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Abstract
Coalition Logic (CL) is a well-known formalism for reasoning about the strategic abilities of groups
of agents in multi-agent systems. Coalition Logic with Common Knowledge (CLC) extends CL
with operators from epistic logics, and thus with the ability to model the individual and common
knowledge of agents. We have formalized the syntax and semantics of both logics in the interactive
theorem prover Lean 4, and used it to prove soundness and completeness of its axiomatization. Our
formalization uses the type class system to generalize over different aspects of CLC, thus allowing
us to reuse some of to prove properties in related logics such as CL and CLK (CL with individual
knowledge).
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1 Introduction

Computers rarely work in isolation, rather they constantly interact with both human users
and other devices. Such interconnected systems can range from household Internet of Things
(IoT) devices, working towards creating a useful digital home for a user [2], to safety-critical
systems for metros that need to account for multiple trains [15]. Correctly designing and
verifying such systems is an important goal of research in Artificial Intelligence, specifically
in the field of Multi Agent Systems (MAS) [11, 13, 27]. The large number of agents and
simultaneous goals involved in these interactions make them highly complex. Furthermore,
computers in such systems must often operate with imperfect information [26], for instance
because they have limited input about the external environment [13]. It can therefore be
difficult to maintain an overview of whether a system has been correctly programmed to
always meet its requirements, highlighting the need for formal modelling and programmatic
verification [27].
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28:2 Formalizing Completeness of CLC in Lean

In this paper we focus on Coalition Logic with Common Knowledge (CLC) to model
such systems and their requirements. Coalition Logic (CL) was introduced by Marc Pauly
in 2002 [22] for reasoning about abilities of agents, and is a popular logic in MAS research [1].
CL introduces an effectivity operator, which describes whether some group of agents is
effective for ensuring some outcome, regardless of the actions of other agents. CL was later
extended by Ågotnes and Alechina [1] into CLC by adding operators from epistemic logic for
individual and common knowledge.

The current paper aims to build a foundation for CLC formalizations for MAS by
investigating how CLC can be defined and reasoned over using the Lean prover [8]. Lean is
an interactive proof assistant based on dependent type theory, and its mathematical library
Mathlib [25] is a rapidly growing community-driven project that we made thankful use of.
In this work, we use Lean to formalize the syntax and semantics of CLC and formalize the
soundness and completeness theorem together with the finite model property of CLC as
given by Ågotnes and Alechina [1]. Formalizing these proofs allows us to check that the
syntax and semantics of CLC defined in Lean relate to one another as expected. Additionally,
doing so demonstrates that these definitions can be used in nontrivial proofs about CLC.

Since we closely follow the Ågotnes and Alechina proof in our formalization, we will
focus on the larger scale proof engineering aspects and show only relevant excerpts of these
proofs. A full, sorry-free, version of our code is available online at https://github.com/
kaiobendrauf/cl-lean. The formalization of CLC is part of a larger work [21], where the
entire proofs and their formalization are given in as much detail as possible. This larger
work [21] also formalizes soundness and completeness of CL. Although the current paper
focuses on CLC, we give special attention to lemmas and definitions that are also used in the
completeness proof for CL. Thus we illustrate the ways in which we prioritize generalizability
and reusability in our Lean implementation. The intention of this design choice is to make
our formalization easier for future work to extend.

In the following sections we give a brief overview of existing work formalizing logics
related to CLC in Section 2 and an overview of the Lean prover and its mathematical library
in Section 3. We give a detailed description of the syntax, semantics and axiomatic system of
CLC in Section 4. We describe our definition of CLC in Lean in Section 5. Our formalization
of the soundness of CLC is described in some detail in Section 6. Section 7 notes a method
of making our formalization reusable for other logics. Finally, using these definitions we will
prove in Lean that CLC is complete in Section 8.

2 Related work

The formalization of modal logics in proof assistants is an active area of research. To our
knowledge, CLC has not yet been formalized in any proof assistant, however our work builds
on related work on formalizing Epistemic Logics (EL) and CL. We start by describing work
on CL. Nalon et al. [18] present a prototype automated reasoning tool for CL, based on a
sound, complete, and terminating resolution-based calculus for CL in SWI-Prolog. On the
other hand, Baston and Capretta [5] propose how to formalize the relation between strategic
games and the effectivity operator in CL. These works provide support that CL can be
defined and reasoned with in proof assistants. However, to the best of our knowledge, at
this point in time there are no current works that formalize completeness of CL in any proof
assistant, nor has any project formalized CL in Lean.

In contrast there are several existing formalizations of EL both in Lean [6, 17, 19] and
other proof assistants [7, 9, 16]. In Lean, the first of these is the completeness proof of EL
(S5) by Bentzen [6]. Following this, both Neeley [19] and Li [17] formalized completeness
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again, but with different approaches, showing how flexibly such proofs can be implemented
in Lean. We will, when possible, defer to these existing works on formalizing EL in Lean for
guidance on implementation choices. Most often, we use ideas by Neeley [19] as she uses the
same type of proof as Ågotnes and Alechina [1] while being particularly detailed about her
design decisions. Furthermore, this work formalizes several logics, thus we know the design
decisions generalize to multiple types of logic.

3 The Lean prover and Mathlib

We used the Lean theorem prover [8] in our formalization. Lean is an interactive theorem
prover based on the Calculus of Inductive Constructions, featuring proof irrelevance, quotient
types and classical reasoning. These features are used ubiquitously throughout the flagship
mathematical library for Lean, Mathlib [25], which we used as a starting point for our own
formalization. An introduction to Lean can be found at [3].

A characteristic aspect of Mathlib is its use of typeclasses to organize mathematical
theories. Lean’s typeclass system extends the class mechanism introduced for operator
overloading in Haskell [28], and are used to associate types with both operators and axioms
about these operators. Moreover, the typeclass system permits extending structures, so that,
for example, any theorem declared for a Monoid M will automatically apply to a type G for
which a Group G instance exists. The typeclass system is invoked by placing parameters
to declarations between square brackets. An instance synthesis algorithm is used to supply
values for these parameters automatically, through a variation on depth-first search [23].

In 2023, Mathlib was ported from Lean 3 to the newly released Lean 4, a port that
required substantial changes in notation and design choices. Our project was originally
written for Lean 3 and after the proofs were completed, we ported it to Lean 4. The code we
present in our paper is an abridged version of the Lean 4-compatible source code, using Lean
version 4.4.0-rc1 and Mathlib commit 98fe17fd. Although this paper omits many proof
steps for presentational purposes, in our accompanying formalization all proofs are complete
and sorry-free.

4 Coalition Logic with Common Knowledge

We recall the syntax and semantics of CLC, as well as the axiomatization, following Ågotnes
and Alechina [1], in their work extending CL [22].

Based on a finite, non-empty set N of agents, and a set Φ0 of atomic propositions, CLC
formulas are constructed using the usual propositional logic operators, the CL effectivity
operator [G], where G ⊆ N , and two epistemic operators: Ki for individual knowledge, where
i ∈ N , and CG for common knowledge. Formally, CLC formulas are defined by the following
BNF grammar:

φ := ⊥ | p | φ ∧ φ | φ → φ | [G]φ | Kiφ | CGφ

where p ∈ Φ0, G ⊆ N and i ∈ N . We note that our syntax here is slightly different from
that of Ågotnes and Alechina [1], as we allow the case when G = ∅ for the CGφ operator.
Additionally, based on Neeley [19], we use a non-minimal set of propositional operators as
this simplifies our proofs in Lean.

[G]φ expresses the effectivity of a coalition to achieve φ. Intuitively, [G]φ can be read as
“coalition group G can ensure φ, regardless of the actions of agents not in the coalition”. Ki

expresses the knowledge of an agent i ∈ N . Thus, Kiφ can be intuitively read as “agent i
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28:4 Formalizing Completeness of CLC in Lean

knows φ”. This individual knowledge can be extended to groups via the derived operator EG,
using the the conjunction of individual knowledge. Specifically, for G ⊆ N , the notation EGφ
is defined as EGφ :=

∧
i∈GKiφ and reads as “everyone in group G knows φ”. CGφ expresses

that group G has common knowledge of φ. Intuitively this can be read as “everyone in group
G knows φ, and they all know that they all know φ, and they all know that they all know
that they all know φ and so on”.

The semantics of CLC is based on epistemic coalition frames and models. An epistemic
coalition model contains an epistemic accessibility relation ∼i for each agent i ∈ N . These
are equivalence relations that model what each agent knows. Specifically, if (s, t) ∈∼i for
some agent i, written as s ∼i t, then agent i cannot differentiate state s and state t.

Additionally epistemic coalition frames and models contain an effectivity structure E

which represents the effectivity of coalitions. Given a non-empty set S of states, E maps a
state and subset of N to a set of subsets of S, i.e. E : S → P(N) → P(P(S)). Note that,
given some state s ∈ S and set of agents G ⊆ N , E(s)(G) denotes a set of sets of states.
Intuitively, if X ∈ E(s)(G), the coalition G must have some joint strategy in state s such
that, no matter the strategy of agents not in the coalition, we are guaranteed to end up in
some t ∈ X. In this way the effectivity structure models the ability of coalitions to ensure
some (sets of) outcomes while abstracting away specific actions and strategies. In order
adequately model a coalition’s effectivity we require specific properties to hold, which are
collectively defined by the concept of true playability.

▶ Definition 1 (True Playability). A truly playable effectivity structure is an effectivity
structure E such that for any state s, E(s) meets the following 6 conditions [1, Section 2.1].
1. E(s) is live: for every G ⊆ N , ∅ /∈ E(s)(G)
2. E(s) is safe: for every G ⊆ N , S ∈ E(s)(G)
3. E(s) is N -maximal: for every X ⊆ S, if (S \X) /∈ E(s)(∅), then X ∈ E(s)(N)
4. E(s) is outcome monotonic: for every G ⊆ N and X,Y ⊆ S, if X ∈ E(s)(G) and X ⊆ Y ,

then also Y ∈ E(s)(G)
5. E(s) is superadditive: for all C,D ⊆ N where C ∩ D = ∅, and all X,Y ⊆ S, if

X ∈ E(s)(C) and Y ∈ E(s)(D), then X ∩ Y ∈ E(s)(C ∪D)
6. E(s)(∅) is principal: there exists an X ∈ E(s)(∅) such that for every Y ∈ E(s)(∅), we

have X ⊆ Y .

We have now everything to define epistemic coalition frames and models formally.

▶ Definition 2. An epistemic coalition frame is a tuple F = (S,E, {∼i: i ∈ N}), where
S is a non-empty set of states,
E : S → (P(N) → P(P(S))) is a truly playable effectivity structure, and
∼i ⊆ S × S is an equivalence relation, the epistemic accessibility relation over S for
agent i.

▶ Definition 3. An epistemic coalition model is a tuple M = (F, V ), where:
F is an epistemic coalition frame, and
V : Φ0 → P(S) is the usual valuation function, assigning to each p ∈ Φ0 some set of
states V (p) ⊆ S.

Based on an epistemic coalition model M = (F, V ), where F = (S,E, {∼i: i ∈ N}), and
some state s ∈ S, we can now define what it means for a CLC formula ϕ to be true in s

(written as M, s |= ϕ). Truth of [G]φ relates to the effectivity structure: if in state s group
G is effective in bringing about φ, then G must be able to restrict the possible next states to
some set containing only states where φ is true. Kiφ relates intuitively to the ∼i relation: if
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Table 1 Axiomatization of CLC.

(Prop) Prop. tautologies (K) ⊢ Ki(φ → ψ) → (Kiφ → Kiψ) (T) ⊢ Kiφ → φ

(4) ⊢ Kiφ → KiKiφ (5) ⊢ ¬Kiφ → Ki¬Kiφ (C) ⊢ CGφ → EG(φ ∧ CGφ)

(⊥) ⊢ ¬[G]⊥ (⊤) ⊢ [G]⊤ (N) ⊢ (¬[∅]¬φ) → [N ]φ (M) ⊢ [G](φ ∧ ψ) → [G]φ
(S) ⊢ ([G]φ ∧ [F ]ψ) → [G ∪ F ](φ ∧ ψ), if G ∩ F = ∅

(MP) ⊢ φ,φ → ψ ⇒ ⊢ ψ (RN) ⊢ φ ⇒ ⊢ Kiφ (Eq) ⊢ φ ↔ ψ ⇒ ⊢ [G]φ ↔ [G]ψ
(RC) ⊢ ψ → EG(φ ∧ ψ) ⇒ ⊢ ψ → CGφ

agent i knows φ in state s, then φ must be true in all states that i cannot distinguish from
s. The operator CGφ is a little more complex, as here we need to consider paths through
epistemic relations. For readability, we write (s, t) ∈ (

⋃
i∈G ∼i)∗ as s ≈G t. If group G has

common knowledge of φ in state s, then φ must be true in all states t such that s ≈G t.
Truth in M, s now defined as follows.

M, s ⊭ ⊥
M, s ⊨ p iff p ∈ Φ0 and s ∈ V (p)
M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ

M, s ⊨ φ → ψ iff M, s ⊨ φ ⇒ M, s ⊨ ψ

M, s ⊨ [G]φ iff {s ∈ S | M, s ⊨ φ} ∈ E(s)(G)
M, s ⊨ Kiφ iff ∀t ∈ S, s ∼i t ⇒ M, t ⊨ φ

M, s ⊨ CGφ iff ∀t ∈ S, s ≈G t ⇒ M, t ⊨ φ

As usual, φ is valid in a model (M ⊨ φ) if it is true in every state of the model and is
globally valid (⊨ φ) if it is valid in all models.

The axiomatization of CLC can be seen in Table 1.

5 Formalizing the Syntax and Semantics in Lean

To formalize the syntax of CLC in Lean, we use a deep embedding, which allows us to prove
metatheoretical results about the logic such as soundness and completeness [14, 19]. Thus,
in Lean, the language of CLC formulas is defined as an inductive type, meaning the smallest
type closed under the operators bot, var, and, imp, eff, K and C.

inductive formCLC (agents : Type) : Type
| bot : formCLC agents
| var (n : Nat) : formCLC agents
| and (φ ψ : formCLC agents) : formCLC agents
| imp (φ ψ : formCLC agents) : formCLC agents
| eff (G : Set agents) (φ : formCLC agents) : formCLC agents
| K (a : agents) (φ : formCLC agents) : formCLC agents
| C (G : Set agents) (φ : formCLC agents) : formCLC agents

The inductive type is parameterized over an arbitrary type agents. At this point we do not
require that only finitely many agents appear in the formula. Instead, we will apply this
assumption only to those theorems whose proofs require it, guided by the automated proof
checking done by Lean.
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28:6 Formalizing Completeness of CLC in Lean

To define the semantics, we first define effectivity structures:

def effectivity_struct (agents states : Type) :=
states → Set agents → Set (Set states)

To represent a playable effectivity structure, we create a 6-tuple to link the effectivity function
itself to the 5 playability requirements. Thus, we need to store tuples of a certain shape,
which in Lean we do using a structure data type:

structure truly_playable_effectivity_struct (agents states : Type) :=
(E : effectivity_struct agents states)
(liveness : ∀ s : states, ∀ G : Set agents, ∅ ̸∈ E s G)
(safety : ∀ s : states, ∀ G : Set agents, univ ∈ E s G)
(N_max : ∀ s : states, ∀ X : Set states, Xc ̸∈ E s ∅ → X ∈ E s univ)
(mono : ∀ s : states, ∀ G : Set agents, ∀ X Y : Set states,

X ⊆ Y → X ∈ E s G → Y ∈ E s G)
(superadd : ∀ s : states, ∀ G F : Set agents, ∀ X Y : Set states,

X ∈ E s G → Y ∈ E s F → G ∩ F = ∅ →
X ∩ Y ∈ E s (G ∪ F))

(principal_E_s_empty : ∀ s, ∃ X, X ∈ E s ∅ ∧ ∀ Y, Y ∈ E s ∅ → X ⊆ Y)

Comparing the semantics defined in Section 4, we can see a particular difference in the
treatment of sets: where informally we write X ∈ E(s)(N), Lean writes X ∈ E s univ.
Since Lean is based on type theory, it distinguishes agents : Type from its universal set
univ : Set agents. Apart from this distinction, the conditions translate straightforwardly.

Epistemic coalition frames and models are then defined as follows:

structure frameECL (agents : Type) :=
(states : Type)
(hs : Nonempty states)
(E : truly_playable_effectivity_struct agents states)
(rel : agents → states → Set states)
(rfl : ∀ i s, s ∈ rel i s)
(sym : ∀ i s t, t ∈ rel i s → s ∈ rel i t)
(trans : ∀ i s t u, t ∈ rel i s → u ∈ rel i t → u ∈ rel i s)

structure modelECL (agents : Type) :=
(f : frameECL agents)
(v : N → Set f.states)

To encode semantic entailment, we first formalize the common knowledge path recursively
defined predicate that we call a C_path.

inductive C_path {agents : Type} {m : modelECL agents} (G : Set agents) :
m.f.states → m.f.states → Prop

| done (hi : i ∈ G) (hst : t ∈ m.f.rel i s) : C_path G s t
| next (hi : i ∈ G) (hsu : u ∈ m.f.rel i s) (ih : C_path G u t) :

C_path G s t

Intuitively, we say given a coalition G that there is a path from state s to state t if we
can give, for some n ≥ 1, some list i0, i1, ...in of agents in G, as well as some list u1, u2, ..., un
of states, such that s ∼i0 u1, u1 ∼i1 u2, . . ., un ∼in t. s ≈G t then means that there is a
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C_path from s to t, where every agent in the list of agents is also in G. From here, defining
semantic entailment is straightforward, so we show only the non-propositional cases:

def s_entails_CLC {agents : Type} (m : modelECL agents) (s : m.f.states) :
formCLC agents → Prop

...
| (_[G] φ) => {t : m.f.states | s_entails_CLC m t φ} ∈ m.f.E.E s G
| (.K i φ) => ∀ t : m.f.states, t ∈ m.f.rel i s → s_entails_CLC m t φ

| (.C G φ) => ∀ t : m.f.states, C_path G s t → s_entails_CLC m t φ

6 Formalizing Soundness

The axiomatization of CLC (Table 1) is defined as an inductive predicate, that is, as an
inductively defined proposition [4]. An inductive predicate is defined as the smallest predicate
closed under a set of proof steps. Thus, an inductive predicate contains all proofs constructed
from a finite tree of proof steps. This mirrors how the set of formulas provable in an axiomatic
system is the smallest set closed under rule applications. The translation to Lean is thus
very straightforward and omitted here. Before we come to the more challenging proof of
completeness of this system, we prove its soundness.

▶ Theorem 4 (Soundness of CLC [1, Lemma 1]). ∀φ,⊢ φ ⇒ ⊨ φ

Despite the proof itself being simple, translating it into Lean is not entirely straightforward.
We prove this theorem by structural induction on the proof of ⊢ φ. Most of the cases can be
proven directly from the given axiom. Note that axioms (⊥), (⊤), (N), (M) and (S) relate
directly to the first five true playability requirements, and axioms (T), (4) and (5) relate to
the fact that epistemic relations are equivalence relations.

The cases (C) and (RC) are a little more complex, as they involve the CG operator. To
show that a formula of the form CGφ is true, we need to reason about the common knowledge
relation ≈G. More specifically, in Lean we have to look for C_paths between states. To
illustrate how this is done, we look closer at the case for Axiom (C). Given M, s ⊨ CGφ, we
need to show M, s ⊨ EG(φ ∧ CGφ), which gives the following goal after simplifying:

h : M, s ⊨ C G φ

hi : i ∈ G
hts : t ∈ M.f.rel i s
⊢ M, t ⊨ φ ∧ C G φ

For the first half of the conjunction, we apply the hypothesis h, so it remains to prove
that C_path G s t holds. In this case the path will have length one, so that the constructor
C_path.done applies, and our existing hypothesis hts : t ∈ M.f.rel i s concludes this
case.

For the second half of the conjunction, we get the following goal after simplification:

h : M, s ⊨ C G φ

hi : i ∈ G
hts : t ∈ M.f.rel i s
htu : C_path G t u
⊢ M, u ⊨ φ

Intuitively for any state u such that t ≈G u, we must show M,u ⊨ φ. Again we apply h,
leaving us to show C_path G s u which must hold when we extend C_path G t u by first
using agent i to pass from s to t. This corresponds to the C_path.next constructor of
C_path, using the hypotheses hts and htu to discharge the remaining goals.
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28:8 Formalizing Completeness of CLC in Lean

7 Creating reusable definitions in Lean

Before tackling the completeness proof for CLC, we note that the proof relies in large part
on lemmas and definitions taken from Pauly’s completeness for CL [22]. In paper proofs such
reuse is trivial, but in Lean lemmas and definitions only apply to the syntax they are defined
on, since the syntax and proof system for each logic form a distinct inductive type. Our
formalization therefore gives special attention to reusability using the typeclass system of
Lean, to limit the need for redundant copies of code for each logic. Specifically, we make use
of the fact that one logic commonly extends another by adding new operators and axioms.
In Lean we define a class for some logic in such a way that all extensions of that logic are
an instance of that class. We can then construct definitions and proofs in Lean that apply
to any logic that is an instance of that class. Doing so allows our Lean results to be reused
across different logics.

We start by creating a typeclass for logics whose syntax extends that of propositional
logic. More precisely, an instance of Pformula form

class Pformula (form : Type) :=
(bot : form)
(var : N → form)
(and : form → form → form)
(imp : form → form → form)

We also introduce notation for formulas: ⊥', ∧', →', ⊤', ¬', ∨',⇐⇒'. Next, we demon-
strate that the language of CLC formulas formCLC extends propositional logic by registering
an instance.

instance formulaCLC {agents : Type} : Pformula (formCLC agents) :=
{ bot := formCLC.bot,

var := formCLC.var,
and := formCLC.and,
imp := formCLC.imp, }

We can then make our formula constructions generic over all syntaxes that have a Pformula
instance, and Lean will automatically infer this instance when applying these constructions.
For instance, the following definition gives the conjunction of a finite list of formulas.

def finite_conjunction {form : Type} [Pformula form] : List form → form
| [] := ⊤'
| (f :: fs) := f ∧' finite_conjunction fs

Since all provable propositional formulas are also provable in logics that extend propos-
itional logic, we also introduce a class Pformula_ax (form : Type) [Pformula form]
that denotes the existence of a provability predicate ⊢' such that ⊢' φ holds for all formulas
φ provable by the axioms of propositional logic.

We create three more typeclasses relevant to CLC. Logics (extending) CL are instances
of class CLformula (agents : outParam Type) (form : Type) [Pformula_ax form],
which specifies the additional operator and axioms associated with CL. Note that this type-
class inherits from Pformula_ax as CL extends propositional logic. Similarly we introduce
class Kformula (agents : outParam Type) (form : Type) [Pformula_ax form]
representing logics that extend propositional logic with individual knowledge. Lastly we create
a typeclass for logics with common knowledge, which must therefore also contain individual



K. Obendrauf, A. Baanen, P. Koopmann, and V. Stebletsova 28:9

knowledge. This typeclass must therefore inherit from both Pformula_ax and Kformula:
Cformula (agents : outParam Type) [hN : Fintype agents] (form : Type)
[pf : Pformula_ax form] [kf : Kformula agents form].

8 Formalizing Completeness

We begin by sketching the completeness proof for CLC [1, Corollary 1], which is based on
a canonical model construction. For each consistent formula, we create a finite model for
which that formula is true at some state. We focus on finite models because the 6th true
playability condition, that E(s)(∅) is principal, is always met in finite models [12]. Doing so
simplifies the proof that the effectivity structure in these models is truly playable. In the
process we demonstrate that CLC has the finite model property.

We create such a finite model by first creating a single infinite canonical coalition model
where every consistent formula is true in some state. This canonical coalition model is defined
analogously to an epistemic coalition model, but without epistemic relations, and where the
effectivity structure only meets the first 5 true playability conditions. Then, given some
consistent formula φ, we filter the canonical coalition model and add epistemic relations to
form a finite epistemic coalition model for which φ is true in some state.

8.1 Formalizing the canonical coalition model
We start by building the canonical coalition model. We define MC := (F C , V C), where
F C := (SC , EC) as follows:

SC is the set of all maximal CLC-consistent sets of formulas.
EC is the playable effectivity structure:
X ∈ EC(s)(N) iff ∀φ, φ̃ ⊆ Xc → [∅]φ /∈ s, where φ̃ := {t ∈ SC | φ ∈ t}
X ∈ EC(s)(G) iff ∃φ, φ̃ ⊆ X ∧ [G]φ ∈ s, when G ̸= N

V C is the usual valuation function : s ∈ V C(p) iff p ∈ s.
A playable effectivity structure must meet the first 5 true playability conditions. A set Σ of
formulas is consistent iff there are no σ1, ..., σn ∈ Σ such that ⊢ (σ1 ∧ ...∧σn) → ⊥. The proof
that MC is indeed a coalition model is analogous to the proof by Pauly [22, Lemma 5.2] for
CL. In Lean, we use our generic classes for propositional logic and CL to define a canonical
coalition model for any logic that extends CL, so long as that logics axiomatic system is
consistent (as required by the hypotheses hnpr : ¬ ⊢ (⊥ : form)):

def canonical_model_CL [Nonempty agents]
[Pformula_ax form] [CLformula agents form]
(hnpr : ¬ ⊢ (⊥ : form)) : modelCL agents

Note that this definition includes the proof that the defined effectivity structure is playable.

8.2 Filtering the canonical model
Given some φ, we filter SC into a finite set of states Sf . We will prove the properties of SC

transfer to Sf and shows it enjoys some additional properties essential to constructing a
playable model. We achieve this by creating a finite closure cl(φ), defined as the smallest set
satisfying the following:
1. For any ψ ∈ cl(φ), all subformulas of ψ are also contained in cl(φ).
2. For any ψ ∈ cl(φ), if ψ is not of the form ¬χ, then ¬ψ ∈ cl(φ).

(cl(φ) is thus closed under single negations.)
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3. If CGφ ∈ cl(φ), then for all i ∈ G, KiCGφ ∈ cl(φ).
4. If [G]φ ∈ cl(φ), then CG[G]φ ∈ cl(φ).
This definition is adjusted slightly compared to the work by Ågotnes and Alechina [1], as
we allow the formula C∅ψ, and thus do not need to consider the case G = ∅ separately.
Additionally, we change the first requirement such that all subformulas of any ψ ∈ cl(φ) are
contained in the closure, rather than just subformulas of φ. This change is needed to prove
the truth lemma, where we will perform induction on an arbitrary ψ ∈ cl(φ). For Ågotnes
and Alechina [1] this adjusted requirement is already met when cl(φ) contains all subformuals
of φ, because their syntax is defined from different base operators. The closure definition
thus illustrates that small implementation choices early in the formalization process can
have unintended effects later in the proof that may not be immediately obvious. Luckily, the
interactive environment of a theorem prover made the consequences of this change clear, and
made the necessary changes easy to implement and test.

The set cl(φ) can be built recursively on the structure of φ, and this is also how we define it
in Lean. For instance, for the case cl(CGψ), the closure must include cl(ψ)∪{CGψ,¬(CGψ)}∪
{KiCGψ : i ∈ G} ∪ {¬(KiCGψ) : i ∈ G}. Note that the sets {KiCG[G]ψ : i ∈ G} and
{¬(KiCGψ) : i ∈ G} are finite, because G is finite. In Lean we define the union of these two
sets as follows:

noncomputable def cl_C {agents : Type} [Fintype agents] (G : Set agents)
(φ : formCLC agents) : Finset (formCLC agents) :=

Finset.image (fun i => K i (C G φ)) (toFinset G) ∪
Finset.image (fun i => (¬ K i (C G φ))) (toFinset G)

In addition to defining a set, the above definition also guarantees that the set is finite, using
the Finset datatype. We create this resulting Finset by first mapping the set of agents G
from a Set to a Finset. Lean can infer this is possible, because N is finite, as indicated by
the hypothesis [Fintype agents]. Then we can take the image of G as desired.

In Lean, we then need to prove that our closure cl(ϕ), defined recursively on the structure
of the formula ϕ indeed meets the four requirements described above. To do so, we first
define a subformula as an inductive proposition with cases for each operator. For instance
we define two cases for the ∧-operator: and_left {φ ψ} : subformula φ (φ '∧ ψ) and
and_right {φ ψ} : subformula ψ (φ '∧ ψ). Additionally, we add two cases for the re-
quirements that our sub-formula definition must be reflexive and transitive. Given this
definition, we tackle the four proofs about the closure. Although in a paper proof all four
requirements are trivially met by definition of the closure, in Lean this is only the case for
the last two. The first two requirements both need inductive proofs on φ where for every
case we iteratively consider all possible ψ ∈ cl(φ). For instance if φ = χl ∧ χr, we consider
the cases where ψ = χl ∧ χr, ψ = ¬(χl ∧ χr), ψ ∈ cl(χl) and ψ ∈ cl(χr). These proofs are
not difficult, but considering each case creates long and tedious proofs.

Now that we have defined the closure, given some φ, we can can filter MC through
cl(φ), to construct a finite model Mf := (F f , V f ), where F f := (Sf , Ef , {∼f

i : i ∈ N}). We
construct Mf as follows:
Sf := {(sf ) | s ∈ SC}, where sf := (s ∩ cl(φ))
Ef := X ∈ Ef (s)(N) iff ∃t ∈ SC , sf = tf and ϕ̃X ∈ EC(t)(N)

X ∈ Ef (s)(G ⊂ N) iff ∀t ∈ SC , sf = tf ⇒ ϕ̃X ∈ EC(t)(G)
∼f

i := (sf ) ∼f
i (tf ) iff {φ | Kiφ ∈ sf } = {φ | Kiφ ∈ tf }

V f := s ∈ V (p) iff p ∈ s,
where ϕX :=

∨
sf ∈X ϕ

sf is the disjunction of a set of filtered states, ϕsf :=
∧
ψ∈sf ψ is the
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conjunction of the formulas in a filtered state, and ψ̃ := {t ∈ SC | ψ ∈ t}. Note that Sf is
finite because cl(φ) is, and that ∼f

i is an equivalence relation by definition. For this model
we will use the notation sf ≈f

G tf := (sf , tf ) ∈ (
⋃
i∈G ∼f

i )∗ for the common knowledge path.
These definitions can be translated quite directly into Lean, although it might not look

so direct, due to again having to distinguish between sets and finite sets in Lean. Thus, to
define Sf in Lean, we start with cl(φ), as this is a Finset. We take the powerset of cl(φ),
which Lean knows must also be finite. This finite powerset is filtered with Finset.filter to
include only those elements sf for which there exists some s ∈ SC such that sf = s ∩ cl(φ).
In order to check sf = s ∩ cl(φ), we need both to be of the same data type and therefore
convert both to sets. Finally, we pair each state sf with a proof that it is produced by the
filter, using Finset.attach.

def S_f {agents form : Type} (m : modelCL agents) [SetLike m.f.states form]
(cl : form → Finset (form)) (φ : form) : Type :=

Finset.attach (Finset.filter
(λ sf => ∃ s: m.f.states, {x | x ∈ cl φ ∧ x ∈ s} = {x | x ∈ sf})
(Finset.powerset (cl φ)))

Note that we do impose strong requirements on the model in the definition of Sf , so long as the
states contain a set of formulas, as enforced by the hypothesis [SetLike m.f.states form].
Doing so allows us to keep our definition simpler and more generic, by removing the need for
hypotheses needed to create our canonical model (for instance that N is nonempty).

Next we define the subformulas ϕX and ϕs
f which are needed to define Ef :

variable {agents form : Type} [Pformula form]
{m : modelCL agents} [SetLike m.f.states form]
{cl : form → Finset (form)} {φ : form}

noncomputable def phi_s_f (sf : S_f m cl φ) : form :=
finite_conjunction (Finset.toList (sf.1))

noncomputable def phi_X_list : List (S_f m cl φ) → List form
| List.nil => List.nil
| (sf :: ss) => ((phi_s_f sf) :: phi_X_list ss)

noncomputable def phi_X_finset (X : Finset (S_f m cl φ)) : form :=
finite_disjunction (phi_X_list (Finset.toList X))

noncomputable def phi_X_set (X : Set (S_f m cl φ)) : form :=
phi_X_finset (Finite.toFinset (Set.toFinite X))

Here the variable statement adds the hypotheses to each subsequent declaration. Defining
ϕs

f in Lean (phi_s_f) is as simple as converting our finite set to a list (putting the elements
in an arbitrary order) and then creating a conjunction from that list. We then define ϕX
in several steps. First we define a function phi_X_list to map X to {ϕsf : sf ∈ X}. Next,
we define ϕX for finite sets, as we can convert that finite set to a list, map it to formulas
with phi_X_list, and then return the disjunction of that mapped list. Lastly, for the Set
datatype, we define ϕX by converting to a Finset, which we can do because X ⊆ Sf is a set
of a finite type.

Although it would suffice logically to work with a List of filtered states, we provide
the definition phi_X_set in higher generality for two reasons. Firstly, this approach more
closely matches the definitions in the paper proof. Secondly, the definition should intuitively
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not depend on a choice of order on the states, so we make this independence explicit in
the datatypes. Splitting this definition up into three parts may seem to add complexity.
However, it allows us to define lemmas about each data type, thereby breaking proofs down
into smaller steps. We can prove lemmas more easily for a list, which is ordered, finite, and
allows induction. Then, it is easy to show that if some lemma holds for a list, it must work
for a list created from a (finite) set. Keeping track of the converted datatypes and how
they relate to one another within a single lemma is non-trivial (and not always possible) in
Lean. Thus in Lean we often prove some result about ϕX across three lemmas, one for each
datatype: Set, Finset and List.

Given our definition(s) for ϕX , it is straightforward to define Ef , and then our whole
model Mf . We thus omit these Lean translations.

8.3 Playability of the filtered canonical model
We prove that Mf meets the requirements for being a CLC model. We have to show that
for an arbitrary state sf in the filtered model, Ef (sf ) is truly playable [1, Proposition 1].
This proof relies on the fact that Ef is defined from EC. We are therefore able to exploit
the fact that the first five true playability conditions hold in EC to prove that they must
also hold in Ef . In Lean we really benefit from our generic typeclasses here, as our proofs
that EC meets those playability conditions are written to hold for any logic that extends CL.
Recall that the final true playability condition must hold in Ef because Mf is finite [12].

To formalize this proof, we first expand the proof by Ågnotes and Alechina, into a proof
with similar levels of detail to a Lean formalization. We aim for a level of detail such that
each step in our extended paper proof translates roughly into one step in Lean, possibly with
some reshaping. To illustrate this procedure and the level of detail required we present our
extended paper proof for Condition 3 of true playability (Definition 1), which was the most
interesting to formalize in Lean.

Ef (sf ) is N -maximal (for every X ⊆ Sf , if (Sf \X) /∈ Ef (sf )(∅), then X ∈ Ef (sf )(N))
is shown by the following sequence of proof steps:
1. Pick some X ⊆ Sf such that Xc = (Sf \X) /∈ Ef (sf )(∅).
2. ¬(Xc ∈ Ef (sf )(∅)), from Step 1.
3. ¬

(
∀t ∈ SC : sf = tf ⇒ ϕ̃Xc ∈ EC(t)(∅)

)
, from Step 2 and by definition of Ef .

4. ∃t ∈ SC : sf = tf and ϕ̃Xc /∈ EC(t)(∅), from Step 3.
5. ⊢ ϕXc ↔ ¬ϕX , because ⊢ ϕSf and ∀s, t ∈ SC′

, sf ̸= tf ⇒ ⊢ ϕs
f → ¬ϕtf .

6. ∃t ∈ SC , sf = tf and ¬̃ϕX /∈ EC(t)(∅), from Step 4 and 5.
7. ∃t ∈ SC , sf = tf and (ϕ̃X)

c
/∈ EC(t)(∅), from Step 6, because all s ∈ SC are maximally

consistent.
8. ∃t ∈ SC , sf = tf , and ϕ̃X ∈ EC(t)(N), provided s = t, from Step 7, because EC(t) is

N -maximal: (ϕ̃X)
c
/∈ EC(t)(∅) ⇒ ϕ̃X ∈ EC(t)(N)

9. X ∈ Ef (sf )(N), from Step 8, by definition of Ef .

In this expanded proof the only step that is not straightforward to formalize in Lean
is Step 5. We elaborate on the process of formalizing this step as it is a good illustra-
tion of working with our Lean definition(s) of ϕX . For space we do not expand on the
proofs that ⊢ ϕSf and ∀s, t ∈ SC′

, sf ̸= tf ⇒ ⊢ ϕs
f → ¬ϕtf . In Lean these proofs

are given in the lemmas univ_disjunct_provability and unique_s_f respectively. To
show ⊢ ϕXc ↔ ¬ϕX , in the ⇐ direction we first use a lemma defined elsewhere called
phi_X_set_disjunct_of_disjuncts, which proves that ⊢ (¬ϕX → ϕY ) ⇔ ⊢ (ϕX∪Y ), to
change the goal to ⊢ ϕX∪Xc . This lemma is trivial on paper by definition of ϕX , but requires
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unfolding the definitions and their respective datatype in Lean. Next we change the goal to
⊢ ϕSf , with the lemma union_compl_self, because the union of a set and its compliment is
the universe. Lastly, we can use univ_disjunct_provability to prove this goal:

apply (phi_X_set_disjunct_of_disjuncts _ _).mpr
rw [union_compl_self X]
apply univ_disjunct_provability

For the ⇒ direction, we cannot so immediately apply the relevant lemma unique_s_f,
as this lemma refers to single elements (filtered states) in our sets X and Xc. We will
eventually use an inductive proof to consider a single element in X. In Lean we will
therefore need to work with a list datatype and will need to unfold our definitions of ϕX
accordingly. We create a lemma per data type: phi_X_set_unique, phi_X_finset_unique
and phi_X_list_unique, which show the slightly generalized result that ⊢ ϕX → ¬ϕY holds
for any disjoint sets X,Y ⊆ Sf . Our actual proof simply applies this first lemma:

apply phi_X_set_unique hcl (compl_inter_self X)

where compl_inter_self is a lemma proving that a set and its compliment are disjoint,
and hcl is a proof that our closure is closed under single negations. The need to pass this
condition of our closure forward highlights how verification makes explicit exactly when and
for which purpose specific hypotheses are used. In this case we will eventually pass this
hypothesis to the lemma unique_s_f.

The interesting work is within phi_X_list_unique. We have converted X into
sfs : List (S_f M cl φ), where S_f M cl φ corresponds to Sf for the canonical model
M and Y into tfs : List (S_f M cl φ). The proof is first inductive on X. The case
when X is empty is trivial because ϕ[] is defined as ⊥ in Lean. Thus we unfold the
definitions phi_X_list and finite_disjunction, and then use explosion, which represents
the propositional lemma ∀ψ,⊢ ⊥ → ψ.

induction' sfs with sf sfs ihsfs generalizing tfs
· -- sfs = []

simp only [phi_X_list, finite_disjunction, explosion]

So let sfs contain at least one element sf at the head of the list, and call the rest of the
list sfs'. Then we can split ⊢ (ϕsf ∨ ϕX′) → ¬ϕY into two cases, where the latter follows
from the induction hypothesis ihsfs. Note that the sorry keyword in the snippet below
indicates a proof omitted from the paper for presentation purposes; the omitted proof is
included below and in the full formalization source code.

· -- sfs = sf :: sfs'
simp only [phi_X_list, finite_disjunction]
apply or_cases
-- ⊢ phi sf → ¬ phi tfs
· sorry -- Proof included below
-- ⊢ phi sfs' → ¬ phi tfs
· apply ihsfs

apply List.disjoint_of_disjoint_cons_left hdis

Here the lemma List.disjoint_of_disjoint_cons_left shows that sfs' and tfs must
be disjoint when sfs and tfs are disjoint (represented by hdis in Lean).
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For the case ⊢ ϕs
f → ¬ϕY , we perform induction on Y (tfs). Again here the base case

of an empty list holds by propositional logic, so assume tfs contains at least one element tf
at the head of the list, and call the rest of the list tfs'. We now look at the contrapositive
of our goal: ⊢ (ϕtf ∨

∨
uf ∈tfs′ ϕu

f ) → ¬ϕsf . Again we have two cases. For the former we can
apply lemma unique_s_f where we prove sf ̸= tf by contradiction, based on the disjointness
of both lists. The latter case is solved with the (new) induction hypothesis (ihtfs).

· induction' tfs with tf tfs ihtfs
· simp only [phi_X_list, finite_disjunction]

exact mp _ _ (p1 _ _) iden -- applying propositional lemmas
· simp [finite_disjunction] at *

-- contrapositive
refine contrapos.mp (cut dne (or_cases ?_ ?_))
-- ⊢ phi tf → ¬ phi sf
· apply unique_s_f hcl

by_contra h
simp only [h] at hdis

-- ⊢ phi tfs' → ¬ phi sf (proved with ihtfs and propositional lemmas)
· rw [←contrapos]

exact cut dne (ihtfs hdis.2.1 hdis.2.2)

8.4 Truth lemma
Next we show that in the filtered canonical model all formulas contained in a state are also
true in that state. Recall that Mf is the model created when filtering MC through cl(φ).

▶ Lemma 5 (CLC Truth Lemma [1, Theorem 1]). For all s ∈ SC and ψ ∈ cl(φ), we have
Mf , sf ⊨ ψ iff ψ ∈ sf .

This proof is by induction on ψ. For space reasons we include only the proof for CGψ:
Mf , sf ⊨ CGψ iff CGψ ∈ sf , and specifically the ⇐ direction, as this was the most interesting
to formalize. Given CGψ ∈ sf , and some state tf such that sf ≈f

G tf , we need to show
Mf , tf ⊨ ψ. This proof is inductive on the common knowledge path from sf to tf . Thus, the
details of this proof depend on how exactly we defined the common knowledge path in Lean.

Let the length of a common knowledge path be the number of states in the path
between our first state (sf ) and our last state (tf ). In this case we may describe a
common knowledge path from sf to tf as ⟨sf ,∼f

i0
, uf1 ,∼

f
i1
, uf2 , . . . , u

f
n,∼f

n, t
f ⟩, such that

sf0 ∼f
i0
uf1 , u

f
1 ∼f

i1
uf2 , . . . , u

f
n ∼f

in
, tf and {i0, i1, . . . , in} ⊆ G. We will perform induction on

the length n of this path.
For the base case of our inductive proof, let n = 0. Thus, we consider a path ⟨sf ,∼f

i0
, tf ⟩,

matching the base case of our Lean implementation:

| done (hi : i ∈ G) (hst : t ∈ m.f.rel i s) : C_path G s t

Thus we need to prove that M, t ⊨ ψ, given that sf ∼f
i0
, tf , for some i0 ∈ G. This base case

differs from a more traditional inductive proof on a common knowledge path, like the proof
by Ågotnes and Alechina [1], where the base case is simply the starting state, with the path
being ⟨sf ⟩. Note that this is equivalent to our base case with the additional assumption that
sf = tf , as we must by reflexivity have sf ∼f

i0
sf .

Next our inductive step needs to match our recursive case in Lean:

| next (hi : i ∈ G) (hsu : u ∈ m.f.rel i s) (ih : C_path G u t) :
C_path G s t
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Here we build the path recursively from the front: so when looking at the path from sf to
tf , we consider first the individual knowledge relation from sf to the second state in the
path. Then we recursively define the rest of the path from the second state to tf . Our
inductive step must match this format. Let the first state between sf and tf be uf , where
sf ∼f

i u
f for some i ∈ G, and let the common knowledge path for group G of length n be

⟨uf ,∼f
i0
, uf1 ,∼

f
i1
, uf2 , . . . , u

f
n,∼

f
in
, tf ⟩. The inductive hypothesis states that if CGψ ∈ uf , then

Mf , tf ⊨ ψ. Again, this approach to the inductive step is different from the more usual
inductive proof on a common knowledge path by Ågotnes and Alechina [1]. In their case the
inductive step splits a path of length n+ 1 into a path from the starting state (sf ) to the
nth state in the path, and a single knowledge relation from the nth to the end state (tf ).

Note that for our inductive proof on the common knowledge path, both in the base
case and in the inductive case we need to prove something (that ψ holds in the base case,
that it contains CGψ for the inductive step) about a state (tf for the base case, uf for the
inductive step) which is connected from sf by an individual knowledge relation for some
agent in G. Thus we now show that for any state wf , where there is a relation sf ∼f

j w
f

for some j ∈ G, we must have both Mf , wf ⊨ ψ and CGψ ∈ wf . From CGψ ∈ sf we must
have Kj(CGψ) ∈ sf by definition of cl(CGψ), propositional logic, and axioms (C), (K) and
(RN). Thus by definition of ∼f

i we must also have Kj(CGψ) ∈ wf . Then we must also have
CGψ ∈ wf by axiom (T). Hereby we have proven Mf , tf ⊨ ψ for the inductive step in our
proof. Additionally, from CGψ ∈ wf , we know ψ ∈ wf , by axioms (T), (C), (K) and (RN).
Note that by the inductive hypothesis for the truth lemma (∀s ∈ SC , Mf , sf ⊨ ψ ↔ ψ ∈ sf ),
we must then also have Mf , wf ⊨ ψ. Therefore we have proven Mf , tf ⊨ ψ for the base case
in our proof.

8.5 Finalizing the completeness proof
It remains to prove the final theorem:

▶ Theorem 6 (Completeness of CLC [1, Corollary 1]). ∀φ,⊨ φ ⇒ ⊢ φ

We prove the contrapositive by showing that every formula not provable by CLC is not
globally valid: ⊬ φ ⇒ ⊭ φ. From ¬ ⊢ φ we know that {¬φ} must be a consistent set. By
Lindenbaum’s lemma [24] the set can thus be extended into some maximally consistent set Σ
that is equal to some state s ∈ SC . Note that when filtered through cl(φ), we will still have
¬φ ∈ sf . By Lemma 5 ¬φ is true in that filtered state, and thus φ is not. Thus φ is not
globally valid.

We have thus verified the proof theory and model theory of CLC relate to each other
as expected by proving both soundness and completeness. All Lean lemmas and definitions
about (filtered) canonical model construction can be reused to prove that CL and CLK are
also sound and complete (see [21] for details). For CL, as mentioned previously, this is done
by proving the truth lemma for the canonical coalition model for CL. For Coalition Logic
with individual knowledge (CLK), the proofs are analogous to the proofs presented here,
omitting any parts related to common knowledge.

9 Conclusion and Discussion

In this paper, we have described the successful implementation of soundness and completeness
proofs for CLC in Lean. Our project consists of approximately 6,000 lines of code. Of these,
approximately 300 lines are specific to Coalition Logic (CL), 700 are specific to Coalition Logic
with Knowledge operators (CLK), and 1,100 to Coalition Logic with Common knowledge
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operators (CLC). The remaining almost 4,000 lines are shared between the three. In addition,
we make extensive use of the Lean mathematical library Mathlib. We will not mention a
De Bruijn factor for our development, as there is no direct comparison possible between the
scope of our work and any of the relevant papers.

Much of the complexity of our formalization comes from the need to deal with finiteness
in Lean. To access properties of finiteness in Lean, we needed to use specific data types.
This is most notable in our formalization of ϕX , where we create three different definitions
for when X is a Set a Finset (finite set) and a List. Of the three mentioned data types
only the List is ordered in Lean (in our case, when converting from a (finite) set the order
is arbitrary) and therefore allows us to iterate over elements. However when translating
some (finite) set into a list we often need to keep track of relevant properties about the
initial Set. For instance, we may need to remember that our resulting List contains no
repeating elements. We are therefore often required to create separate lemmas for each data
type, and manually pass such information forward. These translations consequently add a
lot of work. However, each individual step was relatively simple with the existing Mathlib
library [25]. Additionally, some of these challenges are likely exacerbated by our goal to keep
our Lean proofs reasonably similar to their respective paper proofs. For instance, in our
formalization we define finite conjunctions and disjunctions recursively. However to show a
finite conjunction is provable or is contained in some state, we simply need to show that all
conjuncts are provable or are contained within that state. Similarly for finite disjunctions
we aim to show that one disjunct is provable or contained within the state. Thus a deeper
embedding using Lean’s native ∀ and ∃ quantifiers may have been more natural.

Another difficulty with formalization is that there are many trivial lemmas that need
detailed proofs in Lean, which makes formalization cumbersome and time-consuming. This is
especially notable with the lemmas about the finite closure (cl), for instance that it is closed
under single negations. Despite being trivial by our definition of cl, the proof in Lean is long
because of how many cases need to be considered. This highlights the need for continued
work on increasing automation in Lean. Specifically, these long but trivial inductive proofs
would be ideal candidates for better automation.

Despite these challenges, one of the main advantages of formalizing this proof is that it
required us to be precise about exactly when we were using hypotheses and assumptions.
In our case, this led to us easily showing that the completeness proof for CLC described by
Ågotnes and Alechina [1] also holds if we extend the syntax to also allow formulas of the
form C∅φ. Programmatic formalization lends itself well to these tests of generalization: it
automates the work of re-checking an entire proof every time a hypothesis is slightly changed
or removed [4, 10].

Aside from dealing with the nature of formalization itself, one of the goals of our research
was to allow for reuse of lemmas and definitions across different logics. To this end we
introduced Lean classes for each logics syntax and axiomatic system. Importantly, we were
able to define the canonical model MC for these classes, such that the model can be built for
CL and any of its extensions. Additionally we provided a large number of lemmas defined
using our classes for propositional logic, CL, CLK and CLC. We hope that an increasing
library of these kinds of proofs can aid future research into formalizing modal logics, especially
work on formalizing the other types of Epistemic Coalition Logic described by Ågotnes and
Alechina [1].

We note, however, that we did not add semantics to our class definitions. This choice
was made as the semantics are only used in inductive proofs. We could not use classes for
inductive proofs, as they act as minimum requirements for the syntax and proof system of
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the logic. However, each individual case in an inductive proof could be separated into its own
lemma if the semantics was added to the generic classes. Future work could thus look into
expanding our classes and creating such generic proofs. Even more interesting would be to
define the logics in such a way that we can use generic data structures for inductive proofs.
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