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Abstract
Guaranteeing correct compilation is nearly synonymous with compiler verification. However, the
correctness guarantees for certified compilers and translation validation can be stronger than we
need. While many compilers do have incorrect behavior, even when a compiler bug occurs it may
not change the program’s behavior meaningfully with respect to its specification. Many real-world
specifications are necessarily partial in that they do not completely specify all of a program’s behavior.
While compiler verification and formal methods have had great success for safety-critical systems,
there are magnitudes more code, such as math libraries, compiled with incorrect compilers, that
would benefit from a guarantee of its partial specification.

This paper explores a technique to get guarantees about compiled programs even in the presence
of an unverified, or even incorrect, compiler. Our workflow compiles programs, specifications, and
proof objects, from an embedded source language and logic to an embedded target language and
logic. We implement two simple imperative languages, each with its own Hoare-style program logic,
and a system for instantiating proof compilers out of compilers between these two languages that
fulfill certain equational conditions in Coq. We instantiate our system on four compilers: one that is
incomplete, two that are incorrect, and one that is correct but unverified. We use these instances to
compile Hoare proofs for several programs, and we are able to leverage compiled proofs to assist
in proofs of larger programs. Our proof compiler system is formally proven sound in Coq. We
demonstrate how our approach enables strong target program guarantees even in the presence of
incorrect compilation, opening up new options for which proof burdens one might shoulder instead
of, or in addition to, compiler correctness.
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1 Introduction

Program logic systems help proof engineers do more advanced reasoning about program-
specific properties. Iris [18, 24], VST [8], CHL [11], and Sepref [27] are just a few examples
of such program logics. Traditionally, strong guarantees for compiled programs required com-
posing program logics with verified compilers [8]. However, because functional specifications
are often partial, preserving them through compilation sometimes does not require a correct
compiler pass, much less global compiler correctness.

To see an example of where correct compilation becomes too strict, consider a Hoare triple{
0 ≤ a ∧ 0 ≤ ϵ

}
y := 42; x := source_sqrt(a)

{
|a − x2| ≤ ϵ

}
, which says that after setting

y to 42 and calling source_sqrt on a, the variable x stores a square root approximation of
a within ϵ. Suppose that source_sqrt is compiled to some program target_sqrt such that
if 0 ≤ a ∧ 0 ≤ ϵ, then after target_sqrt(a) runs, we have |a − x2| ≤ ϵ

2 . In the end, we still
have |a − x2| ≤ ϵ for target_sqrt since ϵ

2 ≤ ϵ, which meets the specification. Moreover, the
42 on the right-hand side of the assignment to y could be (mis)compiled to anything, and
the specification would still be preserved. However, this compilation would be rejected by
both certified compilation and translation validation, illustrating that compiler correctness is
significantly more restrictive than specification preservation.

In order to achieve guaranteed specification-preserving compiler passes, we present the
proof compiler system PotPie. PotPie takes an existing compiler and produces a proof
compiler. A proof compiler takes a program, a specification, and a proof of the specification
and compiles all three such that (1) the specification’s meaning is preserved, and (2) the
compiled proof shows that the compiled program meets the compiled specification.

PotPie is formally verified in Coq [45], and allows for partial specification-preserving
compilation, even of incorrectly compiled programs. To get a sense of how PotPie differs
from similar techniques, imagine a proof engineer has already shown the Hoare triple
{0 ≤ a ∧ 0 ≤ ϵ}x := source_sqrt(a){|x2 − a| ≤ ϵ} and wants to prove an analogous Hoare
triple about the compiled square root approximation. Suppose also that the proof engineer
has a compiler T on hand, which happens to have a small bug that switches < to ≤ in
programs and specifications. The square root program uses a while loop to approximate
square roots, and the while loop condition contains at least one <. At this point, PotPie
provides two options:
1. Tree workflow: use T to instantiate a proof tree compiler that produces a target proof

tree. After compiling the square root Hoare tree, they invoke the Tree Coq plugin which
will check the proof tree, and if possible, produce a certificate that is checkable in Coq.
Tree has only one proof obligation to invoke the plugin, but may fail in certain cases.

2. CC workflow: use T to instantiate a correct-by-construction proof compiler by showing
that it satisfies the equations in Figure 5 on Page 8. To call this proof compiler, the proof
engineer must show that the square root program is well-formed. CC is complete in that
if the translation preserves the specification, then it is possible to perform.

Both methods work, even though the compiler T has a bug that causes miscompilation
in the square root program. Because of this miscompilation, we cannot use translation
validation, the state of the art for ensuring correct compilation for an unverified compiler.
But the miscompilation does not affect our specification, so with PotPie, we can get strong
guarantees about our compiled code regardless of miscompilation.

We make the following contributions:
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a ::= N | x | param k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | x := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return x)
p ::= ({λ, . . . , λ}, i)

a ::= N | #k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | push | pop | #k := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return a n)
p ::= ({λ, . . . , λ}, i})

Figure 1 Imp (left) and Stack (right) syntax, where a describes arithmetic expressions, b boolean
expressions, i imperative statements, λ function definitions, and p whole programs, which consist of
a set of functions and a “main” body. The evaluation of the main body yields the result of program.
For Imp functions, (f ,k,i,return x) is a function named f with k parameters that returns the value
of the variable x after executing the function body, i. For Stack functions (f, k, i, return a n), we
return the result of evaluating a after executing the body i, and then pop n indices from the stack.

1. We present the PotPie system for specification-preserving proof compilation.
2. We describe two workflows for the PotPie system: CC and Tree.
3. We demonstrate PotPie on several case studies, using code compilers with varying

degrees of incorrectness to correctly compile proofs. Our case studies include various
mathematical functions, such as infinite series and square root approximation.

4. We prove the CC and Tree workflows sound in Coq.

Non-Goals and Limitations. Our work aims to complement, not replace, certified compi-
lation. One potential motivation for alternative compiler correctness techniques is to ease
the burden of compiler verification. However, easing the burden of compiler verification is
not our goal, nor do we think that this is the case for our work at this time. Rather, our
goal is demonstrate a complementary approach of specification-preserving compilation for
program-specific specifications, even when the program itself is incorrectly compiled. Our
work currently focuses on simple and closely related languages, and the compilers are likewise
simple, though we do not believe that these choices are central to our approach. Currently,
our work imposes significant limitations the kinds of control flow optimizations that can be
performed. This simplifying decision made the problem initially tractable, but we do not
believe it is inherent to our approach; we discuss a potential way of handling it in Section 7.

2 Programs, Specifications, and Proofs

In this section, we briefly present our six languages and how to compile programs and
specifications, with Section 2.1 describing the programming languages and program compiler,
Section 2.2 describing the specification languages and compiler, and Section 2.3 describing the
proof languages (the proof compiler system is described in Section 3). Here and throughout
the paper, we include links such as 42 to relevant locations in our code, which you can find
on GitHub: https://github.com/uwplse/potpie/tree/v0.4.

2.1 Programs
Our languages Imp and Stack are both simple imperative languages that are similar in
syntax (Figure 1) yet have differing memory models. Imp has an abstract environment
with two components: a mapping of identifiers to their nat values, and function parameters
(accessed via the param k construct), whereas Stack has a single function call stack, where
new variables are pushed to the low indices and stack indices are accessed with the #k

ITP 2024
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compφ
a (n) ≜ n compφ

a (x) ≜ #φ(x)
compφ

a (param k) ≜ #(|V | + k + 1)
compφ

a (a1 op a2) ≜ compφ
a (a1) op compφ

a (a2)
compφ

a (f(a1, . . . , an)) ≜ f(compφ
a (a1), . . . , compφ

a (an))

compφ
b (T ) ≜ T compφ

b (F ) ≜ F

compφ
b (¬b) ≜ ¬compφ

b (b)
compφ

b (b1 op b2) ≜ compφ
b (b2) op compφ

b (b2)
compφ

b (a1 ≤ a2) ≜ compφ
a (a1) ≤ compφ

a (a2)

Figure 2 An arithmetic expression compiler compa (left) and a boolean expression compiler
compb (right). op stands for the appropriate binary operators: + and −, and ∧ and ∨, respectively.

M ::= T | F | pn [e, . . . , e]
| M ∧ M | M ∨ M

σ ⊨ T
True map_evalσ [ai]n1 [vi]n1 pn vlist

σ ⊨ pn [a1, . . . , an]
N-ary

Figure 3 Syntax (left) and semantics (right) for base assertions for both Imp and Stack.
map_evalσ is a relation from lists of expressions to lists of values. The semantic interpretation is
parametric over the types of v, σ, and map_evalσ. Interpretations for ∧ and ∨ are standard.

construct. Function calls in Imp are always mutation-free since functions are limited to their
(immutable) parameters and local scope. Stack’s functions can access the entire stack.

Bridging the Abstraction Gap. The difference in memory model must be taken into account
when compiling from Imp to Stack. We define an equivalence between variable environments
and stacks 4 so that “sound translation” is a well-defined concept.

▶ Definition 1. Let V be a finite set of variable names, and let φ : V → {1, . . . , |V |} be
bijective with inverse φ−1. Then for all variable stores σ, parameter stores ∆, and stacks σs,
we say that σ and ∆ are φ-equivalent to σs, written (σ, ∆) ≈φ σs, if (1) for 1 ≤ i ≤ |V |, we
have σs[i] = σ(φ−1(i)), and (2) for |V | + 1 ≤ i ≤ |V | + |∆|, we have σs[i] = ∆ [i − |V |].

This equivalence is entirely dependent on our choice of mapping between variables and stack
slots. It has this form since parameters are always at the top of the stack at the beginning
of a function call, and are then pushed down as space for local variables is allocated, so
parameters appear “after” (i.e., appended to) the local variables. Note that this implies
|V | + |∆| ≤ |σs| while saying nothing about stack indices beyond |V | + |∆|.

Compiling Programs. Although the PotPie system allows for some choice of compiler
between Imp and Stack, most of our compilers follow a common structure. We give a
translation for Imp arithmetic and boolean expressions (which we will refer to in sum as
expressions from now on) in Figure 2. This infrastructure is a straightforward extension of
the variable mapping function φ from Definition 1. The program compilers we deal with in
our case studies (Section 4) define variations on this common structure.

2.2 Specifications
The specification languages both embed Imp or Stack expressions inside of them, respectively.
Base assertions are modeled as n-ary predicates over the arithmetic and boolean expressions
of the given language. The semantics for assigning a truth value to a formula (Figure 3,
right) parameterize predicates over the value types. For example, if we have the assertion
p1 a where a is an Imp expression that evaluates to v, then p1 a is true if and only if calling

https://uwplse.org/potpie/docs/Imp_LangTrick.SpecCompiler.LogicTranslationBase.html#state_to_stack
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compφ,k
spec(T ) ≜ (k, T )

compφ,k
spec(F ) ≜ (k, F )

compφ,k
spec(pn (e1, . . . , en)) ≜ (k, pn (compφ

expr(e1), . . . , compφ
expr(en)))

compφ,k
spec(S1 op S2) ≜ compφ,k

spec(S1) op compφ,k
spec(S2)

Figure 4 The specification compiler compφ,k
spec(S), which is parameterized over compφ

expr (which
can be either compφ

a or compφ
b , depending on the type of expressions e). op is either ∧ or ∨.

the Coq definition of p1 with v is a true Prop. We can define a program logic S for the
source language this way by using the atoms in Figure 3 to embed arithmetic and boolean
expressions in Coq propositions. We add conjunction and disjunction connectives at the
logic level. We can define T for the target language similarly. We then use this to construct
the following specification grammars:

S ::= Se | S1 ∧ S2 | S1 ∨ S2 T ::= (n, Te) | T1 ∧ T2 | T1 ∨ T2 (1)

where Se and Te are instances of the logic described in Figure 3 using Imp and Stack
arithmetic and boolean expressions respectively.

Because the minimum stack size required by the compilation might not be captured by
language expressions contained within the formula itself, we also want to specify a minimum
stack size in Stack specifications. This is represented by the following judgment:

|σ| ≥ n σ ⊨ Te

σ ⊨ (n, Te)
Stack Base

We made the decision to allow function calls within specifications. This is not essential to
our approach – one could disallow effectful constructs from expressions as in CLight [6]. For
the current system, we find it more natural to reason about effectful expressions in Imp.

Compiling Specifications. We can reuse φ : V → {1, . . . , |V |} and the expression compilers
from Section 2.1 to define a specification compiler (see Figure 4): recurse over the source
logic formula and compile the leaves, i.e., Imp expressions. If k is the number of function
arguments, give each assertion a minimal stack size, |V | + k, to ensure well-formedness of the
resulting Stack expressions within the specification, which is given as the maximum value
of φ plus k, where k is the number of arguments. Note that this definition is parameterized
over an expression compiler, which need not be fully correct. To guarantee correctness of a
translated proof in the sense that the target proof “proves the same thing”, users must show
that the specification compiler must be sound with respect to the user’s source specification
(see Definition 3 and Section 3.2.2). This ensures that the compiled proof proves an analogous
property even when the program is compiled incorrectly.

2.3 Proofs
Our logics are based on standard Hoare logic and are proven sound in Coq. Automatically
ensuring that the rule of consequence’s implications are preserved by compilation would
usually require correctness of compilation. To remove this requirement, we modify the rule
of consequence so that implications must be in an implication database I, which is a list of
pairs of specifications that satisfy the following definition:

▶ Definition 2. I is valid if for each pair (P, Q) in I, ∀σ, σ ⊨ P ⇒ σ ⊨ Q.

ITP 2024
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Table 1 Proof obligations and their relationship to the requirements for instantiating and invoking
proof compilers (PC) for each of our workflows, and what properties may be guaranteed for Tree by
these proof obligations. P means a user proof is required, A means that the plugin will attempt an
automated check, × means the condition is not required, and - means the condition is not applicable
to that column. “Trees WF” means the compiled code and assertions within the Stack Hoare tree
have the right syntactic shape for Hoare rule application. “Valid Tree” means that the tree is a
valid Stack Hoare proof (which is implied by a typechecked certificate). “CGC” indicates what is
needed to ensure that once a certificate is generated and typechecks, that it is correct, i.e., preserves
the meaning of the pre and postcondition. Since CC is correct-by-construction, all of the proof
obligations are required.

Tree CC
Create Invoke Guaranteeing Properties Create PC Invoke PCPC PC Plugin Trees WF Valid Tree CGC

Comp. Comm. × - - A A - P -

User

Spec DB - × P × P - - P
Pre/Post - × × × × P - P
Imp WF - × × - - - - P
preservesStack - × × A A - - P

This implication database, which is present for both Imp and Stack, serves to (1) identify
which implications must be preserved through compilation, and (2) make it easy to identify
which source implication corresponds to which target implication across compilation. For the
Stack logic, as a simplifying assumption, we further require all expressions in assignments,
if conditions, or while conditions to be side effect-free, i.e., preserve the stack.

3 Compiling Proofs

PotPie’s two workflows share the same goal: to produce a term at the target representing
a proof tree for the desired Stack-level property. To achieve this, both workflows have
their own soundness theorems (Section 3.1), which need certain properties to be true of
compiled programs and specifications. The workflows obtain these in different ways. Before
being called, CC requires the user to prove certain equational properties about the compiler
(Section 3.2.1) and well-formedness properties of the source program and proof (Section 3.2.3),
and combines these to acquire the required syntactic and stack-preserving conditions for
applying Stack Hoare rules. Tree simply compiles the Hoare proof tree, and its plugin
performs an automated check (that can possibly fail) of whether the compiled tree is a
valid Hoare proof. Additionally, both workflows require the user to manually translate the
implication databases (Section 3.2.2) to retrieve Stack-level rule-of-consequence applications.
A breakdown of which proof obligations are required for which workflow and the guarantees
they provide can be found in Table 1. None of these proof obligations require full semantic
preservation; they allow for some miscompilation of programs as long as compilation does
not break the (possibly partial) specification.

3.1 Soundness Theorems and Overview
Consider the Imp Hoare triple {5 < 10}x := 5{x < 10}, which can be derived via a simple
application of the Imp-level assignment rule. If we map x to stack slot #1, the “natural”
translation of this Imp triple is the Stack triple {5 < 10}#1 := 5{#1 < 10}, which can
be derived via Stack’s assignment Hoare rule. This translation seems “natural” for two
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reasons: it is derived using the “same” rules, and it is proving the “same” thing. We use
the former to compile the proofs, and we use the latter to define a notion of soundness for
specification translation 30 31 , which each workflow can guarantee in a different way:

▶ Definition 3. For a given P , a specification compilation function compφ,k
spec is sound with

respect to P if for all σ, ∆, σs such that (σ, ∆) ≈φ σs, we have σ, ∆ |= P ⇔ σs |= compφ,k
spec(P ).

We can also define an informal notion of soundness for a proof compiler:

▶ Definition 4. Given an Imp Hoare proof pf that proves the triple {P}c{Q}, a proof
compiler PC is sound with regards to it if PC(pf) = pf ′ and pf ′ proves the triple
{compspec(P )}compcode(c){compspec(Q)}.

Combining both notions of soundness lets us arrive at our definition of soundness for a proof
compiler : if a specification and proof compiler are sound with regards to a specification and
proof in the sense of Definitions 3 and 4, then the compiled version of that proof is both
a valid proof at the target and proves the same thing that the source proof proved. The
Tree workflow can achieve these guarantees in piecewise progression when certain proof
obligations are met, and CC always guarantees both when it is called. The form Definition 4
takes in our implementation is a method of constructing a term of type hl_stk (the Stack
correct-by-construction Hoare proof type) from a term of type hl_Imp_Lang.

Tree Proof Compiler. The Tree workflow utilizes a proof compiler that separates proof
and compilation, and has two components: a compiler that produces a proof tree 2 and a
Coq plugin, implemented in OCaml 5 , that checks the proof tree’s validity 6 . The compiler
is parameterized over the code and specification compilers from Imp to Stack. The proof
tree compiler component is sound in the sense that if the proof obligations for the CC proof
compiler are satisfied, then it will always produce a sound tree 12 . The plugin can be used
on any Stack proof tree and can optionally produce a certificate, which can be used to
produce a Stack Hoare logic proof via this theorem 13 :

1 Theorem valid_tree_can_construct_hl_stk
2 (P Q: AbsState) (i: imp_stack) (facts': implication_env_stk)
3 (fenv': fun_env_stk) (T: stk_hoare_tree):
4 ∀ (V: stk_valid_tree P i Q facts' fenv' T), (* certificate type*)
5 hl_stk P i Q facts' fenv'.

An instance of Definition 4 can be retrieved by an appropriate substitution of variables.
We note that Tree is not complete: the requisite target-level properties could be true,

and yet Tree will still fail. This can occur in the case of mutually recursive functions,
along with some edge cases that we talk more about in Section 5.1. While Tree requires
fewer proof obligations, it also provides fewer guarantees. One such guarantee it lacks is
preservation of the pre and postcondition, i.e., specification-preserving compilation. This
and other guarantees can be gained by showing the proof obligations indicated in Table 1.

CC Proof Compiler. This workflow is correct by construction. Given an Imp Hoare proof
(hl_Imp_Lang) along with the CC proof obligations (described in Section 3.2), CC produces a
Stack Hoare proof (hl_stk) of the same property 1 (some detail is omitted for brevity):

1 Definition proof_compiler :
2 ∀ (P Q: AbsEnv) (i: imp_Imp_Lang) (fenv: fun_env) (facts: implication_env)
3 (var_to_stack_map: list string) (num_args: nat)

ITP 2024
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compφ,k
spec(P [x → a]) = (compφ,k

spec(P ))[φ(x) → compφ
a (a)] (2)

compφ,k
spec((p1 [b]) ∧ P ) =

(
k + |V |, (p1 [compφ

b (b)]) ∧ compφ,k
spec(P )

)
(3)

compφ,k
code(x := a) = #φ(x) := compφ

a (a) (4)
compφ,k

code(skip) = skip (5)
compφ,k

code(i1; i2) = compφ,k
code(i1); compφ,k

code(i2) (6)
compφ,k

code(if b then i1 else i2) = if compφ
b (b) then compφ,k

code(i1) else compφ,k
code(i2) (7)

compφ,k
code(while b do i) = while compφ

b (b) do compφ,k
code(i) (8)

Figure 5 Equations compilers must satisfy to be used to instantiate a proof compiler.

4 (proof: hl_Imp_Lang P i Q facts fenv) (translate_facts: valid_imp_trans_def),
5 (* well-formedness conditions and specification translation soundness *) →
6 hl_stk (comp P) (comp i) (comp Q) (comp facts) (comp fenv).

Since the CC proof compiler is correct-by-construction, the type signature in the above Coq
code guarantees the validity of the produced target Hoare proof. However, as compared
to Tree, CC requires far more proof obligations before a CC proof compiler can even be
instantiated, with invocation requiring several on top of the instantiation burden.

3.2 Proof Obligations
PotPie’s workflows both require some proof obligations in order to get target-level correctness
guarantees. Table 1 breaks down these requirements for both workflows.

3.2.1 Commutativity Equations – CC Only
These code and specification compiler proof obligations relate the compiled programs and
specifications. CC requires that proof-compilable Imp programs and specifications satisfy the
equations in Figure 5 – Tree has no such requirement (Table 1) and will simply fail if these
equations don’t hold. For example, consider the substitution performed by the assignment
rule. Given some P , in order to compile an application of the assignment rule, we want (2)
to hold. If we have this equality, we have the following, where P ′ = compφ,k

spec(P ):

compφ,k
pf ({P [x → a]} x := a {P}) =

{
P ′[φ(x) → compφ,k

code(a)]
}

φ(x):= a
{

P ′
}

This compiler proof obligation lets a CC proof compiler mechanically apply the Hoare rules.
In practice, as long as the program compilers are executable, these conditions are provable
using reflexivity. These equations are the reason for the control-flow restrictions mentioned
in the introduction and in Section 7. These equations also ensure that the specification
compiler is “aware” of the way that expressions are compiled. For example, consider a code
compiler that adds 1 to assignment statements’ right hand sides. This breaks the compilation
of the assignment rule, as the specification compiler is “unaware” of a transformation that
affects a Hoare rule application. Equations 2-4 and 7-8 in Figure 5 are to prevent such cases.

3.2.2 Specification Translation Conditions – Tree & CC
As we described in Section 2.3, the rule of consequence is the only Hoare rule that depends
on the semantics of the program, and thus would require a completely correct compiler pass
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to completely automate. Our solution is to have the user specify which implications they
are using in their Hoare proof in an implication database. Then the user proves that these
implications are compiled soundly 7 (this is the “Spec DB” proof obligation in Table 1):

▶ Definition 5. Given φ, k, and a function environment, an Imp implication P ⇒ Q has a
valid translation if for all σ, ∆, σs, if (σ, ∆) ≈φ σs, then σs |= compφ,k

spec(P ) ⇒ compφ,k
spec(Q).

While it lets us construct a proof in the target about the compiled program, it does not
necessarily construct a proof of the same property, as the meaning of the precondition and
postcondition could be destroyed by, for instance, compiling them both to ⊥.

To prevent this, another proof obligation is to prove the pre/postcondition of the Imp
Hoare proof sound with regards to the specification compiler (Definition 3). This guarantees
that while program behavior can change, the specification remains the same. This is in
Table 1 as the “Pre/Post” row. While it is required by CC, it is optional for Tree but is
needed to guarantee correctness of a certificate, hence the P in the CGC column of Table 1.

These conditions only need for compilation to preserve Definitions 3 and 5 and require
no proofs of language-wide properties, nor of full compiler correctness. Rather, they require
specific correctness properties for a finite set of assertions. In practice, we have found these
proofs to be repetitive, and have built some tactics to solve these goals 28 29 . We have
not built proof automation to generate a given proof’s implication database as a verification
condition but we suspect this could be done via a weakest precondition calculation.

3.2.3 Well-formedness Conditions – CC Only
The last set of user proof obligations is specific to our choice of languages and logics.
Specifically, while the syntax of Imp prevents most type errors, there are other ways a
program can be malformed, e.g., calling a function with an incorrect number of arguments.
These obligations show that all components of the source proof be well-formed. Additionally,
any compiled functions should preserve the stack, so as to meet the preservesStack condition
of the Stack logic. We have largely automated these proof burdens in our case studies.

4 Case Studies

We have two sets of case studies that highlight the trade-offs of the PotPie framework:
1. Partial Correctness with Incorrect Compilation (Section 4.1): We prove meaningful

partial correctness properties of arithmetic approximation functions that are slightly
incorrectly compiled. This set of case studies highlights two benefits of PotPie:
a. Specification-Preserving Compilation: We invoke PotPie with a slightly buggy

program compiler to produce proofs that meaningfully preserve the correctness specifi-
cations down to the target level. Importantly, we obtain these meaningful target-level
correctness proofs of our specification even though the program compiler does not
preserve the full semantic behavior of the arithmetic approximation functions.

b. Compositional Proof Compilation. We use PotPie to separately compile the
correctness proofs of helper functions common to both approximation functions. Com-
position of those helper proofs within the target-level proof of the arithmetic function
comes essentially “for free,” modulo termination conditions.

2. PotPie Three Ways (Section 4.2): We instantiate PotPie with three different variants
of a program compiler (incomplete, incorrect, and correct but unverified), and
briefly explore the trade-offs of each of these instantiations.
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Table 2 The lines of code, number of theorems, and the time it took for the Tree plugin to
generate and check our case studies in Section 4.1. “Core” refers to proving the source Hoare triple.
“Tree” refers to how much work it took to get to the point where one could call the Tree plugin
(which is different from calling the tree compiler, which is simply a one-liner), and “TreeC” the
additional effort needed to ensure correctness. “CC” gives how much more work it would take to be
able to use the CC workflow after ensuring tree compilation correctness.

Multiplication Exponentiation Series Square Root
Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC

LOC 209 104 56 508 478 107 54 362 679 174 45 630 406 154 43 286
Theorems 3 1 2 28 9 1 2 26 14 1 2 48 6 1 2 29

Tree CG (s) 0.172 0.154 2.781 4.279
Tree Check (s) 0.131 0.098 0.534 1.946

4.1 Partial Correctness with Incorrect Compilation
We have written and proven correct two mathematics approximation programs in Imp.
Both approximation programs use common helper functions, which we also prove correct
(Section 4.1.1). We then build on and compose the helper proofs to prove our approximation
programs correct up to specification even in the face of incorrect compilation (Sections 4.1.2
and 4.1.3). Our incorrect compiler has the following bug, miscompiling < to ≤:

compφ
badb(a1 < a2) ≜ compφ

a(a1) ≤ compφ
a(a2)

compbadb is a buggy boolean expression compiler that turns our less-than macro into a
less-than-or-equal-to expression. While we do not have a less than operator in the Imp
language, we have a less than macro defined as a1 ≤ a2 ∧¬(a1 ≤ a2 ∧a2 ≤ a1). For simplicity,
we will use < in this paper. The resulting program compiler 8 is correct for programs that
do not contain <, and we use it throughout this subsection. We give a short summary of the
proof effort that it took to prove these case studies in Table 2.

4.1.1 Helper Functions
We describe how we compile proofs about two helper functions: multiplication and exponen-
tiation. For clarity, we omit environments in the lemmas we state here.

Multiplication. The first helper function is a multiplication function, which behaves as
expected (code in green is actually wrapped Coq terms, whereas code in black is an expression
in our language substituted into a Coq term as per the semantics of our logic in Figure 3):

1 { ⊤ }
2 x := param 0; y := 0;
3 while (1 ≤ x) do
4 y := y + param 1;
5 x := x - 1;
6 { y = (param 0) · (param 1) }

The proof of this Imp Hoare triple is straightforward since the body of the function does
not encounter the incorrect behavior of the compiler. By combining this triple with a
termination proof, we are able to generate a helper lemma 9 that relates applications of the
Imp multiplication function to Coq’s Nat.mul:
Lemma mult_aexp_wrapper a1 a2 n1 n2: a1 ⇓ n1 → a2 ⇓ n2 → mult(a1, a2) ⇓ (n1 ∗ n2)%nat.

https://uwplse.org/potpie/docs/Imp_LangTrick.CodeCompiler.EnvToStackLTtoLEQ.html#compile_bexp
https://uwplse.org/potpie/docs/Imp_LangTrick.Examples.rsa_impLang.html#mult_aexp_wrapper
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This lemma lets us reason more directly about nats. We use this lemma in the subsequent
case studies, demonstrating how PotPie enables us to reuse the source Hoare proof of this
triple to get the target-level version of this lemma almost for free – we still have to reprove
termination at the target level, something we hope to address in future work.

Exponentiation. Exponentiation is similarly straightforward, except we use multiplication
as defined above as a function in its body and thus must use the multiplication function
wrapper to prove the loop invariant, and we obtain the following wrapper 10 :

Lemma exp_aexp_wrapper : forall a1 a2 n1 n2, a1 ⇓ n1 → a2 ⇓ n2 → exp(a1, a2) ⇓ n2n1.

4.1.2 Geometric Series
One example use case for partial correctness specifications is floating point estimation of
mathematical functions, like sin(x) and ex, by way of computing infinite series with well-
behaved error terms. Since floating point numbers are unable to represent all of the reals,
we must approximate these functions within some error bound. As a simple version of this
use case, we consider a program for calculating the geometric series

∑∞
i=1

1
xi within an error

bound of ϵ = δn

δd
. We require x ≥ 2 so that the series converges, which simplifies some of our

assertions for this example. While this is a toy example that would be easier to compute in
its closed form – the series

∑∞
i=0 a · ri is known to converge to a

1−r for |r| < 1, it suffices as a
simple example of using PotPie with an interesting partial specification. We cover a more
realistic example in Section 4.1.3. The program we use to compute this series is as follows:

1 { 2 ≤ x ∧ x = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ 1 = 1; ∧x = x ∧ 2 = 2 }
2 x := x; // the series denominator
3 rn := 1; // the result numerator
4 rd := x; // the result denominator (for i = 1)
5 i := 2; // the next exponent
6 { rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i } // loop invariant
7 // the loop condition is equivalent to ϵ < 1

x−1 − rn
rd , and 1

x−1 =
∑∞

i=1
1
x

8 while (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd)) do
9 d := exp(x, i);

10 rn := frac_add_numerator (rn , rd , 1, d); // a/b + c/d = (ad + cb)/(
bd)

11 rd := frac_add_denominator (rd , d); // fraction addition denominator
12 i := i + 1;
13 { ¬ (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd))
14 ∧ (rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i) } // loop

postcondition
15 { δd · rd ≤ δn · (x − 1) · rd + δd · (x − 1) · rn } // program postcondition : 1

x−1 − rn
rd ≤ δn

δd

For brevity, we omit assertions outside of the pre/postcondition, loop invariant, and loop
postcondition. We show wrapped Coq Props and arithmetic terms in green, i.e. δn · (x − 1).
Terms in black are Imp expressions. Note that we encounter the bug in our program
compiler, which miscompiles the < in the while loop conditional. However, we are still able to
compile this program and its proof to Stack because (1) the pre/postconditions’ meaning is
preserved by compilation, and (2) the implication database is still valid, i.e., every compiled
Imp implication is still an implication in Stack.

To see (1), we will need to look at the underlying representation of our assertions. As
given in Figure 3, our precondition and postcondition actually have the following form:

(fun x’ rn’ rd’ i’ => 2 ≤ x’ ∧ x’ = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ rn’ = 1 ∧ rd’ = x ∧ i’ = 2) x 1 x 2
(fun rn’ rd’ => δd · rd’ ≤ δn · (x − 1) · rd’ + δd · (x − 1) · rn’) rn rd

Everything after the anonymous function is actually an expression in the Imp language.
These are the only parts of the assertions that are compiled by the specification compiler.
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For instance, x is a constant arithmetic expression in Imp, which wraps Coq’s nat type. The
arithmetic compiler, compa, from Figure 2 compiles these to nat constants in the Stack
language. For the variables rn and rd, compφ,k

a (rn) = #φ(rn). After compiling, we get the
postcondition δd · #5 ≤ δn · (x − 1) · #5 + δd · (x − 1) · #2, or symbolically: 1

x−1 − #2
#5 ≤ δn

δd
.

For (2), we have to show that every implication in the Imp implication database is
compiled to a valid implication in Stack. The implication most relevant to the successful
compilation of the proof is the last one, which implies the program’s postcondition. Since
the Imp loop condition < gets compiled to <= in Stack, our negated loop condition becomes

¬ (mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≤ mult(#5, δd))

This is equivalent to the below inequality (where ≡ denotes “is numerically equivalent to”),
which still implies the compiled postcondition. This is easily proved with the Psatz.lia tactic.

mult(#5, δd) < mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≡ 1
x−1 − #2

#5 < δn

δd

4.1.3 Square Root
The second approximation program we consider interacts with the same miscompilation and
still meaningfully preserves the source specification. Given numbers a, b, ϵn, ϵd, we consider a
square root approximation program that calculates some x, y such that | x2

y2 − a
b | ≤ ϵn

ϵd
. We

can project the postcondition entirely into Coq terms, multiplying through both sides by the
denominator so we can express it in our language. After writing the program, we come up
with the following loop condition, which represents ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣ (· is syntactic sugar for
mult, and < is actually the Imp less-than macro):

loop_cond ≜ (y ·y ·b·ϵn < y ·y ·a·ϵd − x·x·a·ϵd) ∨ (y ·y ·b·ϵn < x·x·b·ϵd − y ·y ·a·ϵd)

Our Imp square root program and specification is given by the following.
1 {⊤}
2 x := a; y := mult (2, b);
3 inc_n := a; inc_d := mult (2, b);
4 while ( loop_cond ) do
5 inc_d := mult (2, inc_d);
6 if (mult(mult(y, y), mult(a, ϵd)) ≤ mult(mult(x, x), mult(b, ϵd)))
7 then x := frac_sub_numerator (x, y, inc_n , inc_d);
8 else x := frac_add_numerator (x, y, inc_n , inc_d);
9 y := frac_add_denominator (y, inc_d);

10 { ¬loop_condition ∧ ⊤ } =⇒
11 { ((x · x · b · ϵd) − (y · y · a · ϵd) ≤ y · y · b · ϵn) ∧ ((y · y · a · ϵd) − (x · x · b · ϵd) ≤ y · y · b · ϵn) }

Most of the rules of consequence are straightforward. The only nontrivial implication
involved is the final rule of consequence for the postcondition. The loop’s postcondition is
¬

(
ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣) ≡
∣∣∣ x2

y2 − a
b

∣∣∣ ≤ ϵn

ϵd
, which directly gets us the program postcondition.

During compilation, the loop condition is miscompiled: the program compiler changes <

to ≤. This results in the following target loop condition, where again, mult is represented
by ·. Note this is not green since it represents an expression in Stack, not a Coq one.

stk_loop_cond ≜ #1 · #1 · b · ϵn ≤ #1 · #1 · a · ϵd − #4 · #4 · b · ϵd

∨ #1 · #1 · b · ϵn ≤ #4 · #4 · b · ϵd − #1 · #1 · a · ϵd

Compared to the target program and proof, the main difference is in the final application of
the rule of consequence, where the incorrect behavior of the compiler appears and changes
the semantics of the loop condition. The programs have meaningfully different semantics,
and those meaningfully different semantics do manifest in the application of the while rule.



A. Seo, C. Lam, D. Grossman, and T. Ringer 33:13

1 {(⊤, ⊤)}
2 push; push; push; push;
3 #4 := a; #1 := mult (2, b);
4 #3 := a; #2 := mult (2, b);
5 {4, ⊤}
6 while ( stk_loop_cond ) do
7 #2 := mult (2, #2);
8 if (mult(mult (#1, #1) , mult(a, ϵd)) ≤ mult(mult (#4, #4) , mult(a, ϵd)

))
9 then #4 := frac_sub_numerator (#4, #1, #3, #2);

10 else #4 := frac_add_numerator (#4, #1, #3, #2);
11 #1 := frac_add_denominator (#1, #2)
12 {(4, ¬target_loop_condition )) /\ (4, ⊤)} =⇒
13 {4, (#4·#4·b· ϵd) − (#1·#1· a·ϵd) ≤ (#1·#1·b·ϵn) ∧ ((#1 · #1·a·ϵd) − (#4·#4·b·ϵd) ≤ #1·#1·b·ϵn)}

While the loop condition is indeed miscompiled, the postcondition uses Coq’s ≤, so
the postcondition is not. Even though the unsound behavior of the compiler changes the
semantics of the loop invariant, it is not enough to break the implication between the
loop condition and the Coq-wrapped loop condition. Further, because of the way that the
postcondition projects into Coq, the final implication is almost completely provable via
applications of helper lemmas from Section 4.1.1 and the tactics inversion and Psatz.lia.

4.2 PotPie Three Ways
PotPie makes it easy to swap out control-flow-preserving program compilers and still reuse
the same infrastructure. We instantiate PotPie with three variants of a program compiler,
and use these on three small programs: shift (left-shift) 14 , max 15 16 , and min 17 :
1. An incomplete program compiler 18 that is missing entire cases of the source

language grammar. Only shift can be compiled using the incomplete proof compiler.
2. An incorrect program compiler 19 that contains a mistake and an unsafe optimization,

in a similar vein to the previous examples. We can compile max using it, but not min.
3. An unverified correct program compiler 20 that always preserves program and

specification behavior. This can be used to proof compile all of the programs.
These examples show we are able to instantiate the PotPie framework for several different
compilers, and PotPie is compatible with correct compilers as well. We are able to invoke
the CC and Tree compilers with all of these case studies as well.

5 Implementation

While much of our proof development for PotPie is implemented in Coq, the Tree plugin
is implemented in OCaml (Section 5.1). We prove that PotPie is sound for both workflows
(Section 5.2) and keep PotPie’s trusted computing base small (Section 5.3).

5.1 The Tree Plugin
The Tree plugin is implemented in OCaml, and consists of about 2.2k lines of code (LOC).
Much of the code (∼1.1k LOC) is simply copied from the reusable plugin library coq-plugin-
lib1 and updated to Coq 8.16.1. Additionally, such a plugin only has to be created once per
target language-logic pair, and is completely independent from compilation. Indeed, the plugin
can be called on any Stack Hoare tree – the tree need not be the result of compilation. While

1 https://github.com/uwplse/coq-plugin-lib
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Table 3 The proof engineering effort that went into stating and formalizing PotPie, including
the infrastructure to support the code and spec languages, logics, the compilers, the case studies,
and automation. Here, “Thms” means the number of Theorems and Lemmas, while “Specs” means
the number of Definitions, Fixpoints, and Inductives. “WF” stands for well-formed, “Insts.” for
instantiations of CC compilers, “Cases” for our case studies, and “Auto” for automation. “Base
Props” refers to code related to the base assertions seen in Figure 3.

Imp Stack Base Compiler Insts. Cases Auto Misc TotalLang Logic WF Lang Logic WF Props Code Spec Tree CC
LOC 808 1948 3605 2593 1077 5635 941 1102 159 780 3045 2133 6971 2914 3225 36936
Thms 15 67 103 91 17 204 37 44 2 17 93 52 288 31 105 1166
Specs 43 32 51 29 51 63 31 25 14 13 40 100 238 50 107 887

Table 1 indicates that the plugin automates a check for the commutativity equations from
Section 3.2.1, this is because the properties checked by the plugin imply the commutativity
equations for the included Tree proof compiler in our code 2 – it never actually checks the
commutativity equations themselves. This makes Tree more flexible than the CC approach.

The plugin is called on a Stack tree, function environment, implication database (with
proof of its validity), and list of functions. Here we call it on our multiplication example:

1 Certify (MultTargetTree.tree) (MultTargetTree.fenv) (ProdTargetTree.facts)
2 (MultValidFacts.valid_facts) (MultTargetTree.funcs) as mult.
3 Check mult.

mult contains the answer returned by the plugin. If the plugin is set to generate certificates
and it is successful, mult has type stk_valid_tree. Otherwise, mult is a Coq bool.

The plugin recurses over the input tree and attempts to construct the certificate 21 .
This may fail if the tree is malformed or there are mutually recursive functions. As we saw
in Section 2.2, the Stack logic requires that all expressions preserve the stack, which is
represented by the relation exp_stack_pure_rel 3 . However, due to the semantics of Stack
functions, we need to know that all function calls preserve the stack, and showing that
exp_stack_pure_rel is true in the presence of mutually recursive functions would lead to an
infinite loop. If certificate generation fails, the plugin tries to provide a boolean answer as
a fallback mechanism. It does this by checking each function for stack-preserving behavior
modulo the behavior of other functions 23 , then checking the proof tree recursively 24 .

As we saw in Table 2, the certificate generator and tree checking algorithms are fairly
performant. This is due to several caching and reduction algorithm optimizations we made.
Before applying optimizations, the series and square root examples took >10 minutes to
generate certificates, and now take <5 seconds. The main bottleneck was Coq’s δ-reductions,
which unfold constants. Our plugin provides an option to treat certain functions as “opaque”
inside the plugin 27 , leaving their constants folded and speeding up normalization. This
does not change the user’s Coq environment. The plugin also uses unification (for example,
to match with constructors of option types 32 ) to avoid all but one call to normalization,
which we found to significantly improve performance.

5.2 Formal Proof
Our Coq formalization includes two proofs of soundness, one for each of the workflows, as
well as all of the case studies from Section 4. The CC soundness proof 1 takes the form
of a correct-by-construction function that takes a source Hoare proof, the well-formedness
conditions, and the implication translation, and produces a verified Hoare proof in the target,
as described in Section 3.1. For Tree, we prove that if all of the obligations for CC are

https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.TreeProofCompiler.html#TreeProofCompiler
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/checker.ml#L81
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.StackPurestBase.html#bexp_stack_pure_rel
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.FuncsFrame.html#funcs_frame
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/boolChecker.ml#L
https://github.com/uwplse/potpie/tree/v0.4/plugin/theories/Demo.v#L49
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/CoqCoreInductives.ml#L54
https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompCodeCompAgnosticMod.html#CompilerAgnosticProofCompilerType.proof_compiler
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satisfied, then the compiled tree is valid 12 . As we mentioned in Section 3.1, we additionally
show that when the OCaml plugin 5 generates a certificate that typechecks, the certificate
can be used to obtain an hl_stk proof.

We loosely based our code on Xavier Leroy’s course on mechanized semantics [30]. The
LOC numbers for our proof development in Table 3 are large when compared to the size of
Leroy’s course materials, but there are several key differences. First, our languages include
functions, making our semantics more difficult to reason about than the course’s semantics.
The trade-off is that functions give us the opportunity to reason about the composition of
programs and their proofs (Section 4.1). Second, our target language is far less well-behaved
than either of the languages in the course. Third, PotPie supports two different workflows,
two separate proof compilers that work to get guarantees even for incorrect compilation.

5.3 Trusted Computing Base (TCB)
PotPie’s two workflows for proof compilation have different TCBs and provide different levels
of guarantees. The CC proof compiler’s TCB consisting of the Coq kernel, the mechanized
semantics, the definition of the Hoare triple, and two localized Uniqueness of Identity Proofs
(UIP) axioms for reasoning about the equalities between dependent types. UIP, which is
consistent with Coq, states that any two equality proofs are equal for all types – we instead
assume that equality proofs are equal to each other for two particular types, AbsEnvs 25
(the implementation of SM from Section 2.2) and function environments 26 . This does not
imply universal UIP but is similarly convenient for proof engineering. Whenever all of its
proof obligations can be satisfied, the correct-by-construction proof compiler is guaranteed to
produce a correct proof. However, the resulting proof object may not be independent from
the source semantics, due to various opaque proof terms that cannot be further reduced.

The Tree plugin can either generate a certificate or run a check on a proof tree, returning
its validity as a boolean. The certificate generator has a strictly smaller TCB than CC since
it does not assume any form of UIP. The certificate generator works by generating a term
of type stk_valid_tree 22 . Since this term must still be type-checked in Coq for it to be
considered valid, this does not add to the TCB. The Tree boolean proof tree checker has its
own “kernel,” also implemented in OCaml, for checking proof trees, which adds to its TCB.
While it does not imply formal correctness, it can boost confidence in compiled proofs.

6 Related Work and Discussion

Early work on compiling proofs positioned itself as an extension of proof-carrying code [35].
A 2005 paper [4] stated a theorem relating source and target program logics. Early work [33]
transformed Hoare-style proofs about Java-like programs to proofs about bytecode imple-
mented in XML. Later work [37] implemented proof-transforming compilation, trans-
forming proof objects from Eiffel to bytecode, and formalizing the specification compiler in
Isabelle/HOL, with a hand-written proof of correctness of the proof compiler. Subsequent
work [16] showed how to embed the compiled bytecode proofs into Isabelle/HOL. Our work
is the first we know of to formally verify the correctness of the proof compiler, and to use it
to support specification-preserving compilation in the face of incorrect program compilation.
Existing work on certificate translation [3, 26], which is similar but focuses on compiler
optimizations, may help us relax control-flow restrictions.

There is a lens through which our work is related to type-preserving compilation:
compiling programs in a way that preserves their types. There is work on this defined on a
subset of Coq for CPS [7] and ANF [21] translations. As the source and target languages
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both have dependent types, this can likewise be used to compile proofs while preserving
specifications. A similar line of work can be found for compilations of proof languages in
Metamath Zero [9]. Our work focuses on compiling program logic proofs instead.

Our work implements a certified proof transformation in Coq for an embedded program
logic. Proof transformations were introduced in 1987 to bridge automation and usability [39],
and have since been used for proof generalization [15, 20, 17], reuse [31], and repair [41].

The golden standard for correct compilation is certified compilation: formally proving
compilers correct. The CompCert verified C compiler [29, 28] lacks bugs present in other
compilers [47]. The CakeML [25] verified implementation of ML includes a verified compiler.
Oeuf [32] and CertiCoq [2] are certified compilers for Coq’s term language Gallina. Certified
compilation is desirable when possible, but real compilers may be unverified, incomplete, or
incorrect. Our work complements certified compilation by exploring an underexplored part of
the design space of compiler correctness: compilation that is specification-preserving for a
given source program and (possibly partial) specification, even when the compilation may not
be fully meaning-preserving for that program. The original CompCert paper [28] brought
up the possibility of specification-preserving compilation as part of a design space that is
complementary to, not in competition with, certified compilation. We agree; it expands the
space of guarantees one can get for compiled programs – even when those programs are
incorrectly compiled. It also expands the means by which one may get said guarantees.

Our work implements a kind of certifying compilation: producing compiled code and
a proof that its compilation is correct. For example, COGENT’s certifying compiler proves
that, for a given program compiled from COGENT to C, target code correctly implements a
high-level semantics embedded in Isabelle/HOL [1, 42]. Certifying compilation shares the
benefit that the compiler may be incorrect or incomplete, yet still produce proofs about the
compiled program. Most prior work on certifying compilation that we are aware of targets
general properties (like type safety) rather than program-specific ones. One exception is
Rupicola [40], a framework for correct but incomplete compilation from Gallina to low-level
code using proof search, which focuses on preservation of program-specific specifications
proven at the source level like we do. But it does not appear to address the case when the
program itself is incorrectly compiled, nor the case where there already exists an unverified
complete program compiler. Our work adds to the space of certifying compilation by
preserving program-specific partial specifications proven at the source level even when the
program itself is compiled incorrectly, with the added benefit of compositionality.

One immensely practical method for showing that programs compiled with unverified
compilers preserve behavior is translation validation. In translation validation, the
compiler produces a proof of the correctness of a particular program’s compilation, which
then needs to be checked [36]. Our work is in a similar spirit, but distinguishes itself in that
our method does not rely on functional equivalence for the particular compiled program.
Our method makes it possible to show that a compiler preserves a partial specification when
the program is miscompiled in ways that are not relevant to the specification.

Section 4.1.1 shows in a limited context our method’s potential for compositionality.
Similar motivation is behind (much more mature) work in compositional certified compila-
tion [46, 14, 19]. DimSum [43] defines an elegant and powerful language-and-logic-agnostic
framework for language interoperability, though to get guarantees, it leans heavily on data
refinement arguments that show a simulation property stronger than what our framework
requires. We hope that in the future, we will make our compositional workflow more sys-
tematic and fill the gap of compositional multi-language reasoning in a relaxed correctness
setting – by linking compiled proofs directly in a common target logic. Similar motivations
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are behind linking types [38], which are extensions to type systems for reasoning about
correct linking in a multilanguage setting. We expect tradeoffs similar to those between our
work and type-preserving compilation to arise in this setting.

Frameworks based on embedded program logics (e.g., Iris [18, 24], VST-Floyd [8],
Bedrock [12, 13], YNot [34], CHL [11], Sepref [27], and CFML [10]) help proof engineers
write proofs in a proof assistant about code with features that the proof assistant lacks. C
programs verified in the VST program logic are, by composition with CompCert, guaranteed
to preserve their specifications even after compilation to assembly code [5]. Our work aims to
create an alternative toolchain for preserving guarantees across compilation that allows the
program compiler to be unverified or even incorrect, even for the program being compiled.
Relative to practical frameworks like Iris and VST, the program logics we use for this are
much less mature. We hope to extend our work to more practical logics and lower-level
target languages in the future, so that users of toolchains like VST can get guarantees about
compiled programs even in the face of incorrect compilation.

7 Conclusion

We showed how compiling proofs across program logics can empower proof engineers to
reason directly about source programs yet still obtain proofs about compiled programs – even
when they are incorrectly compiled. Our implementation PotPie and its two workflows, CC
and Tree, are formally verified in Coq, providing guarantees that compiled proofs not only
prove their respective specifications, but also are correctly related to the source proofs. Our
hope is to provide an alternative to relying on verified program compilers without sacrificing
important correctness guarantees of program specifications.

Future Work. In this work, we have not tackled the problem of control flow optimizations.
We believe the challenges of bridging abstraction levels and verifying control flow-modifying
optimizations are mostly orthogonal, and that the latter is out of our scope. In future work,
we would like to investigate ways our work could be composed with control flow optimizations.
For example, we may be able to leverage Kleene algebras with tests (KAT) [22] to reason
about control flow optimizations. An optimization pass could extract a proof subtree and
return the optimized subprogram, while preserving semantic equality via KAT. This approach
may even be able to leverage a Hoare triple’s preconditions to apply optimizations that
would be otherwise unsound [23]. For an example of KATs applied to existing compiler
optimizations, see existing work [22]. Beyond relaxing control flow restrictions, other next
steps include supporting more source languages and logics, supporting additional linking of
target-level proofs, implementing optimizing compilers, and bringing the benefits of proof
compilation to more practical frameworks.

We also have not addressed the issue of scalability. As we outlined in Section 1, that was
not in the scope of this paper. We do however have some ideas for expanding scalability. There
are two main issues of scale: (1) applying the methodology here to more complex programming
languages and program logics, and (2) how easily proof compilers can be implemented and
used. For more complex languages and logics, we are currently implementing a language
with pointers and an accompanying separation logic, as well as a stack language with stack
pointer expressions. This will give us a better idea of the effort involved to scale to more
languages. As for implementing and using proof compilers, we found that the Tree version
of the proof compiler was very easy to write, and the plugin consists of only 1.1k new LOC
as we saw in Section 5.1. We believe that significant parts of that code could have been
automatically generated as well, which would further decrease the time needed to create such
a proof compiler. We are excited to explore these directions, as well as others, in the future.

ITP 2024
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