :: "′v"

assumes "wf_trs R"
and "R = R′ ∪ {(F un

.= [V ar x, V ar x], F un ⊤ [ ])}"
and "funas_trs R′ ⊆ F"
and "D = {( .=, 2), (⊤, 0)}"
and "D ∩ F = {}"
. . .

Above, R′ is the original rewrite system, while R is the rewrite system R = R′∪{(Fun
.=

[V ar x, V ar x], Fun ⊤ [ ])}. We assume that the function symbols of the original rewrite
system R′ is contained in F , which is written as funas_trs R′ ⊆ F . Also, D is the set
of fresh symbols {( .=, 2), (⊤, 0)}, which should be disjoint from the original set of function
symbols F (i.e., D ∩ F = {}).

Note that the lifting lemma is a key lemma for narrowing, which states that a rewriting
sequence can be “lifted” to a narrowing derivation. Our formalization includes four lifting
lemmas, i.e., the lifting lemma for narrowing in Narrowing.thy, the lifting lemma for equational
narrowing in Equational_Narrowing.thy, and the lifting lemma for multiset narrowing (see
Lemma 22) and its slight variation in Multiset_Narrowing.thy, respectively. Here, we consider
our formalization of the lifting lemma in equational narrowing, which is given as follows:

lemma lifting_lemma:
fixes V ::"(′v :: infinite) set" and S ::"(′f,′ v)term" and T ::"(′f,′ v)term"

assumes "normal_subst R θ"
and "wf_equational_term S"
and "T = S · θ"
and "vars_term S ∪ subst_domain θ ⊆ V "
and "(T, T ′) ∈ rstep R)∗"
and "finite V "

shows "∃σ θ′ S′.narrowing_derivation S S′ σ ∧ T ′ = S′ · θ′ ∧ wf_equational_term S′∧
normal_subst R θ′ ∧ (σ ◦s θ′) |S V = θ |S V "

There are slight differences between the formalization statement above and Lemma 2.
Here, we use wf_equational_terms instead of ordinary terms. Each narrowing step transforms
one wf_equational_term into another wf_equational_term. Also, we assume that V is finite
because we only consider finite wf_equational_terms and finite substitution domains for their
associated substitutions. It is easier to rename the variables of the rules distinct from a finite
V instead of the infinite V . (For example, if V is the universe of all variables of the given
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type, then we cannot rename the variables of the rules distinct from V .) Also, in the above
formalization statement of the lifting lemma, (T, T ′) ∈ (rstep R)∗ denotes the rewriting
sequence from T to T ′, where the formalization of rstep is already available from IsaFoR [1]
(see below):

inductive_set rstep::"_⇒ (′f,′ v)term rel" for R ::"(′f,′ v) trs" where
"rstep :

∧
C σ l r. (l, r) ∈ R =⇒ s = C⟨l · σ⟩ =⇒ t = C⟨r · σ⟩ =⇒ (s, t) ∈ rstep R"

Above, (σ ◦s θ′) |S V (resp. θ |S V ) denotes the restriction of a substitution σ ◦s θ′ (resp. θ)
to a set of variables V , where the restriction of a substitution subst_restrict is also available
from IsaFoR (see below):

definition subst_restrict:: "(′f,′ v) subst⇒′ v set⇒ (′f,′ v) subst" (infix "|s" 67) where
"σ |s V = (λx. if x ∈ V then σ(x) else V ar x)"

Similarly to the proof of the lifting lemma in [23], the proof of the formalization of the
lifting lemma is proceeded by the induction on the length of the reduction sequence from T

to T ′. To this end, from the assumption (T, T ′) ∈ (rstep R)∗, we may obtain a chain and a
number in such a way that

obtain f n where "f 0 = T ” and ”f n = T ′” and ”∀i < n.(f i, f (Suc i)) ∈ rstep R"

Then we show the following statement using induction on n:

∃σ θ′ S′. narrowing_derivation_num S S′ σ n ∧ T ′ = S′ · θ′ ∧ wf_equation_term S′ ∧
normal_subst R θ′ ∧ (σ ◦s θ′) |S V = θ |S V .

Above, the narrowing_derivation_num is simply narrowing_derivation with the number of
derivation steps being explicitly specified:

definition narrowing_derivation_num where
"narrowing_derivation_num s s′ σ n←→ (∃f τ. f 0 = s ∧ f n = s′ ∧ (∀i < n.((f i), (f (Suc i)),

(τ i)) ∈ narrowing step)∧(if n = 0 then σ = V ar else σ = compose (map (λi.(τ i))[0.. < n])))"

We leave it to our formalization for all the technical details of the proof of the lifting
lemma.

4 E-unifiability

Narrowing is known to be a complete method of solving E-unification problems if E can
be represented by a semi-complete rewrite system [23]. The completeness of narrowing
w.r.t. E-unification is derived from the lifting lemma using a semi-complete rewrite system
representing E. The underlying idea of using narrowing is as follows (cf. [28]): A narrowing
step from a term s may represent many rewrite steps starting with instances of s. If sθ →R t′

is a rewrite step from sθ using a (fresh variant of) rule ℓ→ r at a non-variable position p

of s, then s|p and ℓ are unifiable. Then, using the most general unifier δ of s|p and ℓ, we
have a rewrite step sδ →R t by applying the same rule ℓ → r at the same position p of s,
where t′ = tσ for some substitution σ. Now, the narrowing step s ⇝δ,R t may represent
different rewriting steps for each unifier τ of s|p and ℓ, where s⇝δ,R t implies sδ →R t. This
can be extended to narrowing sequences in such a way that s⇝∗

σ,R t implies sδ →∗
R t. The

following lemma is used for both narrowing-based E-unification and the reachability analysis
in the next section.

ITP 2024
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▶ Lemma 4.
(i) s⇝∗

σ,R t implies sσ →∗
R t. §

(ii) s ≈? t⇝∗
σ,R ⊤ implies sσ ≈? tσ →∗

R ⊤. §

Proof. For the proof of (i), we proceed by induction on the length of the narrowing derivation
s ⇝∗

σ,R t. The base case is immediate because we have s = t and σ = ε (i.e., the identity
substitution). For the inductive case, we have some u such that s⇝∗

σ1,R u⇝σ2,R t, where
the length of the narrowing derivation s⇝∗

σ1,R u is one less than the length of the narrowing
derivation in s⇝∗

σ,R t with σ = σ2 ◦σ1. The induction hypothesis yields sσ1 →∗
R u. Also, by

Definition 1, we see that uσ2 →R t from u⇝σ2,R t. Now, we have (sσ1)σ2 →∗
R uσ2 →R t,

and thus the conclusion of (i) follows. We omit the proof of (ii), since it is almost identical
to the proof of (i). ◀

Recall that we have the rule x ≈? x → ⊤ included in R, where ⊤ is a fresh constant
symbol. This means that if sθ ≈? tθ →∗

R ⊤, then θ is an R-unifier of s and t because sθ and
tθ should be joined by R. (Otherwise, no rewriting sequence by R from sθ ≈? tθ reaches ⊤.)
Now, the following lemma directly follows from this observation using Lemma 4(ii).

▶ Lemma 5 ( [23]). Given a TRS R, if s ≈? t⇝∗
σ,R ⊤ for some substitution σ, then s and

t are R-unifiable. §

In the above, given a set of equations E represented by a rewrite system R, E-unifiable is
formalized in the following way, where eq is a pair of terms for representing an equation, and
τ denotes an E-unifier.

definition "E_unifiable eq ←→ (∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)↔∗
)

▶ Example 6. Let E = {f(x, 0) ≈ g(x), g(b) ≈ c} and consider the unification problem
f(x, y) ≈?

E c. A rewrite system for E is R = {f(x, 0) → g(x), g(b) → c, x ≈? x → ⊤},
where the rule x ≈? x → ⊤ is added using the fresh constant ⊤. We rename the rules
in R whenever necessary, where variables with subscripts denote the renamed variables
in this example. First, find the mgu of f(x, y) and f(x1, 0) in f(x1, 0) → g(x1), which is
σ1 = {x 7→ x1, y 7→ 0}. This yields the narrowing step (f(x, y) ≈? c) ⇝σ1 (g(x1) ≈? c).
Next, find the mgu of g(x1) and g(b), which is σ2 = {x1 7→ b}. This yields the narrowing
step (g(x1) ≈? c)⇝σ2 (c ≈? c). Then, find the mgu of c ≈? c and x2 ≈? x2 in x2 ≈? x2 → ⊤,
which is σ3 = {x2 7→ c}. This yields the narrowing step c ≈? c⇝σ3 ⊤.

We see that σ := σ3 ◦ σ2 ◦ σ1 is an R-unifier (or an E-unifier) of f(x, y) and c, where
σ = {x 7→ b, y 7→ 0, x1 7→ b, x2 7→ c}.

Now, given a semi-complete TRS R, if θ is an R-unifier of s and t (i.e., sθ ≈R tθ),
then sθ ≈? tθ →∗

R ⊤ because R is confluent. By the semi-completeness of R, a normal
substitution θ′ of θ exists such that sθ′ ≈? tθ′ →∗

R ⊤, and thus θ′ is also an R-unifier of s

and t. Applying the lifting lemma yields a narrowing sequence s ≈? t ⇝∗
σ,R ⊤ such that

σ ≤ θ′ [V(s)∪V(t)]. By Lemma 4(ii), we have sσ ≈? tσ →∗
R ⊤, and thus σ is also an R-unifier

of s and t. Since we have θ ≈R θ′ and σ ≤ θ′ [V(s) ∪ V(t)], we see that σ ≤R θ [V(s) ∪ V(t)].
This observation implies that for every R-unifier of s and t, a more general R-unifier can be
found by narrowing. The completeness of narrowing for E-unification was originally proposed
by Hullot [18], where E is represented by a complete TRS. Later, it was shown that the
semi-completeness of TRS suffices for the completeness of narrowing for E-unification [23].

▶ Theorem 7 ( [23]). Let R be a semi-complete TRS. If sθ ≈R tθ, then there is a narrowing
derivation s ≈? t⇝∗

σ,R ⊤ such that σ ≤R θ [V(s) ∪ V(t)]. §

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:narrowing_based_reachable'
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http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Unification.html#lem:narrowing_based_E_unifiable
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Unification.html#thm:narrowing_based_completeness_of_E_unification
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Unfortunately, the completeness of narrowing for E-unification alone does not imply
E-unifiability by narrowing, which is also important in equational reasoning. In the remainder
of this section, we show that given a semi-complete TRS R, if narrowing terminates, then it
provides a decision procedure for E-unifiability.

▶ Lemma 8. Given a TRS R, if there is no narrowing derivation s ≈? t⇝∗
σ,R ⊤ for any

substitution σ, then there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. §

Proof. Suppose to the contrary that there is a normal substitution θ satisfying sθ ≈? tθ →∗
R

⊤. Let V =: V(S)∪Dθ, where S = s ≈? t. Then, by Lemma 2, there exists some substitution
σ such that s ≈? t⇝∗

σ,R ⊤, which is the required contradiction. ◀

▶ Example 9. Consider R = {a → b, f(a, b) → c} and s = f(x, x) and t = c. Then
s ≈? t is not narrowable, so there is no narrowing derivation s ≈? t ⇝∗

σ,R ⊤ for any
substitution σ. By Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗

R ⊤.
However, there is a non-normal substitution δ := {x 7→ a} satisfying sδ ≈? tδ →∗

R ⊤, i.e.,
f(a, a) ≈? c→R f(a, b) ≈? c→R c ≈? c→R ⊤, where sδ = f(a, a) and tδ = c.

The following lemma is immediate by observing that given a confluent TRS, s
∗←→R t

implies that s and t are joinable.

▶ Lemma 10. Given a confluent TRS R, s
∗←→R t implies s ≈? t→∗

R ⊤. §

▶ Lemma 11. Given a semi-complete TRS R, if there is no narrowing derivation s ≈?

t⇝∗
σ,R ⊤ for any substitution σ, then s and t have no R-unifier. §

Proof. Assume that there is no narrowing derivation s ≈? t ⇝∗
σ,R ⊤ for any substitution

σ. Then, by Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. Now,

suppose, towards a contradiction, that s and t have an R-unifier. Then, there is some
substitution τ such that sτ

∗←→R tτ . Since R is semi-complete, there is a normal substitution
τ ′ of τ such that sτ ′ ∗←→R tτ ′. Now, we have sτ ′ ≈? tτ ′ →∗

R ⊤ by Lemma 10, which is the
required contradiction. ◀

From Lemmas 5 and 11, we have the following theorem of E-unifiability by narrowing.

▶ Theorem 12. Given a semi-complete TRS R, if all narrowing derivations starting from
s ≈? t terminate (or simply ⇝ terminates), then we can decide whether s ≈? t has an
R-unifier or not. §

5 Reachability and Infeasibility

The reachability problem [14,27] is one of the fundamental problems in term rewriting systems,
which originally has the following form: Given a TRS R and a source term s, does s reach t by
a rewriting sequence, written s→∗

R t? This problem has the following generalization [21, 27]
for s and t containing variables: Is there a substitution σ such that sσ →∗

R tσ? If there
is no such substitution, then the problem is called infeasible [21,27]. In this paper, by the
reachability problem, we mean the generalized reachability problem discussed above. In our
Isabelle/HOL formalization, reachable and infeasible for a pair of terms are formalized as
follows:

definition "reachable eq ←→ (∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)∗)

definition "infeasible eq ←→ (¬(∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)∗))
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The following lemma provides a sufficient condition of satisfying the reachability problem
using narrowing, which requires neither the confluence nor the termination of the underlying
TRS.

▶ Lemma 13.
(i) If there is some substitution σ such that s⇝∗

σ,R tσ, then the reachability problem from
s to t is satisfiable. §

(ii) If there is some substitution σ such that s⇝∗
σ,R t′σ and t′σ and tσ are unifiable, then

the reachability problem from s to t is satisfiable. §

Proof. The proof of (i) is immediate using Lemma 4. For the proof of (ii), we have sσ →∗
R t′σ

from s⇝∗
σ,R t′σ using Lemma 4. Since t′σ and tσ are unifiable, there is some mgu δ such

that (t′σ)δ = (tσ)δ. Then, we have (sσ)δ →∗
R (t′σ)δ = (tσ)δ, and thus the reachability

problem from s to t is satisfiable using substitution δ ◦ σ. ◀

▶ Example 14. Let R = {f(x, x)→ g(x), a→ b}. For the reachability problem from f(y, a)
to g(b), we have f(y, a)⇝σ1,R g(a), where σ1 = {x 7→ a, y 7→ a} is the mgu of f(x, x) and
f(y, a). Then, we have g(a)⇝ε,R g(b), so the reachability problem from f(y, a) to g(b) is
satisfiable by Lemma 13(i) using substitution σ1 = {x 7→ a, y 7→ a}.

Lemma 13(ii) provides a means to compute a solution of the reachability problem from
s to t using a narrowing tree starting from s. Since a narrowing derivation along with
its substitution are computed incrementally, a typical way of computing a solution of the
reachability problem using a narrowing tree is to use the breadth-first search for each length
of narrowing derivations and expand the narrowing tree (if it is possible) when a solution
of the reachability problem cannot be found. (A more efficient way of solving reachability
problems is considered in the next section.)

However, narrowing is known to be weakly complete [22] in reachability analysis in the
sense that it may fail to find a solution of the reachability problem even if it exists. In
particular, narrowing may fail to find a non-normalized solution of a reachability problem.

▶ Example 15. Given R = {a → b, a → c, g(f(b), f(c)) → a}, consider the reach-
ability problem from g(f(x), f(x)) to a. The problem is satisfiable using substitution
{x 7→ a} (i.e., g(f(a), f(a)) →R g(f(b), f(a)) →R g(f(b), f(c)) →R a), but we may not
apply Lemma 13(ii) because there is neither a narrowing step from g(f(x), f(x)) nor is it
unifiable with a.

In what condition the reachability problem is shown to be either satisfiable or infeasible
using narrowing? In the remainder of this section, if R is semi-complete and t is a strongly-
irreducible term (e.g. a constructor term), then we show that a narrowing derivation s ≈?

t⇝∗
σ,R ⊤ for some substitution σ implies the reachability from s to t, while no narrowing

derivation s ≈? t⇝∗
σ,R ⊤ for any substitution σ implies the infeasibility of the reachability

problem from s to t, assuming that all narrowing derivations from s ≈? t terminates.

▶ Lemma 16. Let R be a semi-complete TRS and t be a strongly irreducible term. If there
is some substitution σ such that s ≈? t⇝∗

σ,R ⊤, then the reachability problem from s to t is
satisfiable. §

Proof. Suppose that there is some substitution σ such that s ≈? t ⇝∗
σ,R ⊤. Then, by

Lemma 4(ii), we have sσ ≈? tσ →∗
R ⊤. Since R is semi-complete, there is a normal

substitution σ′ of σ such that sσ ≈? tσ →∗
R sσ′ ≈? tσ′ and sσ′ ≈? tσ′ →∗

R ⊤. Also, tσ′ is a
normal form of R because t is strongly irreducible. Since sσ′ ≈? tσ′ →∗

R ⊤ and tσ′ is normal
form of R, we may infer that sσ′ →∗

R tσ′, and thus the conclusion follows. ◀

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:narrowing_based_reachable
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▶ Lemma 17. Let R be a semi-complete TRS and t be a strongly irreducible term. If there is
no narrowing derivation s ≈? t⇝∗

σ,R ⊤ for any substitution σ, then the reachability problem
from s to t is infeasible. §

Proof. Assume that there is no narrowing derivation s ≈? t ⇝∗
σ,R ⊤ for any substitution

σ. Then, by Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. Now,

suppose, towards a contradiction, that the reachability problem from s to t is satisfiable.
Then, there is a substitution τ such that τ such that sτ →∗

R tτ . SinceR is weakly normalizing,
there is a normal substitution τ ′ of τ such that sτ ′ ∗

R← sτ →∗
R tτ →∗

R tτ ′. We see that tτ ′ is
a normal form because t is a strongly irreducible term and τ ′ is a normal substitution. Since
R is confluent and tτ ′ is a normal form of R, we have sτ ′ →∗

R tτ ′, and thus sτ ′ ≈? tτ ′ →∗
R ⊤,

which is the required contradiction. ◀

From Lemmas 16 and 17, we have the following decidability result of the reachability
problem using narrowing. (Note that Lemma 13 only provides a sufficient condition of
satisfying the reachability problem using narrowing.)

▶ Theorem 18. Let R be a semi-complete TRS and t be a strongly irreducible term. If all
narrowing derivations starting from s ≈? t terminate (or simply ⇝ terminates), then we can
decide whether the reachability problem from s to t is satisfiable or not (i.e., infeasible). §

6 Multiset Narrowing

In this section, we consider multiset narrowing for multiset reachability analysis and multiple
goals in the reachability and E-unification problems. Our multiset narrowing4 is adapted
from Narrowing Calculus (NC) in [24], but it is also concerned with multisets of ordinary
terms, equational terms, and pairs of terms. Note that a multiset is a generalization of a set,
allowing elements in the multiset to occur more than once. It has an additional flexibility
because identical elements (or states) in a multiset can reach different elements (or states).

Now, we consider multiset narrowing for multisets of terms (or equational terms). First,
we consider multiset rewriting for multisets of terms (or equational terms).

▶ Definition 19. Let S and T be multisets of terms. We write S →[R,M ] T if there exists a
term s ∈ S such that s→R t and T = (S − {s}) ∪ {t}.

▶Definition 20. Given a multiset of terms S = {t1, . . . , tn}, the multiset reachability problem
is described as follows: is there a substitution σ such that Sσ := {t1σ, . . . , tnσ} reaches the
target multiset of terms G = {t′

1, . . . , t′
n} using multiset rewriting, i.e., Sσ →∗

[R,M ] G? If
there is such a substitution σ, then we say that the multiset reachability problem from S to G

is satisfiable. Otherwise, we say that it is infeasible.

In the above definition, the source multiset S and the target multiset G are fixed for
multiset reachability analysis which can be done using the following multiset narrowing.

▶ Definition 21. A multiset of terms S is narrowable into a multiset of terms T if there
exist a term s ∈ S and a substitution σ such that

s⇝σ,R t,
T = ((S − {s})σ ∪ {t}.

4 Narrowing in a multiset environment is also considered in CHR [16], but it is considered in the context
of logic programming, which does not consider multisets of ordinary terms.
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Then, we write S ⇝σ,R,M T . Also, we write S ⇝∗
σ,R,M S′ if there exists a narrowing

derivation S = S1 ⇝σ1,R,M S2 ⇝σ2,R,M · · ·⇝σn−1,R,M Sn = S′ such that σ = σn−1 ◦ · · · ◦
σ2 ◦ σ1. If n = 1, then σ = ε.

Intuitively speaking, S →[R,M ] T if T is obtained by replacing one element (term) in S

using a rewriting step inR, while S ⇝σ,R,M T if T is obtained by replacing one element (term)
in S using a narrowing step in Definition 1 and then applying the narrowing substitution to
the remaining multiset S − {s}.

In our Isabelle/HOL formalization, we use finite multisets for multiset narrowing, where
a finite multiset is a finite collection of elements, denoted by {#x1, . . . , xn#} in isabelle.
Duplication is allowed and orders are irrelevant in multisets, i.e., {#s, t, t, s#} = {#t, t, s, s#}.
Also, + denotes multiset sum and - denotes multiset difference. Now, the multiset reduction
in Definition 19 can be used for multisets of both ordinary and equational terms. Then,
S →[R,M ] T iff (S, T ) ∈ multiset_reduction_step (see below).

inductive_set multiset_reduction_step where

"s ∈# S ∧ T = (S − {#s#}+ {#t#})∧ (s, t) ∈ rstep R⇒ (S, T ) ∈ multiset_reduction_step"

The corresponding multiset narrowing in Definition 21 is formalized as follows, where
S ⇝σ,R,M T iff (S, T, σ) ∈ multiset_narrowing_step.

inductive_set multiset_narrowing_step where

"(s, t)∈# S ∧ T = (subst_term_multiset σ (S−{#s#})+{#t#})∧(s, t, σ) ∈ narrowing_step

⇒ (S, T, σ) ∈ multiset_narrowing_step"

The lifting lemma for multisets of terms can be easily adapted from Lemma 2.5

▶ Lemma 22. Let R be a TRS. Suppose we have two multisets of terms S and T , a normalized
substitution θ and a set of variables V such that V(S)∪Dθ ⊆ V and T = Sθ. If T →∗

[R,M ] T ′,
then there exist a multiset of terms S′ and substitutions θ′, σ such that

S ⇝∗
σ,R,M S′,

S′θ′ = T ′,
θ′ ◦ σ = θ[V ],
θ′ is normalized. §

The following lemma can be proved by induction on the length of the multiset narrowing
derivation S ⇝∗

σ,R,M T using the observation that S′σ′ →[R,M ] T ′ whenever S′ ⇝σ′,R,M T ′

(cf. Lemma 4).

▶ Lemma 23. Let R be a TRS and S be a multiset of terms (or equational terms). Then,
S ⇝∗

σ,R,M T implies Sσ →∗
[R,M ] T . §

▶ Lemma 24. If there are some substitutions σ and η such that S ⇝∗
σ,R,M S′ and S′η = G,

then the multiset reachability problem from S to G is satisfiable. §

Proof. Suppose that there are some substitution σ and η such that S ⇝∗
σ,R,M S′ and S′η = G.

Then, by Lemma 23, we have Sσ →∗
[R,M ] S′. By Definition 19 and easy induction on the

length of multiset rewriting steps, we may infer that →∗
[R,M ] is closed under substitutions.

Now, we have Sση →∗
[R,M ] S′η = G, and thus the conclusion follows. ◀

5 The lifting lemma for multisets of equational terms is also a slight variation of the lifting lemma for
multisets of terms, where Definition 3 needs to be checked.
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▶ Example 25. We consider the multiset reachability problem introduced in Section 1.
Let S = {f(x, y), f(x, y)}, the (renamed) rewrite system R = {f(a, b) → d, f(a, z1) →
g(z1), f(z2, a)→ d, g(a)→ c}, and the target multiset G = {c, d}. Multiset narrowing starts
with S = {f(x, y), f(x, y)} and narrow into S1 = {g(z1), f(a, z1)} using the rule f(a, z1)→
g(z1) with substitution σ1 = {x 7→ a, y 7→ z1}. Then, it narrows into S2 = {c, f(a, a)} using
the rule g(a)→ c with substitution σ2 = {z1 7→ a}. Finally, it narrows into S3 = {c, d} using
the rule f(z2, a) → d, with substitution σ3 = {z2 7→ a}. Then by Lemma 24, the above
multiset reachability problem is satisfied with substitution σ = σ3 ◦ σ2 ◦ σ1 = {x 7→ a, y 7→
a, z1 7→ a, z2 7→ a}.

▶ Lemma 26. If there is no multiset narrowing derivation S ⇝∗
σ,R,M S′ for any substitution σ

and η with S′η = G, then there is no normal substitution θ satisfying the multiset reachability
problem from S to G. §

The above lemma describes the weak completeness of multiset narrowing w.r.t. multiset
reachability analysis. For example, the multiset reachability problem from {g(f(x), f(x))}
to {a} using R in Example 15 is satisfiable using substitution {x 7→ a}, but there is no
multiset narrowing step from {g(f(x), f(x))} nor is there some substitution η such that
{g(f(x), f(x))η} = {a}.

▶ Lemma 27.
(i) If R is strongly normalizing, then →[R,M ] is strongly normalizing. §

(ii) If R is complete, then →[R,M ] is confluent. §

▶ Lemma 28. Given a complete TRS R, if there is no multiset narrowing derivation
S ⇝∗

σ,R,M S′ for any substitution σ and η with S′η = G and G is in normal form
w.r.t.→[R,M ], then there is no substitution θ satisfying the multiset reachability problem from
S to G. §

Proof. Assume that there is no multiset narrowing derivation S ⇝∗
σ,R,M S′ for any sub-

stitution σ and η with S′η = G. Then, by Lemma 26, there is no normal substitution θ

satisfying the multiset reachability problem from S to G. Now, suppose to the contrary
that there is some substitution θ satisfying the multiset reachability problem from S to
G, i.e., Sθ →∗

[R,M ] G. By Lemma 27, →[R,M ] is strongly normalizing and confluent. Now,
we have Sθ →∗

[R,M ] Sθ′, where θ′ is the normal substitution of θ. (This can be shown
using a straightforward induction on the size of Sθ.) Since →[R,M ] is strongly normalizing
and confluent and G is in normal form w.r.t.→[R,M ], we have Sθ →∗

[R,M ] Sθ′ →∗
[R,M ] G,

contradicting that there is no normal substitution satisfying the multiset reachability problem
from S to G. ◀

From Lemmas 24 and 28, we have the following decidability result of multiset reachability
analysis using multiset narrowing.

▶ Theorem 29. Let R be a complete TRS R, S and G be multisets of terms, and G be in
normal form w.r.t.→[R,M ]. If all multiset narrowing derivations starting from S terminate,
then we can decide whether the multiset reachability problem from S to G is satisfiable or not
(i.e., infeasible). §

Meanwhile, multiset narrowing can also be used for E-unification problems consisting
of multiple goals. In the following, by a slight abuse of notation, we denote by ⊤ a finite
multiset consisting only of ⊤′s or simply ⊤ in Definition 3. The next theorem provides the
completeness of multiset narrowing for E-unification problems consisting of multiple goals.
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▶ Theorem 30. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of
equational terms. If there is some R-unifier θ satisfying skθ ≈R tkθ for all 1 ≤ k ≤ n, then
there is some multiset narrowing derivation S ⇝∗

σ,R,M ⊤ such that σ ≤R θ [V(S)]. §

Next, we consider E-unifiability consisting of multiple goals using multiset narrowing.
The following lemma provides a sufficient condition of satisfying an E-unifiability problem
(consisting of multiple goals) using multiset narrowing.

▶ Lemma 31. Let R be a TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational
terms. If S ⇝∗

σ,R,M ⊤ for some substitution σ, then sk and tk for all 1 ≤ k ≤ n are
R-unifiable. §

Proof. Suppose S ⇝∗
σ,R,M ⊤. Then, we have Sσ →∗

[R,M ] ⊤ by Lemma 23. Also, Sσ →+
[R,M ]

⊤ because it needs at least one step including the step using the rule x ≈ x→ ⊤. Now, observe
that for any nonempty S′ ⊂ Sσ, we have S′ →+

[R,M ] ⊤. Therefore, for any 1 ≤ k ≤ n, we
have {skσ ≈ tkσ} →+

[R,M ] ⊤. Now, we proceed by induction on the number of →+
[R,M ]-steps

in {skσ ≈ tkσ} →+
[R,M ] ⊤ and show that skσ

∗←→R tkσ.
The base case is obvious, i.e., skσ = tkσ. For the inductive case, consider s′ and t′,

where {skσ ≈ tkσ} →[R,M ] {s′ ≈ t′} and {s′ ≈ t′} →+
[R,M ] ⊤. The induction hypothesis

yields s′ ∗←→R t′. Since {skσ ≈ tkσ} →[R,M ] {s′ ≈ t′}, we see that either skσ →R s′ with
tkσ = t′ or tkσ →R t′ with skσ = s′ by Definition 19, and thus the conclusion follows from
skσ

∗−→R s′ ∗←→R t′ ∗←−R tkσ. ◀

▶ Lemma 32. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms. If there is no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any
substitution σ, then there is no R-unifier σ satisfying skσ ≈R tkσ for all 1 ≤ k ≤ n, where
R is viewed as a set of equations. §

From Lemmas 31 and 32, we have the following theorem of E-unifiability (consisting of
multiple goals) by multiset narrowing.

▶ Theorem 33. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of
equational terms. If all multiset narrowing derivation starting from S terminate, then we
can decide whether there is an R-unifier σ satisfying skσ ≈R tkσ for all 1 ≤ k ≤ n. §

Next, we adapt the narrowing discussed in [22] for (ordinary) reachability analysis using
multisets of pairs of terms. Given a rewrite system R and pairs of terms (s1, t1), . . . , (sn, tn),
the purpose of reachability analysis is to determine whether there is a substitution σ such
that s1σ →∗

R t1σ ∧ · · · ∧ snσ →∗
R tnσ. Here, the reachability problem is represented by the

multiset {(sk, tk) | 1 ≤ k ≤ n}.

▶ Definition 34. Let S and T be multisets of the pairs of terms. We write S →[R,Mp] T if
there exists a pair of terms (s, t) ∈ S such that s→R u and T = (S − {(s, t)}) ∪ {(u, t)}.

▶ Definition 35. A multiset of pairs of terms S is narrowable into a multiset of pairs of
terms T if there exists a pair of terms (s, t) ∈ S and a substitution σ such that

s⇝σ,R u, and
T = (S − {(s, t)})σ ∪ {(u, tσ)}.

Then, we write S ⇝σ,R,Mp
T . Also, we write S ⇝∗

σ,R,Mp
S′ if there exists a narrowing

derivation S = S1 ⇝σ1,R,Mp S2 ⇝σ2,R,Mp · · ·⇝σn−1,R,Mp Sn = S′ such that σ = σn−1 ◦ · · · ◦
σ2 ◦ σ1. If n = 1, then σ = ε.

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Multiset_Narrowing_Unification.html#thm:multiset_narrowing_based_completeness_of_E_unification
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Multiset_Narrowing.html#lem:multiset_narrowing_based_R_unifiable
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Multiset_Narrowing_Unification.html#lem:multiset_narrowing_based_not_R_unifiable
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Intuitively, S →[R,Mp] T if T is obtained by replacing one pair of elements (s, t) in S with
(u, t) using s→R u. Only the first element in a pair can be rewritten by R, while the second
element serves as a target and is intact for →[R,Mp]-steps. Meanwhile, S ⇝σ,R,Mp

T if T is
obtained by replacing one pair of elements (s, t) in S with (u, tσ) from s⇝σ,R u and then
applying the narrowing substitution to the remaining multiset S − {(s, t)}.

In our Isabelle/HOL formalization, for the multiset reduction in Definition 34, we
use the following inductive set in Isabelle such a way that S →[R,Mp] T iff (S, T ) ∈
multiset_pair_reduction_step. (Here, R is implicitly included as a parameter of
multiset_pair_reduction_step in the locale.)

inductive_set multiset_pair_reduction_step where

"(s, t) ∈# S ∧ T = (S − {#(s, t)#} + {#(u, t)#}) ∧ (s, u) ∈ rstep R ⇒ (S, T ) ∈
multiset_pair_reduction_step"

Similarly, for the multiset narrowing in Definition 35, we use the following inductive set
in such a way that S ⇝σ,R,Mp

T iff (S, T, σ) ∈ multiset_pair_narrowing_step.

inductive_set multiset_pair_narrowing_step where

"(s, t)∈# S ∧ T = (subst_pairs_multiset σ (S − {#(s, t)#}) + {#(u, t · σ)#}) ∧ (s, u, σ) ∈
narrowing_step⇒ (S, T, σ) ∈ multiset_pair_narrowing_step"

▶ Definition 36.
(i) We say that a multiset of pairs of terms {(sk, tk) | 1 ≤ k ≤ n} is trivially unifiable if

sk = tk for all 1 ≤ k ≤ n.
(ii) We say that a multiset of pairs of terms {(sk, tk) | 1 ≤ k ≤ n} is syntactically unifiable

with a substitution θ if skθ = tkθ for all 1 ≤ k ≤ n.
(iii) We say that a substitution τ is a solution of the reachability problem represented by

S = {(s1, t1), . . . , (sn, tn)} if s1τ →∗
R t1τ ∧ · · · ∧ snτ →∗

R tnτ .

▶ Lemma 37. Let R be a TRS and S = {(s1, t1), . . . , (sn, tn)} be a multiset of pairs of terms.
If S →∗

[R,Mp] S′ and S′ is trivially unifiable, then s1 →∗
R t1 ∧ · · · ∧ sn →∗

R tn. §

Proof. We proceed by induction on the number of →∗
[R,Mp]-steps in S →∗

[R,Mp] S′. The base
case is trivial, i.e., S = S′. For the inductive case, consider S →[R,Mp] U and U →∗

[R,Mp] S′.
From S →[R,Mp] U , we have some (s, t) ∈ S, s→R u, and U = (S − {(s, t)}) ∪ {(u, t)}. By
the induction hypothesis, for all pairs (v, w) in U , we have v →∗

R w. This means that u→∗
R t

and for all pairs (v′, w′) ∈ (S − {(s, t)}), we have v′ →∗
R w′. Therefore, it remains to show

that s→∗
R t, which is obvious from s→R u and u→∗

R t. ◀

▶ Proposition 38. Let R be a TRS and S = {(s1, t1), . . . , (sn, tn)} be a multiset of pairs of
terms. If S ⇝∗

σ,R,Mp
S′ and S′ is syntactically unifiable with θ, then θ ◦ σ is a solution of

the reachability problem represented by S = {(s1, t1), . . . , (sn, tn)}. §

Proof. Suppose S ⇝∗
σ,R,Mp

S′. Then, we have Sσ →∗
[R,Mp] S′ by adapting the proof of

Lemma 4. Also, the relation→∗
[R,Mp] is closed under substitutions, which can be shown using

induction on the number of →[R,Mp]-steps. Then, we have (Sσ)θ →∗
[R,Mp] S′θ, where S′θ is

trivially unifiable. Thus, the conclusion follows by Lemma 37. ◀

The above proposition provides a sufficient condition of satisfying a reachability problem
consisting of multiple goals using multiset narrowing on multisets of pairs of terms. However,
it alone does not provide the decidability of a reachability problem consisting of multiple
goals.
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Next, we consider multiset narrowing on multisets of equational terms again (instead of
multisets of pairs of terms) for ordinary reachability problems. Similarly to Definition 36(iii),
we say that a substitution σ is a solution of the reachability problem represented by a multiset
S = {s1 ≈? t1, . . . , sn ≈? tn} if s1σ →∗

R t1σ ∧ · · · ∧ snσ →∗
R tnσ. If σ is a solution of the

reachability problem represented by S, then we say that the reachability problem represented
by S is satisfiable. Otherwise, if there is no solution of the reachability problem represented
by S, then we say that the reachability problem represented by S is infeasible.

▶ Lemma 39. Let R be a TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational
terms such that s1 →∗

R t1 ∧ · · · ∧ sn →∗
R tn and each tk, 1 ≤ k ≤ n, is a normal form of R.

Then, S →∗
[R,M ] ⊤. §

▶ Lemma 40. Let S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational terms. If there
is no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any substitution σ, then there is no
normal substitution θ satisfying Sθ →∗

[R,M ] ⊤. §

▶ Lemma 41. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If there is
no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any substitution σ, then the reachability
problem represented by S is infeasible. §

Proof. Assume that there is no multiset narrowing derivation S ⇝∗
σ,R,M ⊤ for any substitu-

tion σ. Then, by Lemma 40, there is no normal substitution θ satisfying Sθ →∗
[R,M ] ⊤. Now,

suppose, towards a contradiction, that the reachability problem represented by S is satisfiable.
Then, there is a substitution τ such that s1τ →∗

R t1τ ∧ · · · ∧ snτ →∗
R tnτ . Since R is weakly

normalizing, there is a normal substitution τ ′ of τ such that skτ ′ ∗
R← skτ →∗

R tkτ →∗
R tkτ ′

for all 1 ≤ k ≤ n. We see that each tkτ ′, 1 ≤ k ≤ n, is in normal form (w.r.t. R) because tk

is a strongly irreducible term and τ ′ is a normal substitution. Since R is confluent and each
tkτ ′, 1 ≤ k ≤ n, is in normal form (w.r.t. R), we have skτ ′ →∗

R tkτ ′ for all 1 ≤ k ≤ n. Now,
we have Sτ ′ →∗

[R,M ] ⊤ by Lemma 39, which is the required contradiction. ◀

▶ Lemma 42. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If S ⇝∗

σ,R,M ⊤
for some substitution σ, then the reachability problem represented by S is satisfiable. §

Now, we have the following decidability result of a reachability problem (consisting of
multiple goals) using multiset narrowing on multisets of equational terms by Lemmas 41
and 42.

▶ Theorem 43. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a
multiset of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If all
multiset narrowing derivations starting from S terminate, then we can decide whether the
reachability problem represented by S is satisfiable or not (i.e., infeasible). §

7 Related Work and Discussion

In this paper, we have focused on an Isabelle/HOL formalization of narrowing and multiset
narrowing. There are other important narrowing techniques, such as basic [23], conditional [6],
constrained [8], nominal [2], and folding variant [12] narrowing, which have not been discussed
in this paper. For E-unification and reachability analysis, there are also existing narrowing-
based computational tools (not using an Isabelle/HOL proof assistant); in particular, see the
Maude system [11] using folding variant narrowing.

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Multiset_Narrowing_Reachability.html#lem:rstep_multiset_reduction_step_eq
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Meanwhile, multiset narrowing presented in this paper provides a natural method for
multiset reachability analysis. Note that there are some limitations on simulating multiset
rewriting (resp. multiset narrowing) using ordinary rewriting (resp. ordinary narrowing).
Consider, for example, S = {s1, s2, s3, s4} and T = {t1, s2, s3, s4}, where all si, 1 ≤ i ≤ 4, are
distinct, s1 →R t1, and thus S →[R,M ] T . If we simulate the multiset rewriting S →[R,M ] T

using ordinary rewriting with a new function symbol f̄ , we have to consider the following
cases: (1) f̄(s1, s2, s3, s4) →R f̄(t1, s2, s3, s4), (2) f̄(s2, s1, s3, s4) →R f̄(s2, t1, s3, s4), . . . ,
(24) f̄(s4, s3, s2, s1) →R f̄(s4, s3, s2, t1). Here, S →[R,M ] T is a compact representation of
the above 24 cases. Similarly, let S = {s1, s2, s3, s4} as above and U = {u1, u2, u3, u4}, where
all ui, 1 ≤ i ≤ 4, are distinct. Now, determining whether S ⇝∗

σ,R,M U using some σ exists is
a compact representation of determining whether one of the following 24 cases of ordinary
narrowing using some σi exists with a new function symbol ḡ: (1) ḡ(s1, s2, s3, s4) ⇝∗

σ1,R
ḡ(u1, u2, u3, u4), (2) ḡ(s1, s2, s3, s4) ⇝∗

σ2,R ḡ(u2, u1, u3, u4), . . . , (24) ḡ(s1, s2, s3, s4) ⇝∗
σ24,R

ḡ(u4, u3, u2, u1). Here, without using multiset narrowing, one may have to create 24 (ordinary)
narrowing trees in the worst case (with possibly many duplicated narrowing steps) for the
corresponding multiset reachability problem.

When considering multiset reachability problems by determining whether a substitution
σ exists such that Sσ →∗

[R,M ] U , multiset narrowing provides a simple and compact sufficient
condition of satisfying the multiset reachability problem, i.e., S ⇝∗

σ,R,M U using some σ.

8 Conclusion

Although narrowing plays an important role in equational unification and reachability
analysis, formalization of narrowing and its related results on equational unification and
reachability analysis has not been much done in the proof assistants. We have presented
a new Isabelle/HOL formalization of narrowing and multiset narrowing for E-unifiability
and (multiset) reachability analysis. The results discussed in this paper are built on IsaFoR
(Isabelle/HOL Formalization of Rewriting) [1].

Given a semi-complete rewrite system R representing E and two terms s and t, we show
a formalized correctness proof that if all narrowing derivations starting from s ≈? t terminate
(or simply ⇝ terminates), then we can decide whether s and t are E-unifiable.

We have also presented multiset narrowing and its formalization for multiset reachability
analysis. Our multiset narrowing is generic in the sense that it encapsulates (the ordinary)
rewriting and narrowing for multiset rewriting and multiset narrowing. It is also applicable
to E-unifiability/E-unification and reachability problems consisting of multiple goals. In
particular, given a complete rewrite systemR, it provides a complete method forR-unifiability
problems consisting of multiple goals, where R is viewed as a set of equations. Furthermore,
if R is semi-complete and the right-hand sides of multiple goals in a reachability problem are
strongly irreducible terms, then it provides a decision procedure for the reachability problem
if it terminates. (Recall that if R is complete, then R is semi-complete, but not vice versa.)

Finally, much work still remains ahead. In particular, developing and formalizing parallel
multiset rewriting/narrowing is a potential future research direction. It is also interesting to
see whether multiset narrowing encapsulating other rewriting and narrowing strategies (such
as basic narrowing [23]) can improve the multiset narrowing discussed in this paper.
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