
A Verified Earley Parser
Martin Rau #

Department of Computer Science, Technical University of Munich, Germany

Tobias Nipkow Ñ

Department of Computer Science, Technical University of Munich, Germany

Abstract
An Earley parser is a top-down parsing technique that is capable of parsing arbitrary context-free
grammars. We present a functional implementation of an Earley parser verified using the interactive
theorem prover Isabelle/HOL. Our formalization builds upon Cliff Jones’ extensive, refinement-based
paper proof. We implement and prove soundness and completeness of a functional recognizer
modeling Jay Earley’s original imperative implementation and extend it with the necessary data
structures to enable the construction of parse trees following the work of Elizabeth Scott. Building
upon this foundation, we develop a functional parser and prove its soundness. We round off the
paper by providing an informal argument and empirical data regarding the running time and space
complexity of our implementation.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Parsers

Keywords and phrases Verification, Parsers, Earley, Isabelle

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.31

1 Introduction

Parsing is fundamental. Nearly every application interacts with its environment, and usually
by means of parsing textual input into a structured data format. In the age of big data,
applications handle enormous amounts of data and any parser bugs or vulnerabilities entail
severe security risks. Although the semantics of a parser are relatively easy to specify,
correctly implementing a parser is a difficult task. Attackers regularly exploit parsing bugs
to obtain sensitive user data [1, 3, 2]. Hence, parsing algorithms are well-suited for formal
verification which allows us to precisely specify the semantics of a parser and obtain strong
correctness guarantees.

A zoo of parsing algorithms exists, and one of the core trade-offs one has to make when
deciding on a parser is between performance and usability. Earley [12] parsing, originally
conceived by Jay Earley in 1968, is an algorithm that allows the full range of context-free
grammars while still being very performant for a large subset. In this paper, we present the,
to our knowledge, first formalization of an Earley parser. Our formalization builds upon Cliff
Jones’ [20] extensive, refinement-based paper proof.

Section 2 shortly introduces Isabelle/HOL [29, 28]. Section 3 contains the formalization
of context-free grammars and derivations. Section 4 defines and proves correct an inductive
definition of an Earley recognizer. Section 5 refines this definition to an executable algorithm.
Section 6 extends the recognizer to a parser. Section 7 contains an analysis of the running
time. Sections 8 and 9 discuss related work and conclude.

The whole formalization, including all proofs, can be found online in the Archive of
Formal Proofs [33]. The size of the formalization (more than 6000 lines) prohibits a detailed
exposition in this paper, especially of the proofs. The interested reader is referred to the
online material.

© Martin Rau and Tobias Nipkow;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 31; pp. 31:1–31:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.rau@tum.de
https://orcid.org/0000-0002-7111-4828
https://www.proof.cit.tum.de/~nipkow/
https://orcid.org/0000-0003-0730-515X
https://doi.org/10.4230/LIPIcs.ITP.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 A Verified Earley Parser

2 Isabelle/HOL

Isabelle [29, 28] is an interactive theorem prover based on a fragment of higher-order logic.
It supports core concepts commonly found in functional programming languages.

The notation t :: τ indicates that term t has type τ . Basic types include bool and nat,
while type variables are written ′a, ′b etc. Pairs are expressed as (a, b), and triples as
(a, b, c), and so forth. Functions fst and snd return the first and second components of a
pair, while the operator (×) is used for pairs at the type level. Most type constructors are
written postfix, such as ′a set and ′a list, and the function space arrow is ⇒. Function set
converts a list to a set.

Algebraic data types are defined using the datatype keyword. Non-recursive definitions
are introduced with the definition keyword. Lists are constructed from the empty list [] using
the infix cons-operator (#). The operator (@) appends two lists, |xs| denotes the length of
xs, xs ! n returns the n-th item of the list xs (starting with n = 0), and xs[i := x] returns an
updated list by setting the n-th item to the value x.

3 Context-free Grammars and Derivations

A symbol, either non-terminal or terminal, is represented as an arbitrary type ′a. We use
lowercase letters a, b, c to denote terminals and capital letters A, B, C to denote non-
terminals. Additionally, we use the letters s, t to represent arbitrary symbols. A sentence
is defined as a list of symbols and can be represented by either Greek letters α, β, γ or
lowercase letters u, v, w.

The data type cfg represents context-free grammars. An instance G comprises a list of
production rules R G, where each rule is a pair consisting of a left-hand side, lhs_rule, a
single symbol, and a right-hand side, rhs_rule, a list of symbols. Additionally, the instance G
contains the start symbol S G.

We formalize the set of non-terminals as the union of all left-hand sides of a grammar’s
production rules and its start symbol. A word is a sentence that consists only of terminal
symbols, meaning is_word G ω = (nonterminals G ∩ set ω = ∅). The empty word is denoted
by [].

Given a grammar G, the sentence β can be derived from the sentence α in a single step,
denoted by G ⊢ α ⇒ β, if G contains a production rule (A, γ) such that α is of the form u @
[A] @ v and β = u @ γ @ v. Defining derivations G = {(α, β) | G ⊢ α ⇒ β}∗ we abbreviate
(α, β) ∈ derivations G by G ⊢ α ⇒∗ β.

Some of the core proofs of this work make use of an analogous formalization of derivations.
The term Derivation G α D β signifies that the grammar G allows the sentence β to be
derived from the sentence α via the derivation D. In this context, D is a list containing
pairs of production rules and indices, which constitute the specific rewriting steps. When
applied in sequence to α, these steps lead to β. Both definitions of derivations are indeed
equivalent, meaning G ⊢ α ⇒∗ β, if and only if, there exists a derivation D such that the
predicate Derivation G α D β holds. We omit the proof.

4 Defining the Set of Earley Items

An Earley recognizer determines whether the input ω is in the language defined by the
grammar G by following a two-step process: first, it generates a set of items, then it checks if
there exists a finished item. In the following, we consider a fixed grammar G and input ω.

M. Rau and T. Nipkow 31:3

An item takes the form Item r d i j, which consists of four components: a production rule
r from the grammar G, referred to as the rule_item, a natural number d, or dot_item, marking
how far the algorithm has processed the right-hand side of r, and two natural numbers i, j,
start_item and end_item, representing the start index and the end index (exclusive) of the
sublist of the input ω recognized by the item. Alternatively, an item with a production rule
A → αβ, which recognizes the subsequence of the input from index i up to but excluding j

by processing α, is written A → α • β, i, j.
The functions lhs_item and rhs_item project the lhs_rule and rhs_rule of an item.

Functions α_item and β_item split the production rule body at the position of the dot. An
item is complete, is_complete, when the dot is at the end of the production rule body, as in
A → α•, i, j. The next_symbol of an item can either be None, if it is complete, or Some s,
where s is the symbol in the production rule body following the dot.

An item x is well-formed, wf_item, if the item’s rule belongs to the grammar G, the item
dot must be within the length of the item’s right-hand side, the item start does not exceed
the item end, and finally, the item end must be at most the length of the input ω.

An item is finished, is_finished, if it is of the form S G → α•, 0, |ω|, meaning the left-hand
side of the item is the start symbol of the grammar G, the item is complete, and the entire
input ω has been recognized; or the item start is zero, and the item end is the length of ω.

The set of Earley items, Earley G ω, is an inductive definition of Earley’s recognizer,
i.e. an inductively defined set. The four defining rules are: the initial set of items, and one
rule for each of the core operations that expand the set of items: scanning, prediction, and
completion.

(S G, α) ∈ set (R G)
S G → •α, 0, 0 ∈ Earley G ω

Init

A → α • aβ, i, j ∈ Earley G ω ω ! j = a j < |ω|
A → αa • β, i, j + 1 ∈ Earley G ω

Scan

A → α • Bβ, i, j ∈ Earley G ω (B, γ) ∈ set (R G)
B → •γ, j, j ∈ Earley G ω

Predict

A → α • Bβ, i, j ∈ Earley G ω B → γ•, j, k ∈ Earley G ω

A → αB • β, i, k ∈ Earley G ω
Complete

The Init rule specifies all initial items S G → •α, 0, 0. There is one item for each grammar
rule that begins with the grammar’s start symbol. For these items, the dot, start, and end
indices are all initialized to 0. This signifies that we haven’t processed the right-hand side of
the rule at all, started the recognition process at the beginning of the word, and still are at
this initial position.

The Scan rule applies if there is a terminal symbol to the right of the dot: A → α•aβ, i, j.
In this case, if the j-th symbol of ω is the next_symbol of the item, we add a new item
A → αa • β, i, j + 1, moving the dot over the recognized terminal symbol.

The Predict rule is applicable to an item when there is a non-terminal symbol to the
right of the dot: A → α • Bβ, i, j. It adds a new item B → •γ, j, j for each production rule
(B, γ) of the grammar. Similar to the initial items, the dot is set to 0, but the start and end
indices are set to j to indicate that we are beginning recognition at position j in the input ω.

The Complete rule is applied to all complete items B → γ•, j, k. These items indicate
successful recognition of a subsequence of ω starting at index j and ending at index k. Now,
we consider any items where we already predicted the non-terminal symbol B. Specifically,

ITP 2024

31:4 A Verified Earley Parser

we look for items A → α • Bβ, i, j with a matching end index j and a dot in front of the
non-terminal B. Since we have successfully recognized the predicted non-terminal, we are
allowed to move the dot, resulting in the addition of a new item A → αB • β, i, k.

We will prove soundness and completeness of Earley:
1. Soundness: If x ∈ Earley G ω and is_finished G ω x, then G ⊢ [S G] ⇒∗ ω.
2. Completeness: If G ⊢ [S G] ⇒∗ ω, then there exists an item x ∈ Earley G ω such that

is_finished G ω x.

Two further important properties that we will need:
1. Well-formedness: For all x ∈ Earley G ω, wf_item G ω x holds.
2. Finiteness: The set Earley G ω is finite.

4.1 Proving Well-formedness and Finiteness
The proof of the well-formedness of the set of Earley items is straightforward by induction
on the definition of Earley. We omit it.

Furthermore, there exist only a finite number of Earley items: Given that all Earley
items are well-formed, it suffices to prove that there is only a finite number of well-formed
Earley items. We define the set T as set (R G) × {0 ..m} × {0 ..|ω|} × {0 ..|ω|}, where m

denotes the maximum length of all right-hand sides of production rules from the grammar
G. The set T is finite as there is only a finite number of production rules, and both the
right-hand side of each production rule and the input ω are finite. Furthermore, T is an
over-approximation of Earley G ω, as every well-formed Earley item is contained within T

by definition of well-formedness.

4.2 Proving Soundness
An item A → α•β, i, j is considered sound, sound_item, if it satisfies G ⊢ [A] ⇒∗ (ωi/j @ β),
where ωi/j is the subsequence of ω from index i to (but excluding) j. Let x denote an
arbitrary item in Earley G ω. We prove sound_item G ω x by induction on the definition of
Earley.

For the Init rule, we have x = SG → •α, 0, 0. Furthermore, we know that ω0/0 equals
the empty list. Our goal is to show that there exists a derivation from S G to α. This
is immediately evident as (S G, α) is a production rule from the grammar due to the
well-formedness of the item.

For the Scan rule, we deal with an item x = A → α • aβ, i, j, and the induction
hypothesis is that G ⊢ [A] ⇒∗ ωi/j @ (a # β). Since we have that ω ! j = a, this is
equivalent to G ⊢ [A] ⇒∗ ωi/j + 1 @ β, which, in turn, implies the soundness of the new
item x = A → αa • β, i, j + 1.

For the Prediction rule, the new item is x = B → •α, j, j. Since ωj/j equals the empty
list, our task is to show that G ⊢ [B] ⇒∗ α. This follows directly as (B, α) is a production
rule of the grammar.

For the Complete rule, we have two items: x = A → α • Bβ, i, j and y = B → γ•, j, k.
The two induction hypothesises are G ⊢ [A] ⇒∗ ωi/j @ (B # β) and G ⊢ [B] ⇒∗ ωj/k.
Combining these statements yields G ⊢ [A] ⇒∗ ωi/j @ ωj/k @ β, which is equivalent to
G ⊢ [A] ⇒∗ ωi/k @ β, and thus, implies the soundness of the new item A → αB • β, i, k,
concluding the soundness proof.
theorem soundness_Earley:

assumes ∃ x ∈ Earley G ω. is_finished G ω x
shows G ⊢ [S G] ⇒∗ ω

M. Rau and T. Nipkow 31:5

4.3 Proving Completeness
Completeness is the most intricate proof obligation, and we begin by providing some intuition
about the fundamental proof idea. We call a set I of items partially completed if for every
item A → α • sβ, i, j in I and every derivation G ⊢ [s] ⇒∗ ωj/k, the set I also contains the
item A → αs • β, i, k.

Now, consider the item A → •s0s1 . . . sn, i, i0. If this item is present in a partially
completed set of items I, and there exists a derivation G ⊢ [s0] ⇒∗ ωi0/i1 , then the
item A → s0 • s1 . . . sn, i, i1 is also included in the set. If there exists another deriva-
tion G ⊢ [s1] ⇒∗ ωi1/i2 , the statement holds again for the item A → s0s1 • . . . sn, i, i2,
and so on. This continues until, for a derivation G ⊢ [sn] ⇒∗ ωin/j, the completed item
A → s0s1 . . . sn•, i, j is in I, provided that we have i ≤ i0 ≤ i1 ≤ · · · ≤ in ≤ j.

The definitions of partially_completed and the subsequent theorem that captures the
outlined proof idea are more intricate in their details. They also encompass the necessary
bounds for the indices, and make use of the analogous definition of derivations through
the predicate Derivation, which contains an actual derivation D. They also incorporate an
additional predicate on D. Its purpose is to limit the length of the derivation D. This is
crucial because the proof of the partial completeness of the set of Earley items is by induction
on the length of the derivation.

partially_completed l G ω I P = (∀ r d i j k x s D.

j ≤ k ∧ k ≤ l ∧ l ≤ |ω| ∧
x = Item r d i j ∧ x ∈ I ∧ next_symbol x = Some s ∧
Derivation G [s] D (ωj/k) ∧ P D −→ Item r (d+1) i k ∈ I)

theorem partially_completed_upto:
assumes j ≤ k and k ≤ |ω|
assumes x = Item (A,α) d i j and x ∈ I and ∀ x ∈ I . wf_item G ω x
assumes Derivation G (β_item x) D (ωj/k)
assumes partially_completed k G ω I (λD ′. |D ′| ≤ |D|)
shows Item (A,α) |α| i k ∈ I

theorem partially_completed_Earley:
shows partially_completed |ω| G ω (Earley G ω) (λ_. True)

To establish the completeness of the inductive definition for the set of Earley items,
we apply both of the preceding theorems. By assumption, there exists a derivation of
the input ω from the grammar’s start symbol. We can decompose this derivation into a
single initial production rule (S G, α) and a subsequent derivation Derivation G α D ω.
Additionally, we know, by definition of the Init rule, that the item S G → •α, 0, 0 is in
Earley G ω. Moreover, considering that each Earley item is well-formed and the set of Earley
items is partially completed, as proved by the theorem partially_completed_Earley, we can
consequently discharge the assumptions of the theorem partially_completed_upto. As a result,
we know that the finished item S G → α•, 0, |ω| is indeed present in Earley G ω.

theorem completeness_Earley:
assumes G ⊢ [S G] ⇒∗ ω and is_word G ω

shows ∃ x ∈ Earley G ω. is_finished G ω x

theorem correctness_Earley:
assumes is_word G ω

shows (∃ x ∈ Earley G ω. is_finished G ω x) ←→ G ⊢ [S G] ⇒∗ ω

ITP 2024

31:6 A Verified Earley Parser

5 An Executable Earley Recognizer

We refine the inductive Earley definition of the previous section to an executable algorithm,
a recognizer that tells us if the input ω is in the language specified by the grammar G.
Our Earley recognizer is a functional algorithm modeled after Earley’s original imperative
implementation. We start with an informal explanation. The algorithm processes the input
ω = a0, . . . , an−1 while maintaining a list of n+1 bins. An initial bin B0 and one bin Bi+1 for
each symbol ai in the input. Each bin is a variable length list of Earley entries. Each entry
is a pair consisting of an Earley item and “pointers”, i.e. indices, indicating the originating
entry needed for the construction of parse trees. These pointers are elements of a data type
with three alternatives:

A pointer can either be a null pointer, denoted by ⊥, a predecessor pointer representing
a single index i, or a nonempty list of reduction pointers containing triples of indices,
(a, b, c), (d, e, f), We define the exact semantics in the following paragraphs. To improve
readability we omit showing any constructors of the entry and pointer data types and only
use the shorthand notation. For example, an entry comprising the item A → α • β, i, j and
the reduction pointer (a, b, c) is written A → α • β, i, j; (a, b, c).

The algorithm generates the bins in ascending order, starting at bin B0. Each bin serves
a dual purpose: as a worklist of entries to be processed, and as a set of items that are already
present, ensuring that no two entries with identical items are present within the same bin.
An entry with the item A → α • β, i, j is always in bin Bj , in other words, the end index of
the item equals the index of the bin.

Initially, the algorithm populates bin B0 with the items corresponding to the Init rule of
the inductive Earley definition. Each initial item is accompanied by a null pointer. Table 1
illustrates the executable algorithm by example for the toy grammar G : S → x | S + S and
input: ω = x + x + x, showcasing the complete bins after a run of the algorithm. In the
example, the bins contain the two initial entries S → •x, 0, 0; ⊥ and S → •S + S, 0, 0; ⊥ in
bin B0. The algorithm proceeds to process the worklist, from top to bottom, until the bin
stabilizes. Then, it moves on to the next bin.

For each item x of the current entry at index l in the k-th bin, the algorithm applies
operations corresponding to the three rules Scan, Predict, Complete.

Case x = A → α • aβ, j, k: if the symbol at position k in ω is the terminal symbol a, the
entry A → αa • β, j, k + 1; l is inserted into the next bin Bk+1. The index l indicates the
predecessor index, signifying that the originating entry of this new entry resides in the
previous bin at index l. Table 1 contains the entry S → x•, 0, 1; 0 at index 0 in bin B1,
and its predecessor is the entry S → •x, 0, 0; ⊥ at index 0 in bin B0.
Case x = A → α • Bβ, j, k: for each production rule (B, γ) of the grammar G, an entry
B → •γ, k, k; ⊥ is inserted into the current bin Bk. A null pointer is added to the entry,
as no origin information is required for constructing parse trees. Table 1 contains the
entries S → •x, 2, 2; ⊥ and S → •S + S, 2, 2; ⊥ in bin B2, both predicted by the entry
S → S + •S, 0, 2; 1 in the same bin.
Case x = B → γ•, j, k: if an item is complete, the algorithm searches the origin bin
Bj for any entries with items of the form A → α • Bβ, i, j. If it finds such an entry
at index l′, it inserts one new entry A → αB • β, i, k; (j, l′, l) into the current bin. The
origin information (j, l′, l) is a reduction pointer. The first two indices, j and l′, indicate
that the predecessor entry resides in bin Bj at index l′. The last index, l, describes the
position of the reduction entry at index l in the current bin Bk. An entry may contain
more than one reduction pointer in cases where the grammar is ambiguous and there are

M. Rau and T. Nipkow 31:7

multiple ways to derive the input corresponding to the item. Table 1 contains the entry
S → S + S•, 0, 5; (4, 1, 0), (2, 0, 1), capturing the two possible derivations of ω: (x + x) + x

and x + (x + x). The entry, with a single reduction pointer (4, 1, 0), was initially created
due to the reduction entry S → x•, 4, 5; 2 at index 0 in bin B5 and the predecessor entry
S → S + •S, 0, 4; 3 at index 1 in bin B4. However, the second reduction pointer (2, 0, 1)
was later added due to the reduction entry S → S + S•, 2, 5; (4, 0, 0) at index 1 in bin B5
and the predecessor entry S → S + •S, 0, 2; 1 at index 0 in bin B2.

The algorithm inserts an entry into a bin as follows: Iterate through the bin, and, for each
entry, check if its item matches the item of the entry to be inserted. If a match is found, and
the pointer of the entry to be inserted is a reduction pointer, merge the items by adding the
reduction pointer to the already present entry. Otherwise, if there is no match or the pointer
is not a reduction pointer, do not make any additions. In both cases, terminate the insertion
process. If there are no entries with matching items, append the entry to the end of the bin.

Table 1 Earley bins for G: S → x |S + S, and ω = x + x + x.

B0 B1 B2

0 S → •x, 0, 0;⊥ S → x•, 0, 1; 0 S → S + •S, 0, 2; 1
1 S → •S + S, 0, 0;⊥ S → S •+S, 0, 1; (0, 1, 0) S → •x, 2, 2;⊥
2 S → •S + S, 2, 2;⊥

B3 B4 B5

0 S → x•, 2, 3; 1 S → S + •S, 2, 4; 2 S → x•, 4, 5; 2
1 S → S + S•, 0, 3; (2, 0, 0) S → S + •S, 0, 4; 3 S → S + S•, 2, 5; (4, 0, 0)
2 S → S •+S, 2, 3; (2, 2, 0) S → •x, 4, 4;⊥ S → S + S•, 0, 5; (4, 1, 0), (2, 0, 1)
3 S → S •+S, 0, 3; (0, 1, 1) S → •S + S, 4, 4;⊥ S → S •+S, 4, 5; (4, 3, 0)
4 S → S •+S, 2, 5; (2, 2, 1)
5 S → S •+S, 0, 5; (0, 1, 2)

5.1 Recognizer Implementation
We now examine the formal definition of the recognizer. There are four functions InitL,
ScanL, PredictL, and CompleteL implementing list-based versions of the four corresponding
rules of the inductive Earley definition. Due to space restrictions we only show the function
InitL, constructing the initial bins, and the function PredictL that returns a list of new
entries to be inserted into the bins. Functions ScanL and CompleteL have the same return
type.

InitL G ω = (
let rs = filter (λr . lhs_rule r = S G) (remdups (R G)) in
let b0 = map (λr . (Item r 0 0 0 , Null)) rs in
let bs = replicate (|ω| + 1) ([]) in bs[0 := b0])

PredictL k G A = (
let rs = filter (λr . lhs_rule r = A) (R G) in
map (λr . (Item r 0 k k, Null)) rs)

The central piece of the implementation is the function EarleyL
_bin ′. The function

computes the entries of the k-th bin starting at the entry at index i. It examines the symbol
following the dot of the item of the entry and, depending on the type of the symbol or

ITP 2024

31:8 A Verified Earley Parser

whether such a symbol exists at all, applies one of the three executable operations, obtaining
a list of potentially new entries. These entries are subsequently inserted into the bins using
the function upd_bins (definition omitted). Function EarleyL

_bin starts this process at the
beginning of the bin at index 0.

EarleyL
_bin ′ k G ω bs i = (

if i ≥ |(items (bs!k))| then bs
else

let x = items (bs!k) ! i in
let bs ′ =

case next_symbol x of
Some s ⇒ (

if s /∈ nonterminals G then
if k < |ω| then upd_bins bs (k+1) (ScanL k ω s x i) else bs

else upd_bins bs k (PredictL k G s))
| None ⇒ upd_bins bs k (CompleteL k x bs i)

in EarleyL
_bin ′ k G ω bs ′ (i+1))

EarleyL
_bin k G ω bs = EarleyL

_bin ′ k G ω bs 0

The function EarleyL_bin ′ is defined as a partial function as it might not terminate if it
keeps inserting newly generated entries forever into the bin it currently operates on. However,
we know that the newly generated entries do not contain arbitrary but only well-formed bin
items. In other words, each bin Bk contains only entries with items that are well-formed and
additionally have the end index k. We have already proved that the number of well-formed
Earley items is finite, and the implementation ensures that a new entry is added to the bin
only if its item is not already present in one of the bin’s entries. Therefore, the function
will eventually run out of new entries to insert into the bin it currently operates on and
terminate.

Although HOL is a logic of total functions, Isabelle supports the definition of potentially
non-terminating functions provided they are tail-recursive (like EarleyL

_bin ′) or their result
is an optional value (like function build_tree ′ below). The underlying domain-theoretic
definitional constructions are due to Krauss [24]. However, we cannot prove anything about
such a function because Isabelle does not know for which inputs it terminates, or if it
terminates at all. As a result, Isabelle does not generate an appropriate induction schema
for it. Such a schema must be proved by hand by specifying a suitable type and measure
for which the function terminates. For the function EarleyL

_bin ′ we define the measure
earley_measure (k, G, ω, bs) i = |{x | wf_item G ω x ∧ end_item x = k}| − i and prove
that it is strictly decreasing for every tail-recursive function call.

The function EarleyL
_bins computes the bins upto a specific index starting at bin zero.

And finally, function EarleyL computes the complete bins.
EarleyL

_bins 0 G ω = EarleyL
_bin 0 G ω (InitL G ω)

EarleyL
_bins (Suc n) G ω = EarleyL

_bin (Suc n) G ω (EarleyL
_bins n G ω)

EarleyL G ω = EarleyL
_bins |ω| G ω

5.2 Recognizer Correctness Proof
We follow Jones’ [20] refinement approach, proving that the set of items formed by the imple-
mentation’s bins is exactly the inductive set of Earley items, thereby establishing soundness
and completeness. The main complications arise since the deterministic implementation
necessarily generates the set of Earley items in a particular order. It starts with the initial
items in bin zero and constructs the subsequent bins in a horizontal ascending order. But each

M. Rau and T. Nipkow 31:9

bin is computed top to bottom, introducing a second vertical order. Our refinement approach
reflects these two orders. We first refine the inductive definition to an intermediate fixpoint
algorithm, and then refine this algorithm further to the actual list-based implementation.

Let bin I k denote the subset of the set of items I that end with index k. Furthermore,
let base ω I k denote the subset of I that forms the k-th base of a bin, meaning the subset of
I containing only items of the form A → αa • β, i, j, where a is a terminal symbol preceding
the dot. If k is zero, base ω I 0 consists of all initial items S G → •α, 0, 0.

For the intermediate fixpoint algorithm we define the set of initial items InitF and three
functions PredictF , ScanF , and CompleteF mirroring the rules of the inductive definition.
Using EarleyF

_bin_step k G ω I = I ∪ ScanF k ω I ∪ CompleteF k I ∪ PredictF k G I we
define the computation of a single bin as a fixpoint computation. The remaining functions
EarleyF

_bins and EarleyF are defined analogously to the list-based implementation. The
following lemma states the completeness argument for the first refinement step.

lemma Earley_bin_base_sub_EarleyF _bin:
assumes InitF G ⊆ I and ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I and is_word G ω

shows bin (Earley G ω) k ⊆ bin (EarleyF _bin k G ω I) k ∧
base ω (Earley G ω) (k+1) ⊆ bin (EarleyF _bin k G ω I) (k+1)

The fixpoint computation of the k-th bin yields a superset of the k-th bin and base k+1 of
the inductive definition. We omit the proof, and the analogous but much simpler soundness
lemma. As both the inductive and fixpoint definition commence with the same items, (base)
ω (Earley G ω) 0 = InitF G, we apply this argument |ω| times (i.e. by induction), yielding
the correctness proposition Earley G ω = EarleyF G ω.

Refining the algorithm further to the list-based implementation uncovers a well-known
problem concerning the computation of a single bin. Consider an item A → •, j, k for
an epsilon rule (A, []). Since the item is by definition complete the algorithm applies the
CompleteL operation. It identifies the origin bin j of the item. Due to the epsilon rule this is
the k-th bin, meaning the bin that the algorithm is currently computing. It then searches
this bin for any items B → α • Aβ, i, j. However, the bin might not be fully constructed at
this point, and some of these items could be missing. Consequently, the algorithm may not
generate all items B → αA • β, i, j, when applying the completion operation for the item
A → •, j, k. Moreover, there could be transitively dependent items that the algorithm fails
to compute. Various solutions have been proposed:

Earley [12] suggests that the implementation keeps track of items with epsilon rules and
considers this information in the subsequent execution of the algorithm.
Grune and Jacobs [18] and Aho and Ullman [4] propose to interleave the prediction and
completion operations until the algorithm stabilizes.
Kegler [22] addresses the problem by internally rewriting the grammar into epsilon-free
form.
Aycock and Horspool [6] precompute nullable non-terminals and modify the prediction
operation.
Polat et al. [32] roughly follow the work of Aycock and Horspool.

We follow Jones [20], define ε_free G = (∀ r∈set (R G). rhs_rule r ̸= []), and consequently
restrict the grammar to be epsilon free. If we disallow any production rules of the form (A, []),
then the function EarleyL

_bin is idempotent and in particular the result of the completion
operation is invariant of state of the current bin.

On paper this argument is straightforward, but the formalization is surprisingly tricky in
the details. The function EarleyL

_bin k G ω bs = EarleyL
_bin ′ k G ω bs 0 is defined in

terms of EarleyL
_bin ′ which may start its computation at an arbitrary index i instead of 0.

ITP 2024

31:10 A Verified Earley Parser

We need the following two generalized lemmas for the completeness proof.

lemma EarleyF
_bin_step_sub_EarleyL

_bin ′:
assumes (k, G, ω, bs) ∈ wf_earley_input and is_word G ω

assumes ∀ x ∈ bins bs. sound_item G ω x and ε_free G
assumes EarleyF

_bin_step k G ω (bins_upto bs k i) ⊆ bins bs
shows EarleyF

_bin_step k G ω (bins bs) ⊆ bins (EarleyL
_bin ′ k G ω bs i)

If applying a single step step of the fixpoint computation, EarleyF
_bin_step, to the bins

including the items of the first k bins but only up (but not including) the i-th item of the
k-th bin doesn’t change the content of the bins, or, in other words, those items are already
correctly processed, then the list-based implementation computes at least the same items as
applying one step of the fixpoint computation.

lemma EarleyL_bin ′_idem:
assumes (k, G, ω, bs) ∈ wf_earley_input
assumes i ≤ j ∀ x ∈ bins bs. sound_item G ω x and ε_free G
shows bins (EarleyL

_bin ′ k G ω (EarleyL_bin ′ k G ω bs i) j) = bins (EarleyL_bin ′ k G ω bs i)

Using those two lemmas we can prove completeness of the list-based algorithm for a
single bin. Since the list-based algorithm follows the same horizontal order as the fixpoint
algorithm the completeness proof for all bins is then straightforward. The soundness proof is
again similar in structure, but once more much simpler.

We then define recognizer G ω = (∃ x∈set (items (EarleyL G ω ! |ω|)). is_finished G ω x),
prove the equivalence of Earley and EarleyL and obtain a corollary stating the correctness
of the recognizer under the assumption of an epsilon-free grammar.

theorem Earley_eq_EarleyL:
assumes is_word G ω and ε_free G
shows Earley G ω = bins (EarleyL G ω)

corollary correctness_recognizer :
assumes is_word G ω and ε_free G
shows recognizer G ω ←→ G ⊢ [S G] ⇒∗ ω

6 An Earley Parser

We now upgrade our recognizer to a parser. Extending an Earley recognizer to a parser is no
simple task. Tomita [36] even pointed out a bug in Earley’s original implementation that
may lead to erroneous derivations.

A major complication is that Earley’s parser allows for ambiguous grammars, which
may lead to exponentially many or even infinitely many parse trees. For the ambiguous
grammar S → SS | a, the number of possible parse trees corresponds to the Catalan number
Cn = 1

n+1
(2n

n

)
for an input of length n − 1. For the cyclic grammar A → B | a, B → A the

input a has infinitely many parse trees because of the by cycle of non-terminals A and B.
An Earley recognizer can be made to run in at most quadratic space and cubic time. Any

extension of the recognizer to a parser, especially for ambiguous or cyclic grammars, must
choose a suitable data representation and be implemented carefully, in order not to degrade
those time and space bounds too much.

Probably the most well-known data representation is the shared packed parse forest
(SPPF), as described and used by Tomita [37]. However, Johnson [19] showed that these forests
are of unbounded polynomial size in the worst case. On the other hand, Scott [35] introduced
a slightly different version of SPPFs, and proved that her Earley parser implementation runs
in cubic time and space.

M. Rau and T. Nipkow 31:11

Following Aho and Ullman [4], we choose to construct only a single parse tree, showing
correctness but not completeness. Our formalization implements the parser as a separate
algorithm that extracts the parse trees from the bins via the pointers that our recognizer
maintains but does not utilize. The pointer implementation follows the work of Scott [35].

Our parse trees and two basic operations are defined like this:

datatype ′a tree = Leaf ′a | Branch ′a (′a tree list)

yield (Leaf a) = [a] root (Leaf a) = a
yield (Branch _ ts) = concat (map yield ts) root (Branch N _) = N

We introduce three notions of well-formedness for parse trees:
A parse tree must represent a valid derivation tree according to the rules of the grammar:

wf_rule_tree _ (Leaf a) = True
wf_rule_tree G (Branch N ts) =
((∃ r∈set (R G). N = lhs_rule r ∧ map root ts = rhs_rule r) ∧
(∀ t∈set ts. wf_rule_tree G t))

A tree corresponds to an Earley item in structure and in yield:

wf_item_tree _ uu (Leaf a) = True
wf_item_tree G x (Branch N ts) =
((N = lhs_item x ∧ map root ts = take (dot_item x) (rhs_item x)) ∧
(∀ t∈set ts. wf_rule_tree G t))

wf_yield ω x t = (yield t = ωstart_item x/end_item x)

6.1 Parser Implementation
After executing the EarleyL function, we obtain bins that represent the complete set of
Earley items. The null, predecessor and reduction pointers of the entries serve as a means to
navigate through these bins.

The semantics of the pointers is as follows: a null pointer accompanies an item if that
item was predicted. An entry contains a predecessor pointer, Pre pre, if its item was obtained
by applying the Scan operation to the item of the entry in the previous bin at index pre. An
entry contains reduction pointers, PreRed p ps, if its item was computed by the completion
operation. For any (k ′, pre, red) ∈ set (p # ps), there exists a predecessor item in bin k ′ at
index pre and a complete reduction item in the same bin at index red.

The function build_tree ′ constructs a single parse tree corresponding to the item x in
entry e at index i of the k-th bin:

build_tree ′ bs ω k i = (let e = bs ! k ! i in
case snd e of

Null ⇒ Some (Branch (lhs_item (fst e)) [])
| Pre pre ⇒

do { t ← build_tree ′ bs ω (k−1) pre;
case t of Branch A ts ⇒ Some (Branch A (ts @ [Leaf (ω!(k−1))])) }

| PreRed (k ′, pre, red) _⇒
do { t ← build_tree ′ bs ω k ′ pre;

case t of Branch A ts ⇒
do { t ← build_tree ′ bs ω k red;

Some (Branch A (ts @ [t])) }})

ITP 2024

31:12 A Verified Earley Parser

If the pointer of e is a null pointer, the algorithm begins building a new branch. Specifically,
it constructs a branch Branch A [], where A is the left-hand side symbol of the production
rule of the item x. If the algorithm encounters a predecessor pointer Pre pre, it recursively
calls itself for the previous bin, k − 1, at index pre. This recursive call results in a partially
completed parse branch. Following the semantics of the predecessor pointer, the algorithm
appends a new Leaf containing the terminal symbol at index k − 1 of the input ω to the list
of subtrees of this branch. In the case of a reduction pointer, the algorithm considers only
the first triple (k ′, pre, red). It calls itself recursively for the predecessor entry in bin k ′ at
index pre and the completed entry in the same bin at index red. These recursive calls yield
respectively a partially completed parse branch Branch A ts and a complete parse tree t.
Following the semantics of the reduction pointer, the complete branch t is appended to the
list of subtrees ts.

The final algorithm build_tree (definition omitted) first computes the complete bins using
the function EarleyL. It then searches the last bin for any finished item x, and calls the
function build_tree ′ at the index of x in the final bin, returning the resulting parse tree as an
optional value, if such a tree exists, or None in case of non-termination.

6.2 Proving Termination
The function build_tree ′ is a partial function. It calls itself recursively, following the informa-
tion provided by the pointers. Intuitively, it terminates because predecessor pointers lead
to earlier bins, and reduction pointers point upwards within a bin. Consequently, we define
a measure build_tree ′_measure (bs, ω, k, i) = foldl (+) 0 (map length (take k bs)) + i,
counting the number of entries in the first k bins up to the i-th entry in bin k+1. But in the
case of malformed input, the pointers might result in a cycle of recursive calls and thus the
measure is not strictly decreasing. And even for well-formed input, complications arise.

Consider an entry at index i in the k-th bin. If the entry contains a reduction triple (k ′,

pre, red), the algorithm calls itself recursively for the reduction entry at index red in bin
k. Now consider the cyclic grammar A → B | a, B → A and the input ω = a. In this case,
the last bin contains a cycle of reductions: there is an entry B → A•, 0, 1; (0, 2, 0), (0, 2, 2) at
index 1, and its second reduction triple (0, 2, 2) leads to index 2 of the same bin. There, we
find the entry A → B•, 0, 1; (0, 0, 1) with a reduction triple to index 1, completing the cycle,
and leading to potential non-termination of the algorithm.

We constrain the input of the function build_tree ′ to wf_tree_input = {(bs, ω, k, i) |
sound_ptrs ω bs ∧ mono_red_ptr bs ∧ k < |bs| ∧ k ≤ |ω| ∧ i < |bs ! k|} where the definition
of sound_ptrs and mono_red_ptr is the following:

sound_ptrs ω bs = (∀ k < |bs|. ∀ e ∈ set (bs!k).
(snd e = Null −→ predicts (fst e)) ∧
(∀ pre. snd e = Pre pre −→

k > 0 ∧ pre < |bs!(k−1)| ∧ scans ω k (fst (bs!(k−1)!pre)) (fst e)) ∧
(∀ p ps k ′ pre red. snd e = PreRed p ps ∧ (k ′, pre, red) ∈ set (p#ps) −→

k ′ < k ∧ pre < |bs!k ′| ∧ red < |bs!k| ∧ completes k (fst (bs!k ′!pre)) (fst e) (fst (bs!k!red))))

mono_red_ptr bs = (∀ k < |bs|. ∀ i < |bs!k|.
∀ k ′ pre red ps. snd (bs!k!i) = PreRed (k ′, pre, red) ps −→ red < i)

The predicate sound_ptrs defines the semantics for the pointer datatype, ensuring that the
pointers do not exceed the bounds of the bins and that related items follow the semantics of
the respective operation. The function build_tree ′ always follows the first reduction triple (k ′,

pre, red) ∈ set (p # ps) for a reduction pointer PreRed p ps, and the predicate mono_red_ptr

M. Rau and T. Nipkow 31:13

guarantees that the reduction pointer red of this reduction triple always points strictly
upwards within the bin, even for cyclic grammars as in the example above, enabling us to
prove termination of the algorithm.

lemma build_tree ′_termination:
assumes (bs, ω, k, i) ∈ wf_tree_input
shows ∃A ts. build_tree ′ bs ω k i = Some (Branch A ts)

6.3 Proving Correctness
To prove the correctness of the parse tree algorithm, we first show that the resulting tree
corresponds in derivation and yield to the Earley item where the construction originated.

theorem wf_item_yield_build_tree ′:
assumes (bs, ω, k, i) ∈ wf_tree_input and wf_bins G ω bs
assumes build_tree ′ bs ω k i = Some t and x = fst (bs!k!i)
shows wf_item_tree G x t ∧ wf_yield ω x t

The predicate wf_bins states that each bin only contains entries with distinct items, all
items are well-formed and their end index equals the index of the bin they reside in. The
proof is by induction on build_tree ′_measure (bs, ω, k, i).

As a corollary, we obtain the first correctness statement for epsilon-free grammars: any
constructed parse tree adheres to the rules of the grammar, is rooted at its start symbol and
yields the complete input:

corollary wf_rule_root_yield_build_tree_EarleyL:
assumes ε_free G and build_tree G ω (EarleyL G ω) = Some t
shows wf_rule_tree G t ∧ root t = S G ∧ yield t = ω

The build_tree function scans the last bin for any finished item x, and calls the function
build_tree ′. Given that the function EarleyL guarantees well-formed tree inputs, the resulting
tree conforms both in derivation and yield to the item x, as proved in the preceding theorem.
Since x is a finished item, the root of the tree corresponds to the start symbol of the grammar,
the tree’s yield encompasses the complete input, and the definition of wf_item_tree aligns
with the definition of wf_rule_tree.

The second and final correctness theorem follows: the algorithm returns a parse tree, if
and only if, there exists a derivation of ω from the grammar’s start symbol.

theorem correctness_build_tree_EarleyL:
assumes is_word G ω and ε_free G
shows (∃ t. build_tree G ω (EarleyL G ω) = Some t) ←→ G ⊢ [S G] ⇒∗ ω

The function build_tree finds a finished item in the last bin and returns a parse tree, if
and only if, the bins generated by the function EarleyL contain a finished item. These items
align precisely with those items specified by the inductive definition. Lastly, the inductive
set of Earley items contains a finished item, if and only if, there exists a derivation of the
input from the grammar’s start symbol.

7 Evaluation

We present an informal argument for the algorithm’s running time, and empirically access its
efficiency. Given that we construct solely a single parse tree, the running time is dominated
by the function EarleyL.

ITP 2024

31:14 A Verified Earley Parser

Let n denote the length of the input ω. Each bin Bj (0 ≤ j ≤ n) exclusively contains
well-formed items Item r d i j. The number of possible production rules r, and possible dot
positions d, are both constants independent of n, although they may be rather large. The
index i is bounded by 0 ≤ i ≤ j, and thus depends on j, which is bounded by n. The end
index j always equals the index of the bin. Thus, the number of items in each bin Bj is O(n).
The initial bin construction takes linear time. Scanning is also a linear operation, producing
at most one new entry. Prediction runs in time proportional to the grammar, or constant
time, adding a constant amount of new entries. Lastly, completion takes linear time as it
scans the entire origin bin for applicable items. However, as the size of the origin bin is linear,
this operation adds O(n) new entries to the current bin. The algorithm implements a bin as
a list, so inserting e new entries into any bin takes time e × O(n). The time for one execution
of the body of the function EarleyL

_bin ′ is dominated by the time it takes to update the
bins with e new items. In the worst case, this is completion, resulting in a running time of
e × O(n), for e ∈ O(n). Moreover, the function calls itself at most n times due to the size of
the bin it operates on, resulting in cubic time complexity. Finally, the algorithm iterates
over all n bins, leading to a final upper bound on the running time of O(n4).

The space complexity for an Earley recognizer is quadratic: n bins of linear size. However,
as each entry may have n reduction pointers in the worst case, the space required to represent
all Earley entries with pointers becomes cubic in n.

It is worth noting that the running time is not optimal. Earley’s [12] original implement-
ation achieves an optimal running time of O(n3) by implementing a bin as an imperative
singly-linked list and additionally maintaining a cache of already inserted items. This cache
reduces the insertion time of a new entry into a bin from linear to constant time such that
computing a single bin takes in the worst case quadratic time. Further refinement of our
functional implementation to an imperative algorithm with cache is future work.

Additionally, we evaluate the running time of the exported recognizer Isabelle code in
comparison to a hand-written imperative implementation of Earley’s recognizer. Our target
language is Scala (verified as well as handwritten) and the verified code can be integrated
easily into existing code bases. Alternatively, Isabelle also supports Haskell, ML, and OCaml.
We then conducted tests on five different grammars, averaging the execution of ten runs for
each data point. The grammars and running times for Earley’s [12] original implementation
are:
1. An ambiguous grammar S → SS | a, cubic running time.

2. A right-recursive grammar S → aS | a, quadratic running time.

3. A palindrome grammar S → aSa | a, quadratic running time.

4. A left recursive grammar S → Sa | a, linear running time.

5. A grammar with bounded-ambiguity S → SX | a, X → Y | Z, Y → a, Z → a, linear
running time.

Figure 1 depicts the running times in milliseconds for the exported Isabelle code on
all five grammars. Figure 2 compares the verified code against the handwritten recognizer
implementation for grammars one, two, and four. In both cases, the input is ω = an. For
sufficiently large inputs the hand-written implementation exhibits optimal running time,
while the verified code exhibits a linear slowdown in the size of the input . This is also
confirmed by a regression analysis. It is possible to fit polynomial models of the respective
order, capturing the expected running time, to the data set, depicted as solid lines in the
figures.

M. Rau and T. Nipkow 31:15

Figure 1 Isabelle: all grammars. Figure 2 Isabelle vs Handwritten.

8 Related Work

We highlight related work on formalization of parsing algorithms, starting with LL-based
parsing: Lasser et al. [25] verify an LL(1) parser generator using the Coq proof assistant.
Edelmann et al. [13] formalize a derivative-based LL(1) parsing algorithm, proving correctness
using the Coq proof assistant.

There also exist verified LR-based algorithms: Barthwal et al. [7] formalize background
theory about context-free languages and grammars, and subsequently verify an SLR auto-
maton and parser produced by a parser generator with the HOL4 proof assistant. Jourdan et
al. [21] present a validator which checks if a context-free grammar and an LR(1) parser agree,
producing correctness guarantees required by verified compilers.

Furthermore, there is relevant work on the verification of PEGs [17, 16], an alternative
representation to CFGs. Blaudeau et al. [8] formalize the meta theory of PEGs. They build a
verified parser interpreter based on higher-order parsing combinators for expression grammars
using the PVS specification language and verification system. Koprowski et al. [23] present
TRX: a PEG interpreter formally developed in Coq which also parses expression grammars.

Lastly, there exist a variety of verified parsers for general context-free grammars. Ridge [34]
constructs a generic parser generator based-on combinator parsing. His approach has a worst
case complexity of O(n5) and is verified using the HOL4 theorem prover. Obua formalizes
Local Lexing [31, 30] in Isabelle, a parsing concept that interleaves lexing and parsing allowing
the lexing phase to be dependent on the parsing process. Firsov and Uustalu [14, 15] rewrite
a context-free grammar into an equivalent one in Chomsky normal form and implement the
CYK parsing algorithm. They verify their work in Agda. The CYK algorithm had already
been verified by Bortin [9]. Danielsson [11] develops and verifies a monadic parser combinator
library in Agda.

9 Conclusions

We formalized and verified a functional implementation of an Earley recognizer and parser
based on Earley’s [12] original imperative implementation, the refinement-based paper proof
of Jones [20], and the work of Scott [35]. Initially, we defined an Earley recognizer inductively
and proved soundness and completeness. We refined the inductive definition to a functional
recognizer implementation (proving equivalence between the two levels). We also enhanced

ITP 2024

31:16 A Verified Earley Parser

the implementation with “pointers”, following the work of Scott [35]. Following Aho and
Ullman [4], we implemented a functional algorithm that constructs a single parse tree, and
proved its termination and correctness. Finally, we argued informally about the running time
of our functional implementation, comparing it to an asymptotically optimal, hand-written,
imperative implementation and providing empirical evidence supporting our claims.

Future work is mainly centered around improving the algorithm’s efficiency. A first step
is a refinement to an imperative implementation that incorporates a cache to achieve optimal
cubic time and space bounds. Further performance optimizations include improving the
representation of the grammar for faster prediction [32] and grouping the items of a bin
based on their next symbol [12]. This avoids searching the complete origin bin during the
completion operation. Leo [26] describes an extension applicable to an Earley recognizer and
parser that improves the complexity for grammars containing right recursion from quadratic
to linear time and space. Earley [12] suggested using lookhead for the completion operation
to improve the performance of his algorithm. However, Bouckaert et al. [10] argued that
lookahead is better suited for the prediction operation. McLean and Horsool [27] claimed that
lookahead actually slowed down an Earley parser, and Aycock and Horspool [5] concluded
that the necessity of lookahead is at least controversial. Lastly, we would like to incorporate
the work of Aycock and Horspool [6] and Polat et al. [32] to lift the minor restriction to
epsilon-free grammars.

References

1 Failure to patch two-month-old bug led to massive equifax
breach. https://arstechnica.com/information-technology/2017/09/
massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug. Accessed:
2024-03-16.

2 Stagefright: Scary code in the heart of android. https://www.blackhat.com/docs/us-15/
materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf. Ac-
cessed: 2024-03-16.

3 Windows media parsing remote code execution vulnerability. https://nvd.nist.gov/vuln/
detail/CVE-2016-0101. Accessed: 2024-03-16.

4 Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, Inc., USA, 1972.

5 John Aycock and R. Nigel Horspool. Directly-executable Earley parsing. In Reinhard Wilhelm,
editor, Compiler Construction, CC 2001, volume 2027 of LNCS, pages 229–243. Springer,
2001. doi:10.1007/3-540-45306-7_16.

6 John Aycock and R. Nigel Horspool. Practical Earley parsing. Comput. J., 45(6):620–630,
2002. doi:10.1093/comjnl/45.6.620.

7 Aditi Barthwal and Michael Norrish. Verified, executable parsing. In Giuseppe Castagna,
editor, Programming Languages and Systems, pages 160–174, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

8 Clement Blaudeau and Natarajan Shankar. A verified packrat parser interpreter for parsing
expression grammars. In Certified Programs and Proofs, CPP 2020, pages 3–17. ACM, 2020.
doi:10.1145/3372885.3373836.

9 Maksym Bortin. A formalisation of the Cocke-Younger-Kasami algorithm. Archive of Formal
Proofs, April 2016. , Formal proof development. URL: https://isa-afp.org/entries/CYK.
html.

10 M. Bouckaert, A. Pirotte, and M. Snelling. Efficient parsing algorithms for general context-free
parsers. Information Sciences, 8(1):1–26, 1975. doi:10.1016/0020-0255(75)90002-X.

https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://nvd.nist.gov/vuln/detail/CVE-2016-0101
https://nvd.nist.gov/vuln/detail/CVE-2016-0101
https://doi.org/10.1007/3-540-45306-7_16
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1145/3372885.3373836
https://isa-afp.org/entries/CYK.html
https://isa-afp.org/entries/CYK.html
https://doi.org/10.1016/0020-0255(75)90002-X

M. Rau and T. Nipkow 31:17

11 Nils Anders Danielsson. Total parser combinators. In Paul Hudak and Stephanie Weirich,
editors, International Conference on Functional Programming, ICFP 2010, pages 285–296.
ACM, 2010. doi:10.1145/1863543.1863585.

12 Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102, 1970.
doi:10.1145/362007.362035.

13 Romain Edelmann, Jad Hamza, and Viktor Kunčak. Zippy LL(1) parsing with derivatives.
In Programming Language Design and Implementation, PLDI 2020, pages 1036–1051. ACM,
2020. doi:10.1145/3385412.3385992.

14 Denis Firsov and Tarmo Uustalu. Certified CYK parsing of context-free languages. Journal of
Logical and Algebraic Methods in Programming, 83(5):459–468, 2014. Nordic Workshop on
Programming Theory (NWPT 2012). doi:10.1016/j.jlamp.2014.09.002.

15 Denis Firsov and Tarmo Uustalu. Certified normalization of context-free grammars. In Certified
Programs and Proofs, CPP ’15, pages 167–174. ACM, 2015. doi:10.1145/2676724.2693177.

16 Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time, functional pearl. In
International Conference on Functional Programming, ICFP ’02, pages 36–47. ACM, 2002.
doi:10.1145/581478.581483.

17 Bryan Ford. Parsing expression grammars: A recognition-based syntactic foundation. In
Principles of Programming Languages, POPL ’04, pages 111–122. ACM, 2004. doi:10.1145/
964001.964011.

18 Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: a Practical Guide. Ellis Horwood,
1990.

19 Mark Johnson. The Computational Complexity of GLR Parsing, pages 35–42. Springer US,
Boston, MA, 1991. doi:10.1007/978-1-4615-4034-2_3.

20 C B Jones. Formal development of correct algorithms: An example based on Earley’s recogniser.
In Proceedings of ACM Conference on Proving Assertions about Programs, pages 150–169.
ACM, 1972. doi:10.1145/800235.807083.

21 Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating LR(1) parsers. In
Helmut Seidl, editor, European Symposium on Programming, ESOP 2012, volume 7211 of
LNCS, pages 397–416. Springer, 2012. doi:10.1007/978-3-642-28869-2_20.

22 Jeffrey Kegler. Marpa, a practical general parser: the recognizer, 2023. arXiv:1910.08129.
23 Adam Koprowski and Henri Binsztok. TRX: A formally verified parser interpreter. Log.

Methods Comput. Sci., 7(2), 2011. doi:10.2168/LMCS-7(2:18)2011.
24 Alexander Krauss. Recursive definitions of monadic functions. In Ekaterina Komendantskaya,

Ana Bove, and Milad Niqui, editors, Partiality and Recursion in Interactive Theorem Provers,
PAR@ITP 2010, volume 5 of EPiC Series, pages 1–13. EasyChair, 2010. doi:10.29007/1mdt.

25 Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. A Verified LL(1) Parser
Generator. In John Harrison, John O’Leary, and Andrew Tolmach, editors, Interactive
Theorem Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2019.24.

26 Joop M.I.M. Leo. A general context-free parsing algorithm running in linear time on every
LR(k) grammar without using lookahead. Theoretical Computer Science, 82(1):165–176, 1991.
doi:10.1016/0304-3975(91)90180-A.

27 Philippe McLean and R. Nigel Horspool. A faster Earley parser. In Tibor Gyimóthy,
editor, Compiler Construction, CC’96, volume 1060 of LNCS, pages 281–293. Springer, 1996.
doi:10.1007/3-540-61053-7_68.

28 Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014.
URL: http://concrete-semantics.org.

29 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

30 Steven Obua. Local lexing. Archive of Formal Proofs, 2017. , Formal proof development. URL:
https://isa-afp.org/entries/LocalLexing.html.

ITP 2024

https://doi.org/10.1145/1863543.1863585
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/3385412.3385992
https://doi.org/10.1016/j.jlamp.2014.09.002
https://doi.org/10.1145/2676724.2693177
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://doi.org/10.1007/978-1-4615-4034-2_3
https://doi.org/10.1145/800235.807083
https://doi.org/10.1007/978-3-642-28869-2_20
https://arxiv.org/abs/1910.08129
https://doi.org/10.2168/LMCS-7(2:18)2011
https://doi.org/10.29007/1mdt
https://doi.org/10.4230/LIPIcs.ITP.2019.24
https://doi.org/10.1016/0304-3975(91)90180-A
https://doi.org/10.1007/3-540-61053-7_68
http://concrete-semantics.org
https://isa-afp.org/entries/LocalLexing.html

31:18 A Verified Earley Parser

31 Steven Obua, Phil Scott, and Jacques Fleuriot. Local lexing, 2017. arXiv:1702.03277.
32 Sinan Polat, Merve Selcuk-Simsek, and Ilyas Cicekli. A modified Earley parser

for huge natural language grammars. Res. Comput. Sci., 117:23–35, 2016. URL:
https://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%
20Natural%20Language%20Grammars.pdf.

33 Martin Rau. Earley parser. Archive of Formal Proofs, July 2023. , Formal proof development.
URL: https://devel.isa-afp.org/entries/Earley_Parser.html.

34 Tom Ridge. Simple, functional, sound and complete parsing for all context-free grammars. In
Jean-Pierre Jouannaud and Zhong Shao, editors, Certified Programs and Proofs, CPP 2011,
volume 7086 of LNCS, pages 103–118. Springer, 2011. doi:10.1007/978-3-642-25379-9_10.

35 Elizabeth Scott. SPPF-style parsing from Earley recognisers. Electronic Notes in Theoretical
Computer Science, 203(2):53–67, 2008. Workshop on Language Descriptions, Tools, and
Applications (LDTA 2007). doi:10.1016/j.entcs.2008.03.044.

36 Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, USA, 1985.

37 Masaru Tomita. An efficient augmented-context-free parsing algorithm. Comput. Linguist.,
13(1–2):31–46, January 1987.

https://arxiv.org/abs/1702.03277
https://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
https://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
https://devel.isa-afp.org/entries/Earley_Parser.html
https://doi.org/10.1007/978-3-642-25379-9_10
https://doi.org/10.1016/j.entcs.2008.03.044

	1 Introduction
	2 Isabelle/HOL
	3 Context-free Grammars and Derivations
	4 Defining the Set of Earley Items
	4.1 Proving Well-formedness and Finiteness
	4.2 Proving Soundness
	4.3 Proving Completeness

	5 An Executable Earley Recognizer
	5.1 Recognizer Implementation
	5.2 Recognizer Correctness Proof

	6 An Earley Parser
	6.1 Parser Implementation
	6.2 Proving Termination
	6.3 Proving Correctness

	7 Evaluation
	8 Related Work
	9 Conclusions

