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Abstract
We present a formal proof of the Cholesky Factorization Theorem, a fundamental result in numerical
linear algebra, by verifying formally a Cholesky decomposition algorithm in ACL2. Our mechanical
proof of correctness is largely automatic for two main reasons: (1) we employ a derivation which
involves partitioning the matrix to obtain the desired result; and (2) we provide an inductive invariant
for the Cholesky decomposition algorithm. To formalize (1), we build support for reasoning about
partitioned matrices. This is a departure from how typical numerical linear algebra algorithms are
presented, i.e. via excessive indexing. To enable (2), we build a new recursive recognizer for a matrix
to be Cholesky decomposable and mathematically prove that the recognizer is indeed necessary
and sufficient. Guided by the recognizer, ACL2 automatically inducts and verifies the Cholesky
decomposition algorithm. We also present our ACL2-based formalization of the decomposition
algorithm itself, and discuss how to bridge the gap between verifying a decomposition algorithm and
proving the Cholesky Factorization Theorem. To our knowledge, this is the first formalization of the
Cholesky Factorization Theorem.
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1 Introduction

We present an ACL2-based formalization of the Cholesky Factorization Theorem. Our
approach implements a Cholesky decomposition algorithm, chol, in the ACL2 logic, and
we verify its correctness using the ACL2 theorem prover. Our formalization is built on
existing ACL2 libraries and theories for basic vector and matrix operations (e.g. addition,
multiplication, transpose, etc.), but embedding a Cholesky decomposition algorithm required
a significant extension over existing theories. In addition to building support for a partitioned
matrix environment and functions for accessing the lower triangular part of a matrix, we also
had to develop alternate definitions for matrix operations (e.g. multiplication) and verify
them against existing definitions.

We base our Cholesky formalization on the Formal Linear Algebra Methods Environment
(FLAME) [8]. FLAME is an approach to systematically deriving numerical linear algebra
algorithms and proving1 them correct. We follow a FLAME derivation for a Cholesky

1 FLAME is “formal” in the systematic sense, not in the theorem proving sense.

© Carl Kwan and Warren A. Hunt Jr.;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carlkwan@cs.utexas.edu
https://orcid.org/0009-0001-8195-7706
mailto:hunt@cs.utexas.edu
https://orcid.org/0009-0004-1444-2544
https://doi.org/10.4230/LIPIcs.ITP.2024.25
https://github.com/acl2/acl2/tree/master/books/projects/cholesky
https://github.com/acl2/acl2/tree/master/books/projects/cholesky
https://archive.softwareheritage.org/swh:1:dir:59ed119089ee943a78fe019c760fc4f75046e663;origin=https://github.com/acl2/acl2;visit=swh:1:snp:f37a1e3b314e3105b5e73a6288d69184c01b3973;anchor=swh:1:rev:38223adb813dbf44f8f60cf841a05aa890a3eb7f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Formalizing the Cholesky Factorization Theorem

decomposition algorithm but modify the algorithm to better suit ACL2’s strength in re-
cursion and induction. The advantage to using the FLAME approach is that it represents
linear algebra algorithms in terms of operations on components of a matrix’s partitioned
representation. One common pitfall with how typical matrix algorithms are presented is
the over-reliance on indexing. Intricate indices are a common cause of bugs in programs.
Introducing indices for matrix / vector entries can also introduce numerous variables causing
formal and automated processes to become intractable. Instead, a partitioned representation
of a matrix abstracts away details that are irrelevant to the operations of interest. Another
advantage to using FLAME’s partitioned representation is that it exposes loop invariants.
This enables us to more readily derive inductive invariants and verify the correctness of our
Cholesky decomposition algorithm.

One departure from typical proofs of the Cholesky Factorization Theorem, including the
one from FLAME, is that we develop a variant of Sylvester’s criterion, a characterization
for symmetric matrices to be positive definite, for use as a hypothesis in our main result.
Sylvester’s criterion states that a symmetric matrix is positive definite iff its principal
leading submatrices have positive determinants. However, determinants do not readily lend
themselves to numerical computation. Instead, we look at the diagonal of each principal
leading submatrix and posit their positivity. The advantage of using this definition of
symmetric positive definite is that it is recursive, amenable to ACL2 formalization, and helps
automate the ACL2 proof of correctness for the decomposition algorithm. By correctness,
we mean the following:

▶ Theorem 1. Let A be a symmetric positive definite matrix. Let L be the lower triangular
part of chol(A). Then A = LLT .

Theorem 1 permits us to prove the Cholesky Factorization Theorem.

▶ Theorem 2 (Cholesky Factorization Theorem). If A is a symmetric positive definite matrix,
then A = LLT for some lower triangular matrix L.

The Cholesky Factorization Theorem states that symmetric positive definite matrices can be
decomposed into the product of a lower triangular matrix and its transpose. While the two
theorems are similar, their differences are enhanced when viewed through the lens of ACL2.
One distinction is that Theorem 2 is a quantified statement and ACL2 support for quantifiers
is limited. Propositional statements about functions, such as Theorem 1, is typically the
preferred approach for reasoning in ACL2. The discussion in this paper focuses on issues
such as these and our ACL2 formalization.

There are two primary advantages to our choice of ACL2.2 First, ACL2 is highly
automated with extensive support for rewriting. To discharge the proof of Theorem 1
in ACL2, the only knowledge necessary is the matrix partitioning and a recognizer for
the class of matrices on which the algorithm is expected to operate. Our efforts required
relatively few user-defined hints, lemmas, or events. Second, ACL2 supports the execution
of its functions via an underlying Lisp interpreter defined within the theorem prover logic.
Few theorem provers are capable of natively executing formalized functions. This makes
verifying a computational algorithm such as the Cholesky decomposition in ACL2 particularly
meaningful.

2 Technically, we use ACL2(r), a version of ACL2 with support for real numbers via nonstandard analysis,
which is only necessary for taking square roots in the Cholesky decomposition.
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The Cholesky decomposition is fundamental to numerical linear algebra and scientific
computing. For example, a common problem involves solving linear systems of the form
Ax = b, where x and b are vectors of dimension compatible with A. If A is symmetric positive
definite, then it has a Cholesky decomposition A = LLT and we obtain LLT x = Ax = b.
Finding x can be efficiently done by first solving Ly = b via forwards substitution and then
LT x = y via backwards substitution. Another practical application of Cholesky is in solving
the linear least squares problem ∥y −Bx̂∥2 = minx∈Rn ∥y −Bx∥2 for x̂. By setting A = BT B

and b = BT y, we can find the solution to the linear least squares problem by solving Ax̂ = b

in much the same way as before. In addition to these basic applications, Cholesky can be
used to find matrix inverses, perform Monte Carlo simulations, and optimize quadratic forms.
This makes Cholesky a vital tool in areas such as engineering, finance, and machine learning.

2 Related Work

To our knowledge, there is no other formal proof for the Cholesky Factorization Theorem.
There are a few theorem prover formalizations of other decomposition algorithms. In ACL2,
there is a verified executable implementation of an LU decomposition algorithm [13]. Lean’s
mathlib contains a formalization of LDL decomposition, but the matrix functions used in the
LDL decomposition are not computable [15]. In Isabelle’s Archive of Formal Proofs, there
is also a formalization of Schur decomposition [20]. Basic matrix theories have long been
formalized using theorem provers, including Coq [17], HOL4 [18], HOL Light [9] and the
aforementioned ACL2 [10, 6, 14], Lean [16], and Isabelle [19]. Notably, ACL2’s and Isabelle’s
theories of basic matrices provide executable operations.

Our work is inspired heavily by FLAME. While FLAME is “formal” in that it system-
atically derives numerical algorithms, no formal method or verification is involved with
FLAME. The relevance of FLAME to our work is that FLAME introduces a partitioned
matrix environment (PME), which enables us to approach Cholesky without the burden of
indices. Our derivation is similar to FLAME’s in that it begins with a PME, which naturally
leads to a recursive Cholesky variant. However, FLAME’s algorithm is loop based. The
FLAME approach to systematically proving the correctness of its algorithms is to identify
loop invariants. Since our Cholesky algorithm is recursive, we perform an analogous analysis
to guide the verification of our Cholesky algorithm, but with induction invariants. Note
a loop-invariant verification approach for a loop-based Cholesky algorithm may also be
possible in ACL2 using ACL2’s analogue of Common Lisp loops [2]. Because of ACL2’s
long tradition with recursion and the natural correspondence between the derivation and a
recursive Cholesky algorithm, we opted to directly verify the recursive algorithm.

3 Deriving a Verifiable Cholesky Decomposition Algorithm

A core idea behind FLAME is to recast algorithms in terms of operations on components of
a matrix’s partitioned form. This is called a partitioned matrix environment (PME). PME is
meant to make linear algebra code more intelligible, and enable the systematic derivation
and pen-and-paper proofs of numerical linear algebra algorithms. However, PME also lends
itself well to developing recursive matrix algorithms and induction proofs of their correctness.
To demonstrate this, we derive a Cholesky decomposition algorithm in this section and verify
it formally in Section 4.

ITP 2024



25:4 Formalizing the Cholesky Factorization Theorem

Let lower-case Greek letters (e.g. α) denote real numbers, lower-case Latin letters (e.g. v)
denote vectors, and upper-case Latin letters (e.g. A) denote matrices. Since Cholesky only
deals with symmetric matrices, all matrices will be square. For ease of notation, assume any
vectors and matrices in a posed expression are compatible (e.g. if Ax = b and A is n × n,
then x and b are n × 1).

Given a (real) symmetric positive definite matrix A, i.e. A = AT and vT Av > 0 for all
nonzero v, a Cholesky decomposition for A is a lower triangular matrix L such that A = LLT .
To derive the desired Cholesky decomposition algorithm, partition A and L as follows:

A :=
(

α11 aT
12

a21 A22

)
, L :=

(
λ11
ℓ21 L22

)
.

Note that a12 = a21 since A is symmetric. Moving forward, we drop the “bars” for simplicity.
If A = LLT , then(

α11 aT
12

a21 A22

)
= A = LLT =

(
λ11
ℓ21 L22

) (
λ11 ℓT

21
LT

22

)
. (1)

This is equivalent to

α11 = λ2
11, aT

12 = λ11ℓT
21, a21 = λ11ℓ21, A22 = ℓ21ℓT

21 + L22LT
22.

We want Equation (1) to hold. Since a potential algorithm which computes L is given A, we
solve for the components of L:

λ11 = ±
√

α11, ℓ21 = a21λ−1
11 , L22LT

22 = A22 − ℓ21ℓT
21.

For our purposes, we pick λ11 = √
α11. Note that L22LT

22 is a Cholesky decomposition
for A22 − ℓ21ℓT

21. This suggests a algorithm which updates α11 and a21, and recurses on
A22 − ℓ21ℓT

21. Indeed, Algorithm 1 computes a Cholesky decomposition. The three “if”
branches handle base cases where the matrix is empty or only α11 and a21 are updated. The
recursive step updates A22 as well. Note that the algorithm accepts non-square matrices.
Even though we are only interested in the output of the algorithm under symmetric positive
definite inputs, we nonetheless deal with the non-square cases in order to simplify the
acceptance of our algorithm into the ACL2 logic.

Highlighted in Algorithm 1 are the components α11, a21, aT
12, and A22 of A prior to and

after their updates in the algorithm. Note that the only component of A that is passed
to the recursive call is A22, the “bottom right” part of A. This suggests the remaining
components need not be updated anymore. Indeed, highlighted in red are the components
of A that still need to be updated. Prior to entering the main body of the algorithm, all
components still need to be updated. But after the updates to α11, a21, and A22, the only
component that still needs to be updated is A22. The other components are already in
Cholesky decomposition form. As the recursive algorithm progresses, “layers” of the matrix
are replaced by its Cholesky decomposition.3 Visually, this progression is represented in
Figure 1. Step (1) represents a matrix prior to the updates in a recursive iteration. Green
indicates portions of the matrix that are already Cholesky decomposed and red indicates
portions of the matrix that still need to be updated. Step (2) represents the matrix within
the main body of a recursive iteration of Algorithm 1. Purple indicates the portions of the

3 This also means Algorithm 1 computes a Cholesky decomposition in place.
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Algorithm 1 A recursive Cholesky decomposition algorithm.

procedure chol(A ∈ Rn×m)

Partition A =
(

α11 aT
12

a21 A22

)
▷ If n, m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT
12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
( )

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
( √

α11
a21α−1

11

)
else if m = 1 then ▷ Base case

return
(√

α11 aT
21

)
else ▷ Recursive case

α11 := √
α11

a21 := a21α−1
11

A22 := A22 − a21aT
21

return
(

α11 aT
12

a21 chol(A22)

)

Figure 1 Progress of Algorithm 1: (1) prior to updates; (2) during updates; (3) after updates.

(1) (2) (3)

matrix that are being updated. Step (3) represents the matrix after the updates are made.
As the algorithm progresses, the proportion of the matrix not yet Cholesky decomposed
decreases, until no part of the matrix needs to be updated, at which point the algorithm
terminates.

The derivation and visual progression of Algorithm 1 suggests an induction invariant,
that is, performing the updates in the algorithm computes a Cholesky decomposition for
all matrix components except for the “bottom right”. Since the recursive call operates on
a smaller matrix, the procedure eventually terminates and indeed computes a Cholesky
decomposition for A. An inductive argument, with induction hypothesis stating essentially
A22 − ℓ21ℓT

21 = L22LT
22 is Cholesky decomposable, would be sufficient to discharge a proof

of the correctness of Algorithm 1, thus providing a roadmap to verifying the Cholesky
Factorization Theorem formally.

ITP 2024



25:6 Formalizing the Cholesky Factorization Theorem

Table 1 Common ACL2 functions, macros, and other commands used in this paper.

Command Description
define Define a function symbol, enforce guard checking, and more
defthm Name and prove a theorem, e.g. (defthm <-add-1 (< x (add-1 x)))
list Define a list, e.g. (list 1 2 3) returns (1 2 3)
car Returns the head of a list, e.g. (car (list 1 2 3)) returns 1
cons Construct a pair, e.g. (cons 1 (list 2)) returns (1 2)

/ Divide two numbers or return the reciprocal of a number, e.g. (/ 1 2) or (/ 2)
acl2-sqrt Square root of an ACL2 number, e.g. (acl2-sqrt 2)

b* Binder for local variables; often used to simplify control flow statements

4 Formally Verifying the Cholesky Factorization Theorem

To verify the Cholesky Factorization Theorem formally we need to demonstrate that
every symmetric positive matrix has a Cholesky decomposition. We embed our Cholesky
decomposition algorithm into the ACL2 logic, verify it, and apply it to compute a witness
for the desired theorem. Table 1 lists some commonly used ACL2 functions, macros, and
commands in general. Comprehensive ACL2 documentation is freely available and searchable
online [3].

We employ some existing ACL2 primitive matrix functions [10] in order to formalize
Algorithm 1, and we define our own functions to support reasoning about decomposition
algorithms in general, accessing their results, and executing them. We also formalize alternate
definitions for primitive matrix operations and prove them equivalent to the existing ones.
Table 2 lists some of these ACL2 matrix functions.

4.1 Formalizing the Decomposition Algorithm
Our ACL2 formalization of Algorithm 1 is shown in Program 1. The b* in the definition

of chol is an ACL2 macro for binding local variables with support for control flow. The first
argument to b* is a list of “bindings” and the second argument is the ACL2 expression to
which the bindings apply. For example, the third binding in Program 1’s b* is

(alph (car (col-car A)))

which declares the local variable alph to be equal to (car (col-car A)), i.e. the first element
of the first column in A. The b* macro also supports early-exit bindings. For example, the
first binding in the same b* is

((unless (mbt (matrixp A))) (m-empty))

which is triggered when A is not an ACL2 matrix and an empty matrix (m-empty) is
returned. The macro mbt is logically equivalent to its argument (i.e. (mbt x) equals x) but
immediately evaluates to t during runtime (ignoring x). This optimization is permitted by
guard verification (discussed later). Provided no early exit bindings are triggered, the b*
expression returns the second argument – in Program 1, this is

(row-cons (cons alph a12)
(col-cons a21 (chol A22)))

Note extra edge cases, such as those handling when A is not a matrix, appear in Program 1
but not Algorithm 1. In ACL2, logical functions are total, that is, all functions map all objects
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Table 2 ACL2 linear algebra functions.

Function Intended Signature Description
matrixp Rn×m → {t, nil} Matrix recognizer, e.g. (matrixp (list (list 1 0))

returns t
m-emptyp Rn×m → {t, nil} Empty matrix recognizer, e.g. (m-emptyp nil) returns t
m-empty {} → R0×0 Returns an empty matrix, e.g. (m-empty) returns nil
mzero N × N → Rn×m Returns a zero matrix, e.g. (mzero 1 2) returns ((0 0))

row-car Rn×m → Rm Returns the first row of a matrix, e.g.

(row-car (list (list 1 2) (list 3 4)))

returns (1 2)
col-car Rn×m → Rn Returns the first column of a matrix, e.g. replacing

row-car with col-car in the previous example returns
(1 3)

row-cdr Rn×m → R(n−1)×m Remove a matrix’s first row, e.g.

(row-cdr (list (list 1 2) (list 3 4)))

returns ((3 4))
col-cdr Rn×m → Rn×(m−1) Remove a matrix’s first column, e.g. replacing row-cdr

with col-cdr in the previous example returns ((2) (4))
row-cons Rn×m → R(n+1)×m Append a row to a matrix, e.g.

(row-cons (list 1 2) (list (list 3 4)))

returns ((1 2) (3 4))
col-cons Rn×m → Rn×(m+1) Append a column to a matrix, e.g.

(col-cons (list 1 3) (list (list 2) (list 4)))

returns ((1 2) (3 4))
m+ Rn×m × Rn×m → Rn×m Matrix addition, e.g.

(m+ (list (list 0 1) (list 2 3))
(list (list 2 3) (list 4 5))

returns ((2 4) (6 8))
m* Rn×m × Rm×ℓ → Rn×ℓ Matrix multiplication, e.g., replacing m+ with m* in the

previous example returns ((4 5) (16 21))
sm* R × Rn×m → Rn×m Scalar-matrix multiplication, e.g.

(sm* 2 (list (list 1 2) (list 3 4)))

returns ((2 4) (6 8))
sv* R × Rn → Rn Scalar-vector multiplication, e.g. (sv* 2 (list 1 2))

returns (2 4)
out-* Rn × Rn → Rn×n Outer product, e.g. (out-* (list 1 2) (list 3 4))

returns ((3 4) (6 8))
get-L Rn×m → Rn×m Get a matrix’s lower triangular part, e.g.

(get-L (list (list 1 2) (list 3 4)))

returns ((1 0) (3 4))
mtrans Rn×m → Rm×n Matrix transpose, e.g. (mtrans (list (list 1 2)))

returns ((1) (2))

ITP 2024



25:8 Formalizing the Cholesky Factorization Theorem

Program 1 ACL2 implementation of a Cholesky decomposition algorithm (Algorithm 1).

(define chol ((A matrixp))
:guard (and (equal (col-count A) (row-count A))

(equal (mtrans A) A))
:measure (and (col-count A) (row-count A)) ...
(mbe
:logic
(b* (;; BASE CASES

((unless (mbt (matrixp A))) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) ;; If alph not real, return a zero

(mzero (row-count A) ;; matrix of the same dimensions
(col-count A))) ;; as A

((if (<= alph 0)) ;; If alph not positive, return a
(mzero (row-count A) ;; zero matrix of the same

(col-count A))) ;; dimensions as A

;; PARTITION
(a21 (col-car (row-cdr A))) ;; [ alph | a12 ] := A
(a12 (row-car (col-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]
(alph (acl2-sqrt alph)) ;; alph := sqrt(alph)

;; BASE CASES
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [ 1 ] [ a1 ] = [ a1 ] = A

(sm* (/ alph) ;; [ a2/a1 ] [ a2 ]
(row-cdr A)))) ;; [ ... ] [ ...]

((if (m-emptyp (row-cdr A))) ;; If A is a row, return
(row-cons (cons alph a12) ;; [ alph a12 ]

(m-empty)))

;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a21))))) ;; A22 := A22 - a21 * a21T

;; RECURSE ;; [ alph | a12 ]
(row-cons (cons alph a12) ;; [ ---------------- ]

(col-cons a21 (chol A22)))) ;; [ a21 | CHOL(A22) ]
:exec
(b* ... ) ...) ...)

in the logic. In Program 1, the logic of chol is required to handle cases where it is passed
non-matrix objects. Extra branches require more computational resources. To alleviate some
of this overhead, we can use guards to prevent the execution of functions on unintended
inputs. The macro define is a wrapper for defun that simplifies common hygienic practices,
such as using guards, when introducing new ACL2 functions. In Program 1, the guards for
chol are

(and (equal (col-count A) (row-count A))
(equal (mtrans A) A))

as indicated by the :guard key and (matrixp A) as indicated by the formal arguments
to chol. We deploy guard checking to prevent code execution under inappropriate or
unexpected circumstances, helping catch potential issues early during program execution and
avoiding unintended consequences, thus enhancing the robustness and reliability of ACL2
code. Another advantage of providing guards is it can reduce the computation performed
by the Lisp back-end. For example, if A is known to be matrixp, then we no longer need
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to perform the first check in the b* macro. If we know A is square, then we can reduce the
number of base cases. The mbe macro enables a user to introduce a function logically defined
by the term passed to the :logic key but executed with the code passed to the :exec key
when the guards are satisfied. Of course, it must be proven that the logical definition and
executed code are equivalent under these conditions.

4.2 Modifying Sylvester’s Criterion
Recall that Theorems 1 and 2 hypothesize A to be symmetric positive definite. The usual
definition for positive definiteness states that vT Av > 0 for all nonzero v ∈ Rn, which is a
quantified statement. In symbols, this is

∀v ∈ Rn, v ̸= 0 =⇒ vT Av > 0 .

This condition is not optimal for our theorem proving needs. On one hand, variables in ACL2
theorem statements are implicitly universally quantified at the top level. Quantifiers are
also further supported via Skolem functions. However, Skolem functions are not executable.
We want a recognizer for positive definite matrices to be executable because it can serve as
guard for future functions,4 and an executable recognizer more readily triggers the automatic
rewrite rules which enable us to verify the Cholesky decomposition.

Instead of using the typical definition of positive definiteness, we use a definition which
involves looking at the leading principal submatrices. Informally, the leading principal
submatrices of a matrix A are the “top left” submatrices of size k × k for k ∈ [1, n]. For
example, if a square matrix A is partitioned as

A =
(

A11 A12
A21 A22

)
and A11 is k ×k, then A11 would be the k-th leading principal submatrix of A. This approach
is particularly useful for our computational purposes because it enables us to exploit the
block structures of a matrix and restate matrix properties in terms of the same properties on
smaller submatrices, such as determinants by Schur’s formula.

▶ Proposition 3 (Schur’s formula). Let A =
(

A11 A12
A21 A22

)
. Then

det(A) = det(A11) det
(
A22 − A21A−1

11 A12
)

if A11 is invertible. Similarly,

det(A) = det(A22) det
(
A11 − A12A−1

22 A21
)

if A22 is invertible. [4]

Schur’s formula enables us to use the following alternate definition for positive definiteness.

▶ Definition 4 (Sylvester’s criterion). A symmetric matrix is positive definite iff all its leading
principal submatrices have positive determinants.

4 We could also place ACL2’s Cholesky decomposition implementation in a wrapper function with a
recognizer for symmetric positive matrices as a guard.

ITP 2024
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Algorithm 2 An algorithm for checking whether symmetric matrices are positive definiteness.

procedure pd(A)

Partition A =
(

α11 aT
12

a21 A22

)
▷ If n, m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT
12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1).

if m = 0 or n = 0 then ▷ Base case

return True

if α ≤ 0 then ▷ Check if determinant is nonpositive

return False

return pd(A22 − a21α−1
11 aT

12) ▷ Recursive case

This is also a quantified statement with the added issue that determinants are known to be
computationally uncooperative. To avoid quantifiers, note the (k − 1)-th leading principal
submatrix of A is also the (k − 1)-th leading principal submatrix of the k-th leading principal
submatrix of A. The positivity of the former affects the positivity of the latter. This line of
reasoning leads to a recursive (and, in particular, executable) recognizer.

Instead of explicitly computing determinants, we recursively check the positivity of the
leading principal submatrix’s determinant as shown in Algorithm 2. To understand this
algorithm intuitively, consider the following partition

A =

A11 a12 A13
aT

21 α22 aT
23

A31 a32 A33

 .

Suppose A11 is the (k − 1)-th leading principal submatrix of A and suppose we know
det(A11) > 0. Then the determinant of the k-th leading principal submatrix of A is

det
(

A11 a12
aT

21 α22

)
= det(A11) det

(
α11 − aT

21A−1
11 a12

)
= det(A11)

(
α11 − aT

21a12/ det(A11)
)

(2)

is positive iff α11 −aT
21a12/ det(A11) > 0. In Algorithm 2, this check is performed immediately

after the recursive call.
To see an (informal) mathematical proof for why Algorithm 2 works, we require one more

result.

▶ Proposition 5. Suppose A is symmetric and partition A =
(

A11 A12
A21 A22

)
. Then A is

positive definite iff A11 is positive definite and A22 − A21A−1
11 A12 is positive definite. [4]

We are now ready to (informally) prove the correctness of Algorithm 2.

▶ Theorem 6. Algorithm 2 returns “True” on a symmetric matrix A iff every leading
principle submatrix of A has a positive determinant.

Proof. To see the forwards direction, proceed by induction on the size n of A. For n = 1, we
have A = (α11) > 0 when Algorithm 2 recognizes α > 0. Let n = k and suppose Algorithm 2
recognizes positive definiteness on symmetric matrices of size k − 1. Partition

k =
(

α11 aT
21

a21 A22

)
.
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Program 2 ACL2 function for checking positive definiteness.

(define positive-definite-p ((A matrixp))
:guard (equal (col-count A) (row-count A))
:measure (and (row-count A) (col-count A))
:returns (pd booleanp)
(b* (;; BASE CASES

((unless (matrixp A)) nil) ;; If A not a matrix, return empty
((if (m-emptyp A)) t) ;; If A empty, return A

;; CHECK IF DETERMINANT SO FAR IS POSITIVE
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) nil) ;; If alph not real, return nil
((unless (< 0 alph)) nil) ;; If alph not positive, return nil

;; BASE CASES
((if (m-emptyp (row-cdr A))) t) ;; If A is a row, return t
((if (m-emptyp (col-cdr A))) t) ;; If A is a column, return t

;; PARTITION
(a12 (row-car (col-cdr A))) ;; [ alph | a12 ] := A
(a21 (col-car (row-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]

;; COMPUTE THE SCHUR COMPLEMENT
(alph (acl2-sqrt alph))
(a12 (sv* (/ alph) a12))
(a21 (sv* (/ alph) a21))
(A22 (m+ A22 (sm* -1 (out-* a12 a21))))) ;; A22 := A22 - a12 * a21T / alph

;; RECURSE
(positive-definite-p A22)) ;; Check if A22 is positive definite

/// ...)

Thanks to Proposition 5, A is positive definite iff α11 and A22 − a21α−1
11 aT

21 are both pos-
itive definite. If Algorithm 2 returns “True” on A, then we must have α11 > 0 and
PD

(
A22 − a21α−1

11 aT
21

)
is true. Clearly, α11 is positive definite. Note A22 and a21α−1

11 aT
21 are

both symmetric and (k − 1) × (k − 1). By the induction hypothesis, A22 − a21α−1
11 aT

21 is also
positive definite.

To see the other direction, we prove the contrapositive. Suppose Algorithm 2 returns
“False” after k recursive calls, i.e. Algorithm 2 returned “True” k − 1 times. Then some α11
must have been zero or negative. But we’ve already seen from Equation (2) that α11 is a
factor in the determinant of the k-th leading principal submatrix. Since Algorithm 2 returned
“True” all the other k − 1 times, any other factor in the expansion via Schur’s formula must
be positive. Thus the determinant of the k-th leading principal submatrix must be zero or
negative. ◀

The ACL2 implementation of Algorithm 2 is shown in Program 2. Visually, the progress
of Program 2 is demonstrated in Figure 2. The structure of the program is similar to that of
Program 1 in that it also progresses diagonally from the “top left” to the “bottom right”.
This similarity enables certain rewrite rules to fire and automatically verify the correctness
of Program 1.

4.3 Verifying the Decomposition Algorithm
Given an executable and recursive condition for positive definiteness, we are now ready to
formally prove Theorem 1 in ACL2. However, let’s first look at the informal mathematical
proof.
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Figure 2 Progress of Program 2; A(k) denotes the k-th leading principal submatrix.

Check A(1) Check A(2) Check A(3)

Program 3 ACL2 theorem for the correctness of a Cholesky decomposition program (Program 1).

(defthm chol-correctness
(b* ((L (get-L (chol A)))

(Lt (mtrans L)))
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A) (row-count A)))

(equal (m* L Lt) A))))

▶ Theorem 1. Let A be a symmetric positive definite matrix. Let L be the lower triangular
part of chol(A). Then A = LLT .

Proof. Verifying the correctness of Program 1 amounts to induction on the size of A. The
case where n = 1 is straightforward. Suppose chol computes the Cholesky decomposition
for symmetric positive definite matrices of dimension (k − 1) × (k − 1). To see that chol
computes the appropriate decomposition when A is k × k, we just need to unravel one “layer”
of LLT and apply our induction hypothesis. Again partition

A =
(

α11 aT
12

a21 A22

)
so that

chol(A) =
( √

α11 aT
12

a21/
√

α11 chol
(
A22 − a21aT

12/α11
))

according to Algorithm 1. Let L be the lower triangular part of chol(A) and let L22 be
the lower triangular part of chol(A22 − a21aT

12/α11). Since A22 − a21aT
12/α11 is a symmetric

positive definite (k − 1) × (k − 1) matrix, the lower triangular part of chol on the same
matrix is its own Cholesky decomposition, i.e. L22LT

22 = A22 − a21aT
12/α11. Then

LLT =
( √

α11
a21/

√
α11 L22

) ( √
α11

a21/
√

α11 L22

)T

=
(

α11 aT
21

a21 L22LT
22 + a21aT

21/α11

)
=

(
α11 aT

21
a21 A22

)
= A (3)

as desired. ◀

Program 3 contains the ACL2 theorem for verifying the correctness of Program 1. In
addition to (positive-definite-p A), the hypothesis posits that A = AT and that A

is square. The extra symmetry condition is necessary because positive-definite-p in
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Program 4 ACL2 Skolem function positing the existence of an LU decomposition.

(defun-sk chol-fact-exists (A)
(exists (L) (and (lower-tri-p L) (equal (m* L (mtrans L)) A))))

Program 5 Theorem event automatically introduced into ACL2 by defun-sk in Program 4.

(defthm chol-fact-exists-suff
(implies (and (lower-tri-p L) ;; L is lower triangular

(equal (m* L (mtrans L)) A)) ;; L * L^T = A
(chol-fact-exists A))) ;; A has a Cholesky decomposition

Program 2 doesn’t assume that a12 is equal to a21. Similarly, Equation (3) in the proof of
Theorem 1 requires a21 = a12 in order to recover A. Ultimately, the similarity between the
structure of positive-definite-p in Program 2 and chol in Program 1 is what enables us
to discharge chol-correctness in Program 3 automatically.

4.4 From Decomposition Algorithm to Factorization Theorem

Theorem 1 is distinct from statement of Theorem 2, which posits the existence of a Cholesky
decomposition in its conclusion.

▶ Theorem 2 (Cholesky Factorization Theorem). If A is a symmetric positive definite matrix,
then A = LLT for some lower triangular matrix L.

Reasoning in ACL2 typically takes place by making propositional statements about functions,
such as Program 3 or, equivalently, Theorem 1. One advantage to this is that ACL2 is highly
automated. One disadvantage to this is that expressing statements such as Theorem 2 can
be a challenge.

While the ACL2 logic is quantifier-free, reasoning about quantified statements is still
supported by way of Skolem functions. A Skolem function in ACL2, introduced by defun-sk,
is a function whose body has an outermost quantifier. For example, an ACL2 Skolem function
for the latter part of Theorem 2 is Program 4. The function chol-fact-exists states “there
exists an L such that L is lower triangular and LLT = A”. The function lower-tri-p is
simply a recognizer for lower triangular matrices, the ACL2 code for which we omit for brevity.
To state Theorem 2 then amounts to placing a call to chol-fact-exists in the conclusion
of a typical ACL2 theorem. Strictly speaking, we are still reasoning by asserting a function
within a propositional statement; the function simply describes a quantified statement. The
specifics of defun-sk are beyond the scope of this paper. The upshot is that a theorem
of the form seen in Program 5 is automatically introduced into the ACL2 logical universe.
Essentially, the theorem chol-fact-exists-suff states that if L is lower triangular and
L multiplied by its transpose equals A, then there exists a Cholesky decomposition for A.
Ultimately, we want to eliminate the hypotheses involving L and have the conclusion hold
conditioned purely on A. If a witness is provided for L, then we can prove Theorem 2. Given
Program 3, the clear witness is the lower triangular part of (chol A). We pass the witness
by instantiating chol-fact-exists-suff and replacing L with (get-L (chol A)) using a
hint in the desired theorem. The desired theorem is Program 6.
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Program 6 The Cholesky Factorization Theorem in ACL2.

(defthm cholesky-factorization-theorem
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A) (row-count A)))

(chol-fact-exists A))
:hints (("Goal" :use ((:instance chol-fact-exists-suff (L (get-L (chol A))))))))

Table 3 ACL2 statistics related to the Cholesky Factorization Theorem.

Lines of code 1140
Events 192
Prover steps 5 029 675
Verification time (s) 7.91
Memory allocated (GB) 1.37

5 Conclusion

In this paper, we formalize and verify a Cholesky decomposition algorithm. Our work is
open sourced as an ACL2 “book”, which can be found in the ACL2 GitHub repository [12]
and as part of future ACL2 releases [11]. We invite interested readers to try decomposing
their own matrices using ACL2. A summary of ACL2 statistics for this work is shown in
Table 3. Events are updates to the ACL2 logical world, such as new definitions or theorems.
Prover steps are the number of steps to justify the events. Verification was performed on a
laptop with an Apple M1 Pro CPU.

Few theorem prover formalizations of numerical linear algebra algorithms exist; this
is likely because typical numerical algorithms heavily employ indexing and few theorem
provers are equipped to reason in this manner. We embed the FLAME environment into
ACL2 so that we may verify the veracity of such algorithms. FLAME separates itself from
other approaches by presenting algorithms which are designed to be proven correct, in no
small part due to how matrices are partitioned in the derivation. The FLAME approach
facilitates a useful derivation that enables us to develop an elegant ACL2 proof for the
Cholesky Factorization Theorem.

Our Cholesky decomposition algorithm takes square roots in each recursive update which
is why we use ACL2(r). Otherwise, using the vanilla version of ACL2 (without support
for real and complex irrationals) would be sufficient. The presentation in this paper used
our logical definition of Cholesky, which involves taking square roots by way of operations
involving a nonstandard objects. To make execution more amenable, we define an alternate
Cholesky program which employs an iterative square root function sqrt-iter. This iterative
square root has been verified to converge to the logical square root acl2-sqrt [7]. It is also
possible to reason about square roots in vanilla ACL2 using only its algebraic properties, e.g.
by augmenting the field of ACL2 numbers with √ . Instead of developing a new theory
in ACL2, we decided to simply use ACL2(r). Moreover, a theory of infinitesimals, such as
the one supported by the non-standard analysis in ACL2(r), would be useful for any future
attempt at verifying the backwards error analysis of formalized numerical linear algebra
algorithms.

One major future direction for our work is to develop an ACL2 framework for reasoning
about backwards error analysis. Backwards error analysis is paramount to ensuring the
stability of numerical algorithms, thus providing a form of safety to their critical applications.
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Recent ACL2 developments have enabled support for ACL2 computations involving floating-
point numbers [1], providing us with an appropriate framework to reason about floating-point
implementations of numerical algorithms. Moreover, expressing stability involves taking the
norms of vectors and matrices, which motivates our future ACL2 investigation into these
topics.

In addition to formalizing stability, we want to develop an ACL2 theory of norms
because they are used in other numerical algorithms which deserve verification, such as
QR decomposition. The QR decomposition is another fundamental algorithm in scientific
computing with numerous applications and is usually introduced by the Gram-Schmidt
process. However, we anticipate the Householder QR decomposition algorithm, a more
stable alternative to Gram-Schmidt, to share the structure of Algorithm 1. The similar
structures suggest that Householder QR may find an ACL2 verification in much the same
way as our Cholesky decomposition algorithm in this paper. We will target a Householder
QR decomposition algorithm for verification as future work.

Thus far we have discussed the use of ACL2 as a proof assistant for verifying theorems
and formalizing theories. Indeed, the relatively low ratio of lines of code to theorem prover
steps from Table 3 indicates that ACL2 has a high degree of automation in the context of
proving pure mathematical results. But another future direction is to use our work (for not
just the verification of, but also) in scientific computing’s most critical applications, which
span fields such as machine learning, medical imaging, bioengineering, finance, structural
engineering, aerospace, and much more. To make a verified numerical linear algebra library
practical, it also needs to be efficient. A concrete optimization we can make in Algorithm 1
is to ignore the strictly upper triangular part of A. Note that because A is assumed to be
symmetric and only symmetric updates are performed, namely A22 := A22 − a21aT

21, there is
no need to update both the lower triangular and the upper triangular parts. Moreover, once
the algorithm terminates, we are only interested in the lower triangular part of the result.
Instead, we can update merely the lower triangular part of A22 := A22 − a21aT

21, performing
a so-called symmetric rank-one update, to halve the computational cost of the algorithm.

Improvements can also be made to improve the baseline execution speed of our matrix
programs. By default, numeric computations are offloaded to Lisp. Significant efforts, now
part of the standard ACL2 toolbox, have been made to improve the executional efficiency of
certain kinds of models. One such improvement is the development of single-threaded objects
(stobjs) [5]. Logically, a stobj is a standard ACL2 association list; on the backend, updates
to a stobj are made via destructive memory assignments, making them highly practical in
situations where execution speed is vital. Stobjs were originally developed to improve the
simulation speeds of ACL2 microprocessor models. Given our simple “list of lists” model of
matrices, stobjs and its supporting framework, such as “access” and “update” functions, can
also be used to represent ACL2 matrices and matrix operational semantics, respectively. The
efficiency of destructive assignments in memory during field updates is ample motivation to
investigate the potential use of stobjs for numerical linear algebra algorithms, especially those
which involve computing a result in place, such as the Cholesky decomposition algorithm we
formalize in this paper.

There are very few theorem prover formalizations of numerical linear algebra algorithms
– even fewer have support for execution. Developing non-executable libraries of numerical
algorithms (formal or otherwise) seems antithetical to their computational nature. In addition
to presenting the first formalization of a major theorem in linear algebra, our work in this
paper sets a precedent for verified scientific computing in the future.
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