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Abstract
Formalizing a typed programming language in a proof assistant requires to choose representations
for variables and typing. Variables are often represented as de Bruijn indices, where substitution
is usually defined in terms of renamings to allow for proofs by structural induction. Typing can
be represented extrinsically by defining untyped terms and a typing relation, or intrinsically by
combining syntax and typing into a single definition of well-typed terms. For extrinsic typing, there
is again a choice between extrinsic scoping, where terms and the notion of free variables are defined
separately, and intrinsic scoping, where terms are indexed by their free variables.

This paper describes an Agda framework for formalizing programming languages with extrinsic
typing, intrinsic scoping, and de Bruijn Indices for variables. The framework supports object
languages with arbitrary many variable sorts and dependencies, making it suitable for polymorphic
languages and dependent types. Given an Agda definition of syntax and typing, the framework
derives substitution operations and lemmas for untyped terms, and provides an abstraction to prove
type preservation of these operations with just a single lemma. The key insights behind the framework
are the use of multi-sorted syntax definitions, which enable parallel substitutions that replace all
variables of all sorts simultaneously, and abstractions that unify the definitions, compositions, typings,
and type preservation lemmas of multi-sorted renamings and substitutions. Case studies have been
conducted to prove subject reduction for System F with subtyping, dependently typed lambda
calculus, and lambda calculus with pattern matching.
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1 Introduction

Formalizing programming languages in proof assistants quickly gets repetitive. Almost every
programming language supports variables with static binding, and hence requires numerous
definitions and lemmas related to variable substitution.

Additionally, repetition can also occur within a single formalization. This can be seen
with polymorphic languages, where multiple sorts of variables are present. Consider for
example System F, which supports both expression- and type-variables. With a naive
approach, the whole substitution machinery needs to be duplicated three times! We need to
substitute expression-variables in expressions, type-variables in types, but also type-variables
in expressions. Even worse, having two substitutions acting on expressions requires to also
prove lemmas about their interactions. If we would additionally introduce kind-variables, we
would end up with a total of six duplications of the substitution machinery and corresponding
interaction lemmas!
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32:2 Abstractions for Multi-Sorted Substitutions

Further repetition can occur due to the choice of variable representation. For example,
for de Bruijn indices, substitution is usually defined in terms of renamings1 to allow for
structural induction. With a naive approach, this would again double the amount of
substitution machinery, as all definitions and lemmas need to be written first for renamings
and then again for substitutions.

Similarly, for a typed language formalized via extrinsic typing we need type preservation
lemmas for each substitution and renaming operation, which again doubles the number of
definitions.

If one is not careful, a formalization of a language with type and kind polymorphism can
easily end up with 24 slightly changed copies of the whole substitution machinery! Clearly,
this situation is in need of automation.

Our framework approaches this problem by using a combination of abstractions and
reflection in the context of extrinsically typed, intrinsically scoped syntax with de Bruijn
indices. The user can write a language specification using regular Agda definitions (no
encodings via generic programming[2]) and our framework derives definitions and lemmas
for untyped substitution, and provides an abstraction to prove type preservation for all
substitution operations with only a single lemma. For System F, our framework allows to
prove subject reduction with only a single handwritten lemma for type preservation.

Compared to standard practices, we do not derive substitutions for each of the variable
sorts and syntactic categories, but instead use a novel approach for defining syntax, which
directly supports substitutions that replace all variable sorts in parallel and can be applied
to all syntactic categories. By further unifying renamings and substitutions, we gain the
ability to talk abstractly about any kind of renaming or substitution that can occur in
the formalization. This generality is key to then define abstractions for typing and type
preservation on the same level of generality, allowing to prove type preservation for renamings
and substitutions of all variable sorts and syntactic categories in a single lemma for many
typing relations, including those of our case studies.

1.1 Structure
The rest of this paper introduces our framework using System F as a running example for a
substitution-preserves-typing proof.

Code of the framework is displayed in gray boxes. Code of examples is displayed in yellow
boxes. Code of the System F formalization is displayed without boxes. The latter is the only
code a user of our framework has to write.

In this paper, we present a simplified version of the full framework, focusing on the core
concepts. We present all necessary definitions and lemmas, but omit some proofs for the sake
of space. The omitted proofs can be found in our supplementary material, which includes
the simplified framework (365 lines of code) and the System F formalization (212 lines of
code, where 79 can be derived by using the full framework). The full framework including
the case studies is available on Github: https://github.com/m0rphism/kitty

The rest of this paper is structured as follows: Section 2 introduces the multi-sorted
syntax and compares it to the more common unsorted syntax. Section 3 introduces multi-
sorted substitutions and renamings, and an abstraction to unify them. Section 4 introduces
composition of multi-sorted substitutions and renamings, and an abstraction to unify all four
compositions. Section 5 shows how to define types, type contexts, and typing relations, and

1 Renamings are substitutions that are only allowed to replace variables with variables
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presents an abstraction for unifying type preservation lemmas for renamings and substitutions.
Section 6 describes the class of object languages covered by our reflection algorithm. Section 7
discusses our case studies. Section 8 discusses related work. Section 9 concludes.

1.2 Contributions

1. a novel approach for formalizing intrinsically-scoped syntax with multiple variable sorts
as a special kind of intrinsically-typed syntax, we call multi-sorted syntax;

2. a novel abstraction for composition and its metatheory, unifying the four compositions
between renamings and substitutions;

3. a novel abstraction for typing, unifying type preservation of renaming and substitution;
4. a formalized specification of a large class of object languages for which untyped substitution

and lemmas can be derived generically.
5. an implementation as an Agda framework featuring a reflection algorithm, representa-

tion independence for substitutions and type contexts, heterogeneous equality between
renamings and substitutions, and absence of postulated axioms.

6. three case studies in using our approach to prove subject reduction for System F with
subtyping, a dependently-typed lambda calculus, and pattern matching.

2 Syntax

2.1 Unsorted Syntax

The following shows a typical intrinsically-scoped syntax of System F:

data Kind : Set where
⋆ : Kind -- Type Kind

data Type (n : N) : Set where
‘_ : Fin n → Type n -- Type variable
∀[α:_]_ : Kind → Type (suc n) → Type n -- Universal quantification
_⇒_ : Type n → Type n → Type n -- Function type

data Expr (n m : N) : Set where
‘_ : Fin m → Expr n m -- Expression variable
λx_ : Expr n (suc m) → Expr n m -- Expression abstraction
Λα_ : Expr (suc n) m → Expr n m -- Type abstraction
_·_ : Expr n m → Expr n m → Expr n m -- Expression application
_•_ : Expr n m → Type n → Expr n m -- Type application

Types are indexed by the number of free type variables n. Expressions are additionally
indexed by the number of free expression variables m. Variables ‘_ are represented as de
Bruijn indices, where Fin n is the type of n elements.

We identify two drawbacks with this style of syntax:
1. the syntactic categories (Kind, Type, and Expr) have different types, which makes it

difficult to treat them uniformly; and
2. the different sorts of variables are modeled separately, which requires to define not

just type-in-type and expression-in-expression substitution, but also type-in-expression
substitution. Consequently, interaction lemmas between the substitutions are required.

To avoid these drawbacks, we instead use a multi-sorted syntax.
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32:4 Abstractions for Multi-Sorted Substitutions

2.2 Multi-Sorted Syntax
A multi-sorted syntax is defined by a single type of sort-indexed terms.

A sort describes to which syntactic category a term belongs and is itself indexed by a
sort type, which describes whether the syntax permits variables of this sort:

data SortTy : Set where Var NoVar : SortTy

data Sort : SortTy → Set where -- Our syntax supports:
: Sort Var -- expressions and expression variables;

≈ : Sort Var -- types and type variables; and
ℸ : Sort NoVar -- kinds, but no kind variables.

The term type S ⊢ s is indexed by its sort s and the sorts of its free variables S. For
example, [≈, ≈] ⊢ is the type of expressions () with two free type-variables (≈).

data _⊢_ : List (Sort Var) → Sort st → Set where
‘_ : S ∋ s → S ⊢ s -- Expression and type variables
λx_ : ( :: S) ⊢ → S ⊢ -- Expression abstraction
Λα_ : (≈ :: S) ⊢ → S ⊢ -- Type abstraction
∀[α:_]_ : S ⊢ ℸ → (≈ :: S) ⊢ ≈ → S ⊢ ≈ -- Universal quantification
_·_ : S ⊢ → S ⊢ → S ⊢ -- Expression application
_•_ : S ⊢ → S ⊢ ≈ → S ⊢ -- Type application
_⇒_ : S ⊢ ≈ → S ⊢ ≈ → S ⊢ ≈ -- Function type
⋆ : S ⊢ ℸ -- Type kind

The notation _⊢_ is often used for terms in intrinsically-typed languages. This is no
accident: in effect, we defined an intrinsically-typed language with the twist that the typing
relation assures exactly that the syntactic categories are followed. Sorts s correspond to
types, and lists of sorts S correspond to type environments.

As it is typical in intrinsic typing, variables are represented as typed (in our case sorted)
de Bruijn indices S ∋ s, i.e. values of the usual proof-relevant list-membership relation:

data _∋_ {ℓ} {A : Set ℓ} : List A → A → Set ℓ where
zero : ∀ {xs x} → (x :: xs) ∋ x
suc : ∀ {xs x y} → xs ∋ x → (y :: xs) ∋ x

Note that there is no straightforward way to construct a multi-sorted syntax with intrinsic
typing: in a direct translation, the type of terms _⊢_ would be indexed by itself, which most
proof assistants forbid to avoid breaking logical consistency.

2.3 A Structure for Multi-Sorted Syntax
The regularity of the multi-sorted syntax makes it easy to define a structure for arbitrary
syntaxes, i.e. syntaxes with arbitrarily many syntactic categories and variable types:

record Syntax : Set1 where
field Sort : SortTy → Set

_⊢_ : ∀ {st} → List (Sort Var) → Sort st → Set
‘_ : ∀ {S} {s : Sort Var} → S ∋ s → S ⊢ s
‘-injective : ∀ {S s} {x y : S ∋ s} → ‘ x ≡ ‘ y → x ≡ y

The first three fields record the definitions of sorts, terms, and variable introduction. The last
field records that variable introduction ‘_ is injective, which is trivially true for constructors.
Syntax has type Set1, because the Sort and _⊢_ fields have type Set.
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The instantiation for our System F syntax is straightforward:

SystemF-Syntax : Syntax
SystemF-Syntax = record { Sort = Sort ; _⊢_ = _⊢_ ; ‘_ = ‘_ ; ‘-injective = λ { refl → refl } }

3 Renamings & Substitutions

3.1 Multi-Sorted Renamings & Substitutions

Working with a sort-indexed syntax allows us to define renamings and substitutions that
replace all variables of all sorts simultaneously:

_→r_ _→s_ : List (Sort Var) → List (Sort Var) → Set
S1 →r S2 = ∀ s → S1 ∋ s → S2 ∋ s
S1 →s S2 = ∀ s → S1 ∋ s → S2 ⊢ s

A renaming S1 →r S2 maps variables from S1 to variables from S2. A substitution S1 →s S2
maps variables from S1 to terms with free variables from S2.

This representation has the benefit that there is no combinatory explosion of substitutions
and renamings, e.g. no extra lemmas have to be proved between an expression-in-expression
and a type-in-expression substitution, because both are simply substitutions.

3.2 Unifying Renamings & Substitutions

To avoid the duplication between renamings and substitutions, McBride[6, 15] introduced
the kit abstraction. A kit is a structure that allows to abstract over whether something is
a term or a variable. The intention is to instantiate this structure exactly twice (once for
variables and once for terms), and then write definitions, which are parameterized over a kit
and consequently can be used for both variables and terms.

record Kit (_∋/⊢_ : List (Sort Var) → Sort Var → Set) : Set where
field id/‘ : S ∋ s → S ∋/⊢ s

‘/id : S ∋/⊢ s → S ⊢ s
wk : ∀ s’ → S ∋/⊢ s → (s’ :: S) ∋/⊢ s
‘/‘-is-‘ : ∀ (x : S ∋ s) → ‘/id (id/‘ x) ≡ ‘ x
id/‘-injective : id/‘ x1 ≡ id/‘ x2 → x1 ≡ x2

‘/id-injective : ∀ {x/t1 x/t2 : S ∋/⊢ s} → ‘/id x/t1 ≡ ‘/id x/t2 → x/t1 ≡ x/t2

wk-id/‘ : ∀ s’ (x : S ∋ s) → wk s’ (id/‘ x) ≡ id/‘ (suc x)

As we intend to have exactly two Kit instances, we choose names of the form x/y, where
x is the name we choose for the variable instance, and y is the name we choose for the term
instance. For example the parameter type _∋/⊢_ will be instantiated to _∋_ for the variable
kit, and to _⊢_ for the term kit.

A kit consists of the following components:
id/‘ converts a variable S ∋ s into a S ∋/⊢ s. For the variable kit, _∋/⊢_ is instantiated
to _∋_, so this operation is the identity. For the term kit, _∋/⊢_ is instantiated to _⊢_,
so this operation is the variable constructor ‘_.
‘/id converts a S ∋/⊢ s into a term S ⊢ s and is analogous to the id/‘ operation.
wk shifts the de Bruin indices in a variable or term. The new, unused variable zero can
assume any sort s’. For variables, wk is the successor suc. For terms, wk means applying
a shifting renaming to the term.

ITP 2024



32:6 Abstractions for Multi-Sorted Substitutions

_→k_ : List (Sort Var) → List (Sort Var) → Set
S1 →k S2 = ∀ s → S1 ∋ s → S2 ∋/⊢ s

_&_ : S1 ∋ s → S1 →k S2 → S2 ∋/⊢ s
x & ϕ = ϕ _ x

_↑_ : S1 →k S2 → ∀ s → (s :: S1) →k (s :: S2)
(ϕ ↑ s) _ zero = id/‘ zero
(ϕ ↑ s) _ (suc x) = wk _ (ϕ _ x)

L_M : S ∋/⊢ s → (s :: S) →k S
L x/t M _ zero = x/t
L x/t M _ (suc x) = id/‘ x

weaken : ∀ s → S →k (s :: S)
weaken s _ x = wk s (id/‘ x)

_~_ : (ϕ1 ϕ2 : S1 →k S2) → Set
_~_ {S1} ϕ1 ϕ2 = ∀ s (x : S1 ∋ s) →

ϕ1 s x ≡ ϕ2 s x

postulate ~-ext : ∀ {ϕ1 ϕ2 : S1 →k S2}
→ ϕ1 ~ ϕ2 → ϕ1 ≡ ϕ2

id : S →k S
id s x = id/‘ x

id↑~id : (id {S} ↑ s) ~ id {s :: S}

Figure 1 Map Operations.

‘/‘-is-‘ states that converting a variable first to a “variable-or-term” and then further to a
term is the same as converting it directly to a term using the variable constructor ‘_.
‘/id-injective and id/‘-injective state that ‘/id and id/‘ are injective.
wk-id/‘ characterizes the behaviour of the wk function by how it acts on variables: injecting
a variable and then shifting it, is the same as injecting a shifted variable.

Figure 1 shows the usual operations for renamings and substitutions. The definitions are
included directly in the record module of Kit, so they are implicitly parameterized over a
kit. The type S1 →k S2 unifies renamings S1 →r S2 and substitutions S1 →s S2. We call
a value of type S1 →k S2 a map and use the meta-variable ϕ for it. The operation ϕ & x
applies a map to a variable. The operation ϕ ↑ s lifts a map under a binder of sort s. The
operation L x/t M constructs a singleton map that replaces zero with x/t and decreases all
other variables by one. The weaken map increases all variables by one. The ϕ1 ∼ ϕ2 type
expresses extensional equality of maps. For simplicity, we postulate functional extensionality
∼-ext.2 There is an identity map id. The lemma id↑-id states that a lifted identity map is
again an identity map.

To make it easier to talk about a specific kit, we introduce the following notations:
we write S1 –[ K ]→ S2 for the S1 →k S2 of some specific Kit K; and
we write S ∋/⊢[ K ] s for the S ∋/⊢ s of some specific Kit K.

The operation of applying a map to a term depends on the concrete object language. It
is captured by the following structure:

record Traversal : Set1 where
field _···_ : ∀ {{ K : Kit _∋/⊢_ }} → S1 ⊢ s → S1 –[ K ]→ S2 → S2 ⊢ s

···-var : ∀ {{ K : Kit _∋/⊢_ }} (x : S1 ∋ s) (ϕ : S1 –[ K ]→ S2) → (‘ x) ··· ϕ ≡ ‘/id (x & ϕ)
···-id : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s) → t ··· id {{ K }} ≡ t

2 The actual implementation does not use any postulates. Functional extensionality can be avoided by
proving that ϕ1 ∼ ϕ2 implies (t ··· ϕ1) ≡ (t ··· ϕ2), i.e. that if two maps are extensionally equal, then
their applications (···) to the same term are intensionally equal. The downside of this approach is
boilerplate, because for each operation on maps, it needs to be proved that the operation preserves
extensional equality, e.g. that ϕ1 ∼ ϕ2 implies (ϕ1 ↑ s) ∼ (ϕ2 ↑ s). None of those lemmas are necessary
with functional extensionality.
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The fields of this structure have the following meaning:
t ··· ϕ applies the map ϕ (a renaming or substitution) to the term t.
···-var states that applying a map ϕ to a variable term ‘ x, is the same as applying ϕ to
the variable x, and then converting the result to a term via id/‘.
···-id states that applying the identity map id to a term does not change the term.

Finally, we define the actual kit instances. The variable kit definition is straightforward:

Kr : Kit _∋_
Kr = record { id/‘ = λ x → x ; ‘/id = ‘_

; wk = λ s’ x → suc x ; ‘/‘-is-‘ = λ x → refl
; id/‘-injective = λ eq → eq ; ‘/id-injective = ‘-injective
; wk-id/‘ = λ s’ x → refl }

The term kit requires both the variable kit and the Traversal to be defined, because
shifting a term with wk means applying the shifting renaming to the term. Hence, we define
the term kit in the record module of Traversal:
Ks : Kit _⊢_
Ks = record { id/‘ = ‘_ ; ‘/id = λ t → t

; wk = λ s’ t → t ··· weaken {{ Kr }} s’ ; ‘/‘-is-‘ = λ x → refl
; id/‘-injective = ‘-injective ; ‘/id-injective = λ eq → eq
; wk-id/‘ = λ s’ x → ···-var x (weaken {{ Kr }} s’) }

3.3 Instantiation for System F

In this subsection, we show how to instantiate the Traversal abstraction for System F. In
practice, this is done by our reflection algorithm automatically (Section 6), but it can be
instructive to see what happens under the hood.

First, we define the operation of applying a map to a term:

_···_ : ∀ {{ K : Kit _∋/⊢_ }} → S1 ⊢ s → S1 –[ K ]→ S2 → S2 ⊢ s
(‘ x) ··· ϕ = ‘/id (x & ϕ)
(λx t) ··· ϕ = λx (t ··· (ϕ ↑ ))
(Λα t) ··· ϕ = Λα (t ··· (ϕ ↑ ≈))
(∀[α: t1 ] t2) ··· ϕ = ∀[α: t1 ··· ϕ ] (t2 ··· (ϕ ↑ ≈))
(t1 · t2) ··· ϕ = (t1 ··· ϕ) · (t2 ··· ϕ)
(t1 • t2) ··· ϕ = (t1 ··· ϕ) • (t2 ··· ϕ)
(t1 ⇒ t2) ··· ϕ = (t1 ··· ϕ) ⇒ (t2 ··· ϕ)
⋆ ··· ϕ = ⋆

The interesting cases are those with variables and binders:
In the variable case (‘ x) ··· ϕ, we first apply the map ϕ to the variable x. If ϕ is a
renaming, we get back a variable and need to apply the variable constructor ‘_. If ϕ is a
substitution, we get back a term that we can use directly. This is exactly what ‘/id does.
In cases where the operation needs to go under a binder, like (λx e) ··· ϕ, we lift the map
using _↑_ to account for the bound variable before we apply it to the subterm.

We then prove that applying an identity map does not change the term:

···-id : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s) → t ··· id ≡ t

ITP 2024



32:8 Abstractions for Multi-Sorted Substitutions

···-id (‘ x) = ‘/‘-is-‘ x
···-id (λx e) = λx (e ··· (id ↑ )) ≡〈 cong (λ ϕ → λx (e ··· ϕ)) (~-ext id↑~id) 〉

λx (e ··· id) ≡〈 cong (λ e → λx e) (···-id e) 〉
λx e ■

We only display and discuss the interesting cases:
in the variable case ‘ x, the id/‘ from the identity map meets the ‘/id from the traversal
operation, so we need to use ‘/‘-is-‘.
in the lambda abstraction case λx e, the traversal lifts the identity under its binder. Here
we need to use id↑-id to show that a lifted identity map is again an identity map.

Finally, we instantiate the Traversal structure:

SystemF-Traversal : Traversal
SystemF-Traversal = record { _···_ = _···_ ; ···-id = ···-id ; ···-var = λ x ϕ → refl }

3.4 Extension Kits
As we defined the Kit structure before the Traversal structure, the fields of Kit could not use
map application _···_ in their types. This prevented us to include another useful axiom into
the Kit structure. As this axiom also needs to be proved separately for variables and terms,
we define a new structure for it which extends a Kit:
record WkKit (K : Kit _∋/⊢_): Set1 where
field wk-‘/id : ∀ s {S s’} (x/t : S ∋/⊢ s’) → ‘/id x/t ··· weaken s ≡ ‘/id (wk s x/t)

The wk-‘/id axiom explains the wk function by how it acts on terms. It is the counterpiece
to the Kit axiom wk-id/‘, which explains the wk function by how it acts on variables. This
lemma is useful for proving extensional equalities between maps involving weakening, where
‘/id-injective allows to add ‘/id on both sides of the equation, such that wk-‘/id can be used
to make further progress. The instantiations of the WkKit are straightforward:

Wr : WkKit Kr ; Ws : WkKit Ks

Wr = record { wk-‘/id = λ s x → ···-var x (weaken s) }
Ws = record { wk-‘/id = λ s t → refl }

As the variable and term Kits are the only two Kits, and both have WkKit instances, it is
always safe to assume that a Kit also supports the WkKit extension.

4 Map Composition

In this section, we extend our framework with an abstraction for the composition of arbitrary
maps. The core property of composition is the fusion lemma, which states that applying two
maps ϕ1 and ϕ2 in sequence to a term t, is the same as applying their composition (ϕ1 ·k ϕ2)
to t, i.e. (t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2). This property gives our framework the ability to
reason about the application of multiple maps by reasoning about the application of a single
map. As such it forms the basis for all lemmas involving multiple maps, e.g. that applying a
weakening and then a singleton substitution cancel each other out.

As we defined substitution in terms of renamings, we need to consider all four compositions
between renamings and substitutions. While the composition operations can be defined
independently of each other, the fusion lemma for two substitutions, depends on the fusion
lemmas for a renaming and a substitution, which in turn depend on the fusion lemma for
two renamings.
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Previous work on kits[6] addresses this issue by duplicating the definitions and using
tactics to reduce boilerplate in proofs. In contrast, we define structures similar to Kit and
Traversal, which allow us to abstract over all four compositions and use the same trick as
before to eliminate the dependencies. With the help of a general map composition, we can
prove lemmas about the interactions of general maps, which is crucial for proving a type
preservation lemma for general map application instead of individual lemmas for renamings
and substitutions.

4.1 An Examination of Composition

To motivate our abstraction, we first look at the four compositions individually:
_r·r_ : (S1 →r S2) → (S2 →r S3) → (S1 →r S3)
_r·s_ : (S1 →r S2) → (S2 →s S3) → (S1 →s S3)
_s·r_ : (S1 →s S2) → (S2 →r S3) → (S1 →s S3)
_s·s_ : (S1 →s S2) → (S2 →s S3) → (S1 →s S3)

(ϕ1 r·r ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 r·s ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 s·r ϕ2) _ x = (x & ϕ1) ··· ϕ2

(ϕ1 s·s ϕ2) _ x = (x & ϕ1) ··· ϕ2

The definitions reveal two interesting properties:
1. If we compose two maps ϕ1 and ϕ2, then the resulting map is a renaming, iff both ϕ1 and

ϕ2 are renamings. In other words: if ϕ1 is a K1-map and ϕ2 is a K2-map, then the result
is a (K1 ⊔ K2)-map, where ⊔ refers to the lattice for { Kr , Ks } generated by Kr < Ks.

2. All four compositions first apply ϕ1 to x, and then apply ϕ2 to the result. If ϕ1 is a
renaming, this result is another variable, but if ϕ1 is a substitution, this result is a term.

With the Kit abstraction, we can easily abstract over ϕ2 being a renaming or a substitution:
_r·_ : (S1 →r S2) → (S2 –[ K ]→ S3) → (S1 –[ K ]→ S3)
_s·_ : (S1 →s S2) → (S2 –[ K ]→ S3) → (S1 →s S3)

(ϕ1 r· ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 s· ϕ2) _ x = (x & ϕ1) ··· ϕ2

But to abstract over ϕ1, the Kit abstraction is not sufficient: while it allows us to abstract
over what we are applying, i.e. a renaming or a substitution, it does not allow us to abstract
over what we are applying it to, i.e. a variable or a term. For the latter we have two distinct
operations _&_ and _···_.

To fill this gap, we introduce a new abstraction that we call a compose kit (CKit), which
provides an operation _&/···_ that unifies _&_ and _···_. This allows us to define a general
composition as follows:

_·k_ : S1 –[ K1 ]→ S2 → S2 –[ K2 ]→ S3 → S1 –[ K1⊔K2 ]→ S3

(ϕ1 ·k ϕ2) _ x = (x & ϕ1) &/··· ϕ2

4.2 An Abstraction for Composition

A compose kit CKit K1 K2 K1⊔K2 describes the operations necessary for definining the
composition of a K1-map with a K2-map that results in a K1⊔K2-map:

record CKit (K1 : Kit _∋/⊢1_) (K2 : Kit _∋/⊢2_) (K1⊔K2 : Kit _∋/⊢_) : Set where
field _&/···_ : S1 ∋/⊢[ K1 ] s → S1 –[ K2 ]→ S2 → S2 ∋/⊢[ K1⊔K2 ] s

&/···-··· : (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →
‘/id (x/t &/··· ϕ) ≡ ‘/id x/t ··· ϕ

&/···-wk-↑ : (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →
wk s’ (x/t &/··· ϕ) ≡ wk s’ x/t &/··· (ϕ ↑ s’)

The third parameter K1⊔K2 can be seen as a functional dependency[12] and is determined
by the choice of K1 and K2. The fields of a compose kit have the following meaning:
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The _&/···_ operation takes a variable or term x/t (according to K1) and a renaming
or substitution ϕ (according to K2) and applies ϕ to x/t resulting in a variable or term
(according to K1⊔K2). From this operation we derive map composition _·k_ as shown
in the previous subsection.
The &/···-··· lemma describes the behavior of _&/···_ in terms of _···_, allowing sub-
sequent lemmas to make use of the lemmas that we have already proved for _···_.
The &/···-wk-↑ lemma states that applying a map and then weakening is the same as
weakening first and then lifting the map over the variable introduced by the weakening.
From this lemma, we can derive that lifting distributes over composition:

dist-↑-· : ∀ s (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
((ϕ1 ·k ϕ2) ↑ s) ~ ((ϕ1 ↑ s) ·k (ϕ2 ↑ s))

A CTraversal provides a fusion lemma that works for the composition of any CKit:
record CTraversal : Set1 where

field fusion :
∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }} {{ W1 : WkKit K1 }}

{{ C : CKit K1 K2 K }} (t : S1 ⊢ s) (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
(t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2)

Given a CTraversal, we can prove the usual lemmas about interactions of multiple maps:
A map ϕ followed by a weakening is equivalent to a weakening followed by ϕ that has
been lifted over the weakened variable:
···-↑-wk : ∀ {{ K : Kit _∋/⊢_ }} {{ W : WkKit K }} {{ C1 : CKit K Kr K }} {{ C2 : CKit Kr K K }}

(t : S1 ⊢ s) (ϕ : S1 –[ K ]→ S2) s →
t ··· ϕ ··· weaken s ≡ t ··· weaken s ··· (ϕ ↑ s)

A weakening followed by a singleton substitution act as an identity map:

wk-cancels-LM-··· : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s’) (x/t : S ∋/⊢[ K ] s) →
t ··· weaken s ··· L x/t M ≡ t

A singleton map can be swapped with any map ϕ:

dist-↑-LM-··· : ∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }}
{{ W1 : WkKit K1 }} {{ W2 : WkKit K2 }}
{{ C1 : CKit K1 K2 K }} {{ C2 : CKit K2 K K }}
(t : (s :: S1) ⊢ s’) (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →

t ··· L x/t M ··· ϕ ≡ t ··· (ϕ ↑ s) ··· L x/t &/··· ϕ M

Similarly, as it was the case for the Kit and Traversal structures, the idea is that we instantiate
the CTraversal for our object language, and in return the framework defines the concrete CKit
instances for us. Hence, we define the CKit instances in the record module of CTraversal:
Cr : {{ K : Kit _∋/⊢_ }} → CKit Kr K K
Cr = record { _&/···_ = _&_

; &/···-··· = λ x ϕ → sym (···-var x ϕ)
; &/···-wk-↑ = λ x ϕ → refl }

Cs : {{ K : Kit _∋/⊢_ }} {{ C : CKit K Kr K }} {{ W : WkKit K }} → CKit Ks K Ks

Cs = record { _&/···_ = _···_
; &/···-··· = λ t ϕ → refl
; &/···-wk-↑ = λ t ϕ → ···-↑-wk t ϕ _ }
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Cr is the compose kit between a renaming and another kit K. Cs is the compose kit between a
substitution and another kit K, and requires that we already know how to compose a K-map
with a renaming. The following verifies that Cr and Cs indeed get us all four compositions:
Crr : CKit Kr Kr Kr

Crr = Cr {{ K = Kr }}
Crs : CKit Kr Ks Ks

Crs = Cr {{ K = Ks }}
Csr : CKit Ks Kr Ks

Csr = Cs {{ C = Crr }}
Css : CKit Ks Ks Ks

Css = Cs {{ C = Csr }}

4.3 Instantiation for System F
In this subsection, we show how to instantiate the CTraversal abstraction for System F. In
practice, this is done by our reflection algorithm automatically (Section 6), but it can be
instructive to see, as it motivates the axioms of the CKit.
fusion : ∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }} {{ W1 : WkKit K1 }}

{{ C : CKit K1 K2 K }} (t : S1 ⊢ s) (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
(t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2)

fusion (‘ x) ϕ1 ϕ2 = sym (&/···-··· (ϕ1 _ x) ϕ2)
fusion (λx t) ϕ1 ϕ2 =

λx ((t ··· (ϕ1 ↑ )) ··· (ϕ2 ↑ )) ≡〈 cong (λ t → λx t) (fusion t (ϕ1 ↑ ) (ϕ2 ↑ )) 〉
λx (t ··· ((ϕ1 ↑ ) ·k (ϕ2 ↑ ))) ≡〈 cong (λ ϕ → λx (t ··· ϕ)) (sym (~-ext (dist-↑-· ϕ1 ϕ2))) 〉
λx (t ··· ((ϕ1 ·k ϕ2) ↑ )) ■

We only show the interesting cases, which are:
variables, where we need to use the &/···-··· lemma provided by the CKit; and
bindings, where the traversal operation _···_ needs to lift the map via _↑_, requiring us
to distribute the lifting over the composition using dist-↑-·.

5 Types & Typing

5.1 Types
In the context of multi-sorted syntax, the notion of a type can be described as a mapping
between sorts. For System F, the expression sort maps to the type sort ≈, which in turn
maps to the kind sort ℸ. The following structure is used to teach our framework about types:

record Types : Set1 where
field ↑t : ∀ {st} → Sort st → ∃[ st’ ] Sort st’

For System F, the instantiation is

SystemF-Types : Types
SystemF-Types = record { ↑t = λ { → _ , ≈ ; ≈ → _ , ℸ ; ℸ → _ , ℸ } }

There are two things to discuss:
1. The ↑t function maps a sort of arbitrary sort type, to a sort of a potentially different

sort type, which is expressed by the use of an existential. For System F we require this
generality, as the sort ≈ can have variables, whereas its corresponding type sort ℸ cannot.

2. Some sorts, like ℸ, do not have corresponding type sorts, but we still need to provide
one, as ↑t is a total function. For such sorts, we can simply use arbitrary sort types, as
the formalization will have no typing rules that use them.

To hide the existential, we define S :⊢ s, which represents the type for a term S ⊢ s.
_:⊢_ : ∀ {t} → List (Sort Var) → Sort t → Set
S :⊢ s = S ⊢ proj2 (↑t s)
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5.2 Type Contexts
Equipped with a notion of types, we are ready to define type contexts. As we want our
framework to support dependent types, we allow a type in the context to use all variables
bound previously in the context:

data Ctx : List (Sort Var) → Set where
[] : Ctx []
_::_ : S :⊢ s → Ctx S → Ctx (s :: S)

When looking up the type of a variable, we need to weaken it for each binding that comes
after the variable3

lookup : Ctx S → S ∋ s → S :⊢ s
lookup (t :: Γ) zero = t ··· weaken {{ Kr }} _
lookup (t :: Γ) (suc x) = lookup Γ x ··· weaken {{ Kr }} _

Finally, a variable typing Γ ∋ x : t states that looking up x in Γ yields t:
_∋_:_ : Ctx S → S ∋ s → S :⊢ s → Set
Γ ∋ x : t = lookup Γ x ≡ t

5.3 Typing
Now that we have a notion of types and type contexts, we are ready to define the multi-sorted
typing relation for System F, which describes both typing and kinding:

data _⊢_:_ : Ctx S → S ⊢ s → S :⊢ s → Set where
⊢‘ : ∀ {x : S ∋ s} {T : S :⊢ s} → Γ ∋ x : T → Γ ⊢ ‘ x : T
⊢λ : ∀ {e : ( :: S) ⊢ } → (t1 :: Γ) ⊢ e : (wk t2) → Γ ⊢ λx e : t1 ⇒ t2

⊢Λ : (k :: Γ) ⊢ e : t2 → Γ ⊢ Λα e : ∀[α: k ] t2

⊢· : Γ ⊢ e1 : t1 ⇒ t2 → Γ ⊢ e2 : t1 → Γ ⊢ e1 · e2 : t2

⊢• : ∀ {Γ : Ctx S} → (k2 :: Γ) ⊢ t1 : k1 → Γ ⊢ t2 : k2 → Γ ⊢ e1 : ∀[α: k2 ] t1 →
Γ ⊢ e1 • t2 : t1 ··· L t2 M

⊢τ : Γ ⊢ t : ⋆

The interesting cases are:
the variable rule ⊢‘, which covers both expression- and type-variables, analogously to the
variable term constructor;
the lambda rule ⊢λ, which weakens the codomain type t2. This is necessary, because
multi-sorted syntax allows types to depend on expressions, so the typing derivation for e
has to account for a variable, which is not used by the type; and
the kinding rule ⊢τ states that all types have kind ⋆. This is sufficient for System F as
types are automatically well-kinded due to intrinsic scoping.

To teach the framework about typing, we create a structure analogously to Syntax:

record Typing : Set1 where
field _⊢_:_ : ∀ {s : Sort st} → Ctx S → S ⊢ s → S :⊢ s → Set

⊢‘ : ∀ {Γ : Ctx S} {x : S ∋ s} {t} → Γ ∋ x : t → Γ ⊢ ‘ x : t

The instantiation for System F is straightforward:

SystemF-Typing : Typing
SystemF-Typing = record { _⊢_:_ = _⊢_:_ ; ⊢‘ = ⊢‘ }

3 This includes the variable itself, which is not allowed to appear in its own type.
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5.4 An Abstraction for Type Preservation
By now, the reader probably knows what comes next: we build an abstraction to unify type
preservation for renamings and substitutions, eliminating the dependencies by yet another
type of kits.

We start with TKits, which abstract over variable and term typing, and then define a
TTraversal, which provides substitution-preserves-typing for all TKits.
record TKit (K : Kit _∋/⊢_) : Set1 where

field _∋/⊢_:_ : Ctx S → S ∋/⊢ s → S :⊢ s → Set
id/⊢‘ : ∀ {t : S :⊢ s} {Γ : Ctx S} → Γ ∋ x : t → Γ ∋/⊢ id/‘ x : t
⊢‘/id : ∀ {e : S ∋/⊢ s} {t : S :⊢ s} {Γ : Ctx S} → Γ ∋/⊢ e : t → Γ ⊢ ‘/id e : t
⊢wk : ∀ (Γ : Ctx S) (t’ : S :⊢ s) (e : S ∋/⊢ s’) (t : S :⊢ s’) →

Γ ∋/⊢ e : t → (t’ :: Γ) ∋/⊢ wk _ e : (t ··· weaken _)

The first field abstracts over variable and term typing. The other fields express typings
for the fields of a Kit. Building on the fields of a TKit, we define map typing and type
preservation for map lifting and the singleton map in the record module of TKit:

Using the variable/term typing, we can define a renaming/substitution typing:

_:_⇒k_ : S1 –[ K ]→ S2 → Ctx S1 → Ctx S2 → Set
_:_⇒k_ {S1} {S2} ϕ Γ1 Γ2 = ∀ {s1} (x : S1 ∋ s1) (t : S1 :⊢ s1) →

Γ1 ∋ x : t → Γ2 ∋/⊢ (x & ϕ) : (t ··· ϕ)

ϕ : Γ1 ⇒k Γ2 states that ϕ is a map that takes terms from Γ1 to terms in Γ2.
Lifting a map preserves its typing:

_⊢↑_ : ∀ {{ W : WkKit K }} {{ C1 : CKit K Kr K }}
{Γ1 : Ctx S1} {Γ2 : Ctx S2} {ϕ : S1 –[ K ]→ S2} →

ϕ : Γ1 ⇒k Γ2 → (t : S1 :⊢ s) → (ϕ ↑ s) : (t :: Γ1) ⇒k ((t ··· ϕ) :: Γ2)

If a variable/term has a typing, then so does its singleton renaming/substitution:

⊢L_M : ∀ {s S} {Γ : Ctx S} {x/t : S ∋/⊢ s} {T : S :⊢ s} →
Γ ∋/⊢ x/t : T → L x/t M : (T :: Γ) ⇒k Γ

We then define a TTraversal analogously to Traversal, but instead of defining the application
of maps, it defines that the application of a typed map to a typed term yields a typed term:

record TTraversal : Set1 where
field _⊢···_ : ∀ {{ K : Kit _∋/⊢_ }} {{ W : WkKit K }} {{ TK : TKit K }}

{{ C1 : CKit K Kr K }} {{ C2 : CKit K K K }} {{ C3 : CKit K Ks Ks }}
{S1 S2 st} {Γ1 : Ctx S1} {Γ2 : Ctx S2} {s : Sort st}
{e : S1 ⊢ s} {t : S1 :⊢ s} {ϕ : S1 –[ K ]→ S2} →

Γ1 ⊢ e : t →
ϕ : Γ1 ⇒k Γ2 →
Γ2 ⊢ (e ··· ϕ) : (t ··· ϕ)

Given a term e with typing ⊢e and a renaming/substitution ϕ with typing ⊢ϕ, the term
⊢e ⊢··· ⊢ϕ is a typing for e ··· ϕ.

As before, we define the TKit instances in the record module of TTraversal:
TKr : TKit Kr ; TKs : TKit Ks

TKr = record { _∋/⊢_:_ = _∋_:_ ; ⊢‘/id = ⊢‘
; id/⊢‘ = λ ⊢x → ⊢x ; ⊢wk = λ { Γ t’ x t refl → refl } }

TKs = record { _∋/⊢_:_ = _⊢_:_ ; ⊢‘/id = λ ⊢x → ⊢x
; id/⊢‘ = ⊢‘ ; ⊢wk = λ Γ t’ e t ⊢e → ⊢e ⊢··· ⊢wk Γ t’ }
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The large amount of kit-parameters of _⊢···_ does not impose any restriction, as both
our Kits support the WkKit extension and can be composed arbitrarily. Agda’s instance
resolution allows us to easily instantiate a concrete substitution-preserves-typing lemma:

_⊢···s_ : Γ1 ⊢ e : t → σ : Γ1 ⇒s Γ2 → Γ2 ⊢ (e ··· σ) : (t ··· σ)
_⊢···s_ = _⊢···_

5.5 Instantiation for System F
In this subsection, we show how to instantiate the TTraversal abstraction for System F. This
is the only structure that is not instantiated automatically via reflection, as typing relations
can be arbitrary complex in general.

⊢‘ ⊢x ⊢··· ⊢ϕ = ⊢‘/id (⊢ϕ _ _ ⊢x)
⊢λ {t2 = t2} ⊢e ⊢··· ⊢ϕ = ⊢λ (subst (λ t → _ ⊢ _ : t)

(sym (···-↑-wk t2 _ _))
(⊢e ⊢··· (⊢ϕ ⊢↑ _)))

⊢Λ ⊢e ⊢··· ⊢ϕ = ⊢Λ (⊢e ⊢··· (⊢ϕ ⊢↑ _))
⊢· ⊢e1 ⊢e2 ⊢··· ⊢ϕ = ⊢· (⊢e1 ⊢··· ⊢ϕ) (⊢e2 ⊢··· ⊢ϕ)
⊢• {t1 = t1} {t2 = t2} ⊢t1 ⊢t2 ⊢e1 ⊢··· ⊢ϕ = subst (λ t → _ ⊢ _ : t)

(sym (dist-↑-LM-··· t1 t2 _))
(⊢• (⊢t1 ⊢··· (⊢ϕ ⊢↑ _))

(⊢t2 ⊢··· ⊢ϕ) (⊢e1 ⊢··· ⊢ϕ))
⊢τ ⊢··· ⊢ϕ = ⊢τ

The type of _⊢···_ is the same as in the record definition and hence omitted. The
interesting parts of the proof are:

There is a strong similarity to the instantiation of map traversal _···_: where _···_ used
‘/id or _↑_, our _⊢···_ uses their preservation lemmas ⊢‘/id or _⊢↑_.
The lambda typing constructor ⊢λ weakens the type t2 to shield it from expression-
substitution, requiring us to use ···-↑-wk to move the map under the weakening.
The type application constructor ⊢• substitutes t1 into t2, requiring us to use dist-↑-LM to
move the map under the singleton substitution.

6 Reflection & Generics

We use Agda’s reflection mechanism to derive instantiations related to all structures for
untyped substitution, i.e. Syntax, Traversal and CTraversal. The user only needs to define
syntax and typing, and can then move on to proving that substitution preserves typing,
where all substitution lemmas are already available.

To gain insight into the class of object languages supported by our reflection algorithm,
we have instantiated the structures for a generic syntax similar to the one in Allais et al.[2].
Our reflection algorithm derives proofs with the same structure as the generic proofs, giving
high confidence that it covers the same class of languages.

Informally, all objects languages with multi-sorted syntax are supported that
1. have a variable constructor of type ∀ {S s} → S ∋ s → S ⊢ s;
2. use subterms only directly (e.g. not in lists); and
3. only extend the scope-context of subterms, but never modify it otherwise.
The formal definition of the generic syntax can be found in the supplementary material.
Restriction 2 is purely technical and can be lifted with a more sophisticated reflection
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algorithm. In the current system, this restriction can be worked around by inlining the data
structure constructors into the syntax definition as terms of a new sort. For example, to
allow lists of terms, we can add a polymorphic list sort

⋖ℶ∼≈ : Sort st → Sort NoVar

and corresponding syntax constructors for lists

[] : S ⊢ ⋖ℶ∼≈ s
_::_ : S ⊢ s → S ⊢ ⋖ℶ∼≈ s → S ⊢ ⋖ℶ∼≈ s

This allows us to model, e.g., a multi-argument function call expression as

call : S ⊢ → S ⊢ ⋖ℶ∼≈ → S ⊢

Function types cannot be inlined, but require an extension of the reflection algorithm.

7 Case Studies

Using our full implementation of the framework, we proved subject reduction for the following
object languages:

For lambda calculus with dependent function types, the framework works out of the box
for both deriving untyped substitution and instantiating the TTraversal. As types are
terms, only a single sort is required. In the proof of confluence, the CKit abstraction
allowed us to unify lemmas about the reduction of renamings and substitutions.
For System F with subtyping, the main challenges are how to represent subtyping
constraints and how to deal with the fact that substitution-preserves-typing is not
generally true, as type variables have subtyping bounds that need to be respected. While
it would be possible to use our framework only to derive untyped substitution and define
typing contexts and type preservation lemmas by hand, we instead used an encoding that
allows us to use the the TKit abstraction directly. Instead of binding a type variable with
a subtyping constraint α <: t, we first bind the type variable as α : ⋆, and then bind
the constraint as c : (α <: t). This description is similar to first-class constraints, but
restricted enough to be isomorphic to the original formalization, as constraint variables
cannot be accessed by the user. With this encoding, substitution-preserves-typing is
generally true again: replacing a type variable α <: t with a type t’, which is not a
subtype of t, results in a term that is still well-typed, but in a context with an unsatisfiable
constraint t’ <: t.
Object languages with pattern matching can be modeled by adding the sorts of the
variables bound by a pattern to the pattern sort p itself. A pattern matching clause p ⇒ e
can then be defined as

_⇒_ : S ⊢ p S’ → (S’ ++ S) ⊢ → S ⊢

where S’ describes the variables bound by the pattern and is the sort of a clause.

8 Related Work

As the amount of related work is rather large, we focus on work that is closely related to
ours and refer to other papers for the broader picture[21, 2].
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8.1 Variable Binding
There is a plethora of different methods for representing variable binders: de Bruijn
indices[10], co de Bruijn indices[16], locally nameless[8], locally named[17], higher order
abstract syntax[18] and its parametric variant[9], nominal logic[23], shifted names[11], name-
less painless[19], and scope graphs[24]. Many of these representations have been studied in
solutions to the POPLMark challenges[4, 1].

8.2 Unifying Renamings & Substitution
The kit abstraction for unifying renamings and substitutions appeared first in an unpublished
manuscript by McBride[15], and later in Benton et al.[6]. Wood and Atkey[25] propose an
extension to kits that supports linear types via resource vectors. In all three cases kits are
formulated for intrinsic typing and scenarios with polymorphism are not considered.

8.3 Extrinsically Typed Approaches
Autosubst[20] is a Coq framework, which derives parallel substitution definitions and lemmas
for languages from annotated Coq syntax definitions using extrinsic typing, extrinsic scoping,
and de Bruijn indices. The framework is implemented in Coq’s tactic language Ltac and
comes with a decision procedure for all assumption-free, equational substitution-lemmas.
The implementation of Autosubst deals with multiple variable sorts by generating multiple
substitutions and corresponding interaction lemmas.

Autosubst 2 [21] is a standalone code generator, which translates second-order HOAS
specifications into mutual inductive term sorts. Compared to Autosubst 1, it features mutually
recursive object languages, intrinsic scoping, and vectorized substitutions. Compared to our
work, the syntax they generate takes the form of what we described as unsorted syntax in
Section 2, i.e. different syntactic categories are described by different types with different
amount of indices for variable counts. To eliminate the need for interaction lemmas, they
define the notion of vectorized substitution, which combines the individual substitutions by
putting them in a vector. We believe their great work of creating a decision procedure for
vectorized substitutions should also translate to our setting with multi-sorted substitutions.

Needle and Knot[13] is a code generator for unscoped syntax with de Bruijn indices. They
generate substitution and interaction lemmas for single-pointed substitution for languages
with multiple variable sorts and binders that bind lists of variables.

All of the above work does not provide machinery to model typing and type preserva-
tion and does not unify renaming and substitution and their compositions. Hence, type
preservation needs to be modeled manually and individually for renamings and substitutions.

8.4 Intrinsically Typed Approaches
Allais et al.[3] propose a powerful abstraction for denotational semantics and semantic fusion
lemmas. In later work[2], they use generic programming to instantiate this abstraction for
a class of object languages comparable to ours. They demonstrate how both renamings
and substitutions can be described as semantics, how the four composition lemmas follow
from their generic fusion lemma, and also provide an abstraction to unify renamings and
substitutions. They show how to use their framework for both intrinsic and extrinsic typing,
but are missing a story for polymorphism.

With only a slight modification to their framework, we can instantiate it for multi-sorted
syntax, enabling the definition of polymorphic languages. However, as the intrinsic typing
is then used to describe syntactic categories (and not the actual typing), the semantic
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abstractions then refer to untyped terms, so typing and type preservation lemmas have to be
modeled entirely manually. We believe it would be worthwhile to explore how their semantic
abstractions can be lifted to typing relations similar to how our typing kits lift regular kits
from terms to typing relations.

8.5 Pure Type Systems
Pure Type Systems[5, 7, 22] describe a class of typed lambda calculi parameterized over a set
of sorts, dependencies between sorts, and rules for quantification. While pure type systems
may seem very similar to multi-sorted syntax, they are actually quite different:

In multi-sorted syntax, sorts describe syntactic categories of terms. Terms of different
sorts are kept syntactically different, e.g. the set of expressions S ⊢ and types S ⊢ ≈ in
our System F example.
In pure type systems, sorts are universe types, e.g. like Set in Agda or Prop in Coq. Terms
which have different sorts as types, do still belong to the same syntactic category.

We can model pure type systems as a multi-sorted syntax with a single sort, where the
sorts of the pure type system occur as terms representing universe types.

9 Conclusion

We have presented an Agda framework, which automatically derives definitions and lemmas
for untyped substitution, and provides an abstraction for proving type preservation of
renaming and substitution for all syntactic categories with a single lemma (_⊢···_).

Compared to many extrinsically typed approaches, our framework also models typing
and type preservation. Compared to many intrinsically typed approaches, our framework
gracefully extends to polymorphic scenarios.

The main limitation of our framework is the shape of typing relations, similarly as it is the
case with approaches based on intrinsic typing: we can only model classical ternary typing
relations. To adapt our framework to more complicated typing relations, the machinery
for untyped substitution can be reused, but the abstractions related to typing need to be
modified. We found that this works surprisingly well in practice, where we have already made
extended typing abstractions that support linear typing ala Wood and Atkey[25] and general
substructural typing ala Licata et al[14]. In both cases, the typing relation is extended with
a fourth component that models usage restrictions on the type context.

While intrinsic typing allows to unify definitions with their type preservation proofs,
extrinsic typing allows to unify substitutions across different syntactic categories, as we have
demonstrated. We believe this makes our framework particularly suited for polymorphic
languages, where the downside of extrinsic typing is automated away, and where we have
variables across multiple syntactic categories, so the benefits of a unified substitution bear
fruits.
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