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Abstract
We propose the first step in the development of a tool to automate the translation of Redex models
into a semantically equivalent model in Coq, and to provide tactics to help in the certification of
fundamental properties of such models.

The work is based on a model of Redex’s semantics developed by Klein et al. In this iteration,
we were able to code in Coq a primitive recursive definition of the matching algorithm of Redex,
and prove its correctness with respect to the original specification. The main challenge was to find
the right generalization of the original algorithm (and its specification), and to find the proper
well-founded relation to prove its termination.

Additionally, we also adequate some parts of our mechanization to prepare it for the future
inclusion of Redex features absent in Klein et al., such as the Kleene’s closure operator.
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1 Introduction

Redex [5] is a DSL built on top of the Racket programming language, which allows for the
mechanization of reduction semantics models and formal systems. It includes a variety of
tools for testing the models, including: unit testing; random testing of properties; and a
stepper for step-by-step reduction sequences. Given its toolkit, Redex has been successfully
used for the mechanization of large semantics models of real programming languages (e.g.,
JavaScript [6, 11]; Python [12]; Scheme [8]; and Lua [17, 16, 14]).

The approach of Redex to semantics engineering involves a lightweight development of
models that focuses on a quick transition between specification of models and testing of their
properties. These virtues of Redex enable it as a useful tool with which to perform the first
steps of a formalization effort. Nonetheless, when a given model seems to be thoroughly
tested and mature, one still might need to prove its desired properties, since no amount of
testing can guarantee the absence of errors [3].

Redex does not offer tools for formal verification of a given model, and there are no
fully developed automatic tools to export the model into some proof assistant. Hence, for
verification purposes, it is common for a given model to be written again entirely into a proof
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assistant. Besides being a time-consuming process, another downside is that the translation
into the proof assistant may be guided just by an intuitive understanding of the behavior of
the mechanization in Redex. And that intuitive understanding could differ from the actual
behavior of the model in Redex. This is so, since the tool implements a particular meaning
of reduction semantics with evaluation contexts, offering an expressive language to the user
that includes several features, useful to express concepts like context-dependent syntactic
rules. The actual semantics of this language may not coincide with what the researcher
understands, as exposed in [4].

In this work, we propose to build a tool to automatically translate a given model in
Redex into an equivalent model in Coq, where the interpretation of the resulting model is
done through a shallow embedding in Coq of Redex’s actual semantics, as formalized in [4].
That is, we propose a Redex within Coq approach, where the pattern-matching engine is an
algorithm verified against a formal specification of the semantics of each pattern. In addition,
we propose to develop reasoning tools within Coq to help the user verify a model just in
terms of the same concepts from the Redex formalism. The approach does not limit the kind
of patterns that can be represented, nor the structure of the grammars that can be translated
(beyond Redex’s own limitations). The downside is that, in order to help the user verify
properties of a given model, we need to develop our own theory about patterns in Redex.

Summary of the Contributions

In this work we present a first step into the development of a tool to automate the translation
of a Redex model into a semantically equivalent model in Coq, and to provide automation to
the proof of essential properties of such models. The present work is heavily based on the
model of Redex’s semantics developed by [4] (which we will denote as RedexK). Essential to
RedexK are a specification of the process of matching between Redex patterns and terms,
and an algorithmic interpretation of this specification.

The contributions of the present work are:

We mechanize a modified version of RedexK in Coq. In the process, we develop a proof
of termination for the matching algorithm, which enables its mechanization into Coq as a
regular primitive recursion.

We modify RedexK to prepare it for the future addition of features, like the Kleene’s
closure operator, and the development of tactics to decide about properties of reduction
semantics models.

We prove soundness properties of the matching algorithm with respect to its specification.

We verify the correspondence between our modified specification of matching and the
original version presented in RedexK.

The reader is invited to download the accompanying source code from https://github.
com/Mallku2/redex2coq.

The remainder of this paper is structured as follows: §2 presents a brief introduction to
reduction semantics, as presented in Redex; §3 offers a general overview of our mechanization
in Coq; §4 presents the main soundness results proved within our mechanization; §5 discuss
about related work from the literature of the area; finally, §6 summarizes the results presented
in this paper and discusses future venues of research enabled by this first iteration of our tool.

https://github.com/Mallku2/redex2coq
https://github.com/Mallku2/redex2coq
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Figure 1 Definition of a language in Redex.

2 Redex

In this section, we present a brief introduction to Redex’s main concepts, limiting our attention
to the concepts that are relevant to our tool in this first iteration of the development. As a
running example, we show how to mechanize in Redex a fragment of λ-calculus with normal
order call-by-value reduction. For a better introduction to these topics, the reader can consult
[5, 7] and the original paper on which our mechanization is based [4].

Redex can be viewed as a particular implementation of Reduction Semantics with
Evaluation Contexts (RS), in which semantical aspects of computations are described as
relations over syntactic elements (terms) of the language.

As a simple introductory example, Figure 1 shows part of a specification for a call-
by-value λ-calculus. The grammar of the language is defined with the first command,
define−language. The language called lambda contains non-terminals e (representing any
λ-term), v (values; in this case only λ-abstractions), x (variables; defined with pattern
variable−not−otherwise−mentioned, meaning the symbols that are not used as literals
elsewhere in the language) and E (evaluation contexts, to be explained below). The right-hand
side of the productions of each non-terminal are shown to the right of the ::= symbol.

The productions of non-terminal E indicate that an evaluation context could be a single
hole, or a context of the form E’ e, where E’ is another evaluation context; or a context of the
form v E’. Note that the consequence of this definition is that we are imposing normal-order
reduction.

The reduction relation is defined with the keyword reduction−relation. It defines a
relation between terms (e), from the previously defined lambda language, consisting of a
single contraction, beta_contraction. This rule explains two things: how β-contractions
are done; and the order in which those contractions can occur, effectively imposing the
order of evaluation. The rule states that if a term can be decomposed into context E and
an abstraction application ((λ x e) v) (pattern (in−hole E ((λ x e) v))), then, the original
term reduces to the phrase resulting from plugging the result of substituting x by v in e into
the context E (pattern in−hole E (substitute e x v)).

As an example, consider the term ((λ w w) (λ y y)) (λ z z). In order to match the left-
hand side of the rule, it decomposes the term into context E = hole (λ z z), matching x with
w, e with w, and v with (λ y y). The result is the term (λ y y) (λ z z).

We won’t delve into the details of the substitute meta-function, but it will be useful
to explain one of its components: the list of free variables of a term, fv, partially shown
in Figure 1. This meta-function is defined using the define−metafunction keyword. The
signature of the function, fv : e → (x ...) , states that fv receives a λ-term, and returns a
list of 0 or more variables (pattern x ... , to be explained below). After the signature, we
have 2 equations explaining which are the free variables: in a term that is a single variable
x or an application e1 e2. For reasons of space, we do not show equations referring to the
cases where the term under consideration is a λ-abstraction.

ITP 2024
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Inductive term := lit_term : lit → term | list_term_c : list_term → term
| contxt_term : contxt → term

with list_term := nil_term_c : list_term | cons_term_c : term → list_term → list_term
with contxt := hole_contxt_c : contxt | list_contxt_c : list_contxt → contxt
with list_contxt := hd_contxt : contxt → list_term → list_contxt

| tail_contxt : term → list_contxt → list_contxt.

Figure 2 Language of terms.

The pattern p ... is called the Kleene’s closure of a pattern, and expresses the idea of
“zero or more terms” that match a given pattern p. For example, the first where clause of
the second equation imposes a condition that holds only when the expression fv e1 matches
the pattern x1 ..., meaning that fv e1 must evaluate to a list of 0 or more variables. Redex
binds that list with x1 ..., and we can use this pattern to refer to this list. In particular, in
this case we return x1 ... followed by the variables resulting from evaluating fv e2 (that is,
x2 ...). As a last comment, it is possible to express context-dependent restrictions by using
specific indexes: for example, pattern (x_1 x_1) only matches a list of two equal variables;
and pattern (x_!_ x_!_) only matches a list of two different variables.

3 Expressing Redex in Coq

In this section, we introduce the main ideas behind our implementation in Coq. Later, in §4,
we describe the main soundness properties that we mechanized.

Coq’s literals and constructions will be presented with Coq’s concrete syntax, using
listings or embedded in the text itself. Elements belonging to our meta-language (for example,
some variables quantified over terms or patterns) will be presented with usual Latex’s math
fonts. Further notation will be introduced when needed.

3.1 Language of Terms and Patterns
We begin the presentation by introducing our mechanized version of the language of terms
and patterns. We ask for some reasonable decidability properties about the language that
we use to describe a given reduction semantics model. These standard properties will be
useful to develop our mechanization in its present version, and more so in the prospective
future of the development.

3.1.1 Terms
The module type Symbols describes abstractly the atomic elements of the language of terms
and patterns: literals (lit), non-terminals (nonterm), and pattern variables var, which also
play the role of sub-indexes in the patterns. We require that these types are also instances of
the stdpp’s typeclass EqDecision [18]. This encompasses showing that definitional equality
between atomic elements is decidable. Details can be found in file patterns_terms.v.

In RedexK, terms are classified according to their structure, or if they act as a context or
not. According to their structure, terms are classified as atomic literals or with a binary-tree
structure. In our case, we will generalize the notion of “terms with structure”. One of the
most prominent features absent in RedexK is the Kleene’s closure operator, which matches
(or describes) lists of zero or more terms. In order to be able to include this feature in a
future iteration of our model, we begin by generalizing the notion of structured terms. We
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Inductive pat := lit_pat : lit → pat | hole_pat : pat
| list_pat_c : list_pat → pat | name_pat : var → pat → pat
| nt_pat : nonterm → pat | inhole_pat : pat → pat → pat
with list_pat := nil_pat_c : list_pat | cons_pat_c : pat → list_pat → list_pat.

Figure 3 Language of patterns.

will allow them to be lists of 0 or more terms. Non-empty lists can also be considered as
binary trees, but where the right sub-tree of a given node is always a list. We will enforce
that shape through types.

The language of terms is presented in Figure 2. A term consisting of a literal is built with
constructor lit_term, while structured terms are captured and enforced through a type,
list_term. Structured terms can be an empty list, built with nil_term_c (which would be
denoted simply as () in Redex), or a list with one term as its head, and some list as its tail,
using constructor cons_term_c. For example, a Redex pattern like (x x), for some literal x,
would be built as: cons_term_c (lit_term x) (cons_term_c (lit_term x) nil_term_c). Finally,
we define an injection into terms, list_term_c.

The other kind of terms considered in RedexK are contexts. Contexts include information
about where to find the hole, to help the algorithms of decomposition and plugging. That
information consists in a path from the root of the term (seen as a tree) to the leaf that
contains the hole. To that end, RedexK defines a notion of context that, if it is not just a
single hole, contains a tag indicating where to look for the hole: either into the left or the
right sub-tree of the context. We preserve the same idea, adapted to our presentation of
structured terms.

We introduce the type contxt, to represent and enforce through types the notion of
contexts. These contexts can be just a single hole (hole_contxt_c; denoted with the pattern
hole in Redex, as shown in §2) or a list of terms with some position marked with a hole. In
order to guarantee the presence of a hole into this last kind of contexts, we introduce the type
list_contxt. These contexts can point into the first position of a given list (hd_contxt;
like in (hole (λ y y))) or the tail (tail_contxt; like in ((λ w w) hole)). Finally, we have
the injections from list_contxt into contxt (list_contxt_c), and from contxt into term
(contxt_term). These injections, naturally, are used later as coercions.

3.1.2 Patterns
As mentioned in §2, Redex offers a language of patterns with enough expressive power

to state context-dependent restrictions. We mechanize the same language of patterns as
presented in RedexK, with the required change to accommodate our generalization done
to structured terms, as explained in the previous sub-section. The language of patterns is
presented in Figure 3.

Pattern lit_pat l matches only a single literal l . Pattern hole_pat matches a context
that is just a single hole. In order to describe the new category of structured terms that we
presented in the previous subsection, we add a new category of patterns enforced through
type list_pat. From this category of patterns, pattern nil_pat_c matches a list of 0 terms,
while pattern cons_pat_c phd ptl matches a list of terms, whose first term matches pattern
phd, and whose tail matches the pattern ptl. Finally, we have an injection from this category
of patterns into the type pat: list_pat_c.

ITP 2024
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Context-dependent restrictions are imposed through pattern name_pat x p. This pattern
matches a term t that, in turn, must match pattern p. As a result, the pattern name_pat x
p introduces a context-dependent restriction in the form of a binding, that assigns pattern
variable x to term t. Data-structures to keep track of this information will be introduced
later, but for the moment, just consider that during matching some structures are used
to keep track of all of this context-dependent restrictions that have the form of a binding
between a pattern variable and a term. If, at the moment of introducing the binding to x ,
there exists another binding for the same variable but with respect to a term different than t,
the whole matching fails. Note that this semantics accounts for the behavior of the pattern
(x_1 x_1), mentioned in §2. Also, a pattern like (x_!_ x_!_), also mentioned in §2, could
be described in terms of similar concepts, though it is currently not supported in RedexK
nor within our mechanization.

Pattern nt_pat e matches a term t, if there exists a production from non-terminal e,
whose right-hand-side is a pattern p that matches term t.

Finally, pattern inhole_pat pc ph matches some term t, if t can be decomposed between
some context C , that matches pattern pc, and some term t’, that matches pattern ph. It
should be possible to plug t’ into context C , recovering the original term t. Note that the
information contained in the tag of each kind of non-empty context, that indicates where to
find the hole, helps in this process: at each step the process looks, either, into the head of
the context or into its tail.

3.1.3 Decidability of predicates about terms and patterns
We want to put particular emphasis on the development of tools to recognize the decidability
of predicates about terms and patterns. This could serve as a good foundation for the future
development of tactics to help the user automate as much as possible the process of proving
arbitrary statements about the user’s reduction semantics models.

As a natural consequence of our first assumptions about the atomic elements of the
languages of terms and patterns, presented in §3.1.1, we can also prove decidability results
about definitional equalities among terms and patterns. Another straightforward consequence
involves the decidability of definitional equalities between values of the many data-structures
involved in the process of matching. Future efforts will be put in developing further this
minimal theory about decidability (see §6).

3.1.4 Grammars
The notion of grammar in Redex, as presented in §2, is modeled in RedexK as a finite mapping
between non-terminals and sets of patterns. Our intention is not to force some particular
representation for grammars, beyond the previous description. As a first step, we axiomatize
some assumptions about grammars through a module type. We begin by defining a production
of the grammar, simply, as a pair inhabiting nonterm ∗ pat, and we define a productions
type as a list of type production. We also ask for the existence of computational type
grammar, a constructor for grammars (inhabiting productions → grammar), the possibility
of testing membership of a production with respect to a grammar, and to be possible to
remove a production from a grammar (remove_prod). We ask for some notion of length of
grammars, and that remove_prod actually affects that length in the expected way. This
will be useful to guarantee the termination property of the matching algorithm (see §3.2.1).
Finally, we ask for some reasonable decidability properties for these types and operations:
decidability of definitional equalities among values of the previous types, and, naturally, for
the testing of membership of a production with respect to a given grammar.
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Abstracting these previous types and properties in a module type (Grammar), could
serve in the future when developing further our theory of decidability for the notion of
RS implemented in Redex. As a simple example, separating the type productions from
the actual definition of the type grammar, allows for the encapsulation of properties in
the type grammar itself, that specifies something about the inhabitants of productions.
Some decidability results depend on a grammar whose productions are restricted in some
particular way.1

For this first iteration, we provide an instantiation of the previous module type with a
grammar implemented using a list of productions: module GrammarLists from grammar.v. Here,
the type grammar does not impose new properties over the inhabitants of type productions.
We also provide a minimal theory to reason about grammars as lists, that helps in proving the
required termination and soundness properties of the matching algorithm. This is required
since our previous axiomatization of grammars, through module type Grammar, is not strong
enough to prove every desired property of our algorithm. A goal for a next iteration would be
to take advantage of the experience with this development, and strengthen our axiomatization
of grammars.

3.2 Matching and Decomposition
The first challenge we encountered when trying to mechanize RedexK, was finding a primitive
recursive algorithm to express matching and decomposition. The original algorithm from
RedexK is not a primitive recursion, for reasons that will be clear below. However, the
theory developed in the paper to check the soundness of this algorithm and to characterize
the inputs over which it converges to a result, helped us to recapture the matching and
decomposition process as a well-founded recursion.

3.2.1 Well-founded Relation Over the Domain of
Matching/Decomposition

In Coq, a well-founded recursion is presented as a primitive recursion over the evidence of
accessibility of a given element (from the domain of the well-founded recursion), with respect
to a given well-founded relation R. That is, it is a primitive recursion over the proof of a
statement that asserts that, from a given actual parameter x over which we are evaluating a
function, there is only a finite quantity of elements which are smaller than x, according to
relation R. These smaller elements are the ones over which the function can be evaluated
recursively.

The actual steps of matching/decomposition will be presented in detail below. But,
for the moment, in pursuing a well-founded recursive definition for the matching/decom-
position process, let us observe that, for a given grammar G , pattern p and term t, the
matching/decomposition of t with p involves, either:
1. Steps where the input term t is decomposed or consumed.
2. Steps where there is no input consumption, but, either:

a. The pattern p is decomposed or consumed.
b. The productions of the grammar G are considered, searching for a suitable pattern

that allows matching to proceed.

1 For example, while the general language intersection problem for context-free grammars (CFG) is
non-decidable, the intersection problem between a regular CFG and a non-recursive CFG is decidable
[9].

ITP 2024
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Step 1 corresponds, for example, to the case where t is a list of terms of the form
cons_term_c thd ttl, and p is a list of patterns of the form cons_pat_c phd ptl. Here, the
root of each tree (t and p) match, and the next step involves checking if thd matches pattern
phd, and if ttl matches ptl.

Step 2a corresponds, for example, to the case where pattern p has the form name_pat
x p’: as described in §3.1.2, the next step in matching/decomposition involves checking if
pattern p’ matches t. Here, the step does not involve consumption of input term t, but it
does involve a recursive call to matching/decomposition over a proper sub-pattern of p.

Finally, step 2b corresponds to the case of pattern nt_pat n, which implies looking for
productions of n in G that match t. Here, there is no reduction of terms and this process
does not neccessarily imply the reduction of patterns.

If not because for the pattern nt_pat, it could be easily argued that the process previously
described is indeed an algorithm.2 Now, if we do take into account nt_pat patterns,
termination in the general case no longer holds. In particular, non-termination can be
observed with a left-recursive grammar G and a given non-terminal n that witnesses the
left-recursion of G . Matching pattern nt_pat n, following the described process, could get
stuck repeating the step of searching into the productions of n, without any consumption of
input: from pattern nt_pat n we could reach to the same pattern nt_pat n.

The previous problem with left-recursion is described in [4]. There, the property of
left-recursion is captured by providing a relation →G that order patterns as they appear
during the previously described phase of the matching process when the input term is not
being consumed, but there is a decomposition of a pattern and/or searching into the grammar,
looking for a proper production to continue the matching. Then, a left-recursive grammar
would make the chains of the previous relation to contain a repeated pattern.

Then, if, for a non-left-recursive grammar G it is the case that p ̸→+
G p for any

pattern p (where →+
G is the transitive closure of →G), it must be the case that also

nt_pat n ̸→+
G nt_pat n, for a non-terminal n from G . This means that, when searching for

productions of n in G , and as long as the matching/decomposition is in the stage captured
by →G , it should be possible to discard the productions from the grammar G being tested.

The previous observation helps us argue that, provided that G is non-left-recursive, when
the matching process enters the stage of non-consumption of input, this phase will eventually
finalize: either, the pattern under consideration is totally decomposed and/or we run out
of productions from G . In what follows, we will assume only non-left-recursive grammars.
This does not impose a limitation over our model of Redex, since it only allows such kind of
grammars.

We will exploit the previous to build a well-founded relation over the domain of our
matching/decomposition function. The technique that we will use will consist in, first,
modeling each phase in isolation through a particular relation. There will be a relation <t:
term → term → Prop explaining what happens to the input when it is being consumed, and
a relation <p×g : pat × grammar → pat × grammar → Prop, explaining what happens to the
pattern and the grammar when there is no consumption of input. We will also prove the well-
foundedness of each relation. The final well-founded relation for the matching/decomposition
function will be the lexicographic product of the previous relations, a well-known method to
build new well-founded relations out of other such relations [10]. We will parameterize this
relation by the original grammar, to be able to recover the original productions when needed
(see §3.2.4 for details). For a given grammar g , we will denote this last relation with <g

t×p×g.
Note that its type will be term × pat × grammar → term × pat × grammar → Prop.

2 Algorithm as an effective procedure that also terminates on every input.
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(pc, G) <p×g (inhole_pat pc ph, G) (ph, G) <p×g (inhole_pat pc ph, G)

(p, G) <p×g (name_pat x p, G)
p ∈ G(n) G’ = G \ (n, p)
(p, G’) <p×g (nt_pat n, G)

Figure 4 Consumption of pattern and productions.

For a tuple (t, p, G) to be related with another smaller tuple (t’, p’, G’), according to
<g

t×p×g, it must happen that t’ <t t ∨ (t’ = t ∧ (p’, G’) <p×g (p, G)). This expresses the
situations where there is actual progress in the matching/decomposition algorithm towards
a result: either there is consumption of input or the phase of production searching and
decomposition of the pattern progresses towards its completion. Note that this definition
shows that the lexicographic product is a more general relation, that contains chains of
tuples that do not necessarily model what happens during matching and decomposition: if
t’ <t t, then (t’, p’, G’) <g

t×p×g (t, p, G), for some grammar g , regardless of what (p’, G’)
and (p, G) actually are. Later, when presenting the relations that form this lexicographic
product, we will also specify which are the actual chains that we will consider when modeling
the process of matching and decomposition. We will refer to this last kind of chains as the
chains of interest.

3.2.2 Input consumption

We define the relation <t to be exactly <subt, where <subt will denote the relation subterm_rel
: term → term → Prop, that links a term with each of its sub-terms. This describes an
order that coincides with that in which the input is consumed, for the actual specification
of matching and decomposition. This does not avoid for more exotic patterns, that could
be introduced in the future, to have a different behavior on input consumption. Hence, the
distinction between what constitutes a relation like <t and what simply is <subt.

3.2.3 Pattern and production consumption

The specification of <p×g, shown in Figure 4, matches the cases 2a and 2b described in §3.2.1.
Recall that, in this case, the algorithm entered a phase where the pattern is being decomposed
or productions from some non-terminal are being tested, to see if matching/decomposition
can continue. Matching a term t with a pattern of the form inhole_pat pc ph, means
trying to decompose the term between some context that matches pattern pc, and some
sub-term of t that matches pattern ph. In doing so, the first step involves a decomposition
process (to be specified later in §3.2.5), that begins working over the whole term t, and with
respect to just the sub-pattern pc. Hence, this step does not involve input consumption, but
it does involve considering a reduced pattern: pc. We just capture this simple fact through
<p×g, by stating that (pc, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G . Note
that we preserve the grammar.

In the particular case that pc matches hole_contxt_c, then there is no actual decom-
position of the term t. This means that, when looking for said sub-term of t that matches
pattern ph, we will still being considering the whole input term t. Again, we just capture this
simple fact by stating that (ph, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G .
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p ∈ G’(n) G ⊢ t : pG’ \ (n, p) | b
G ⊢ t : (nt_pat n)G’ | ⊘

G ⊢ thd : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = C [[th]] : (pc)G’ | bc th <subt t G ⊢ th : (ph)G | bh

G ⊢ t : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 5 Generalized specification of matching.

The case for the pattern name_pat x p can be explained on the same basis as with the
previous cases.

Finally, the last case refers to the pattern nt_pat n: it involves considering each pro-
duction of non-terminal n in G (which are denoted as G(n)). Here it is assumed that G
contains the correct set of productions that remain to be tested (an invariant property about
G through our algorithm). Then, we continue the process considering a grammar G’ that
contains every production from G , except for (n, p): the already considered production of
non-terminal n with right-hand-side p. We denote it stating that G’ equals the expression
G \ (n, p).

3.2.4 Specification of matching

We now explain our specification for matching and decomposition, which is a slight general-
ization from that of RedexK [4]. In the original specification, the judgment about matching
has the form G ⊢ t : p | b, stating that term t matches pattern p, under the productions from
grammar G , producing the bindings b (which could be an empty set of bindings, denoted
with ⊘). A seemingly obvious fact is that the non-terminals that may appear on pattern
p will be interpreted in terms of the productions from G . In our presentation, we relax
this assumption, and allow the non-terminals to be interpreted in terms of some arbitrary
grammar G’, which in practice will be a subset of G .

Therefore, our judgment is of the form G ⊢ t : pG’ | b, with the particular difference
that, initially, we interpret the non-terminals from p with grammar G’. Only when input
consumption begins, we restore the original grammar G . Figure 5 presents a simplified
fragment of our formal system. Following a top-down order, the first rule applies when a
term t matches a pattern nt_pat n, when the non-terminals of this pattern (in this case,
just n) are initially interpreted in terms of the productions of G’: then, that matching is
successful if there exists some p ∈ G’(n), such that t matches p, when its non-terminals
are initially interpreted under the productions from the grammar G’ \ (n, p). Recall that
this means that this last grammar will be used as long as there is no input consumption, or
there is no other occurrence of a pattern nt_pat. Again, we are following the chains from
<p×g. Also, the non-left-recursivity of the grammars being considered guarantees that this
replacement of the grammars is semantics-preserving: we will not need another production
from n, as long as there is no input consumption. Finally, note that this match does not
produce bindings.
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G ⊢ thd = C [[t’hd]] : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl = (hd_contxt C ttl)[[t’hd]] : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = Cc[[tc]] : (pc)G’ | bc tc <subt t G ⊢ tc = Ch[[th]] : (ph)G | bh

G ⊢ t = (Cc + + Ch)[[th]] : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 6 Generalized specification of decomposition.

The second rule can be understood in terms of the previously introduced concepts. Note
that, for each recursive proof of matching over sub-terms and sub-patterns, we re-install the
original grammar G . We denote with ⊔ the union of bindings, which is undefined if the same
name is bound to different terms.

The last case in Figure 5 refers to the matching of a term t with a pattern of the form
inhole_pat pc ph. This operation is successful when we can decompose term t between
some context that matches pattern pc, and some sub-term, that matches pattern ph. In
order to fully formalize what this matching means, we need to explain what decomposition
means. RedexK specifies this notion through another formal system, whose adaptation to our
work we present in the following sub-section. The original system allows us to build proofs
for judgments of the form G ⊢ t = C [[t’]] : p | b, meaning that we can decompose term t,
between some context C , that matches pattern p, and some sub-term t’. The decomposition
produces bindings b, and the non-terminals from pattern p are interpreted through the
productions present in grammar G . In our case, we modify this judgment by generalizing
it in the same way done for the matching judgment: G ⊢ t = C [[t’]] : pG’ | b, including the
possible interpretation of non-terminals in p, initially, using grammar G’.

Returning to the case about inhole_pat patterns in Figure 5, note that our intention
is to distinguish the case where the decomposition step actually consumes some portion
from t (shown in the rule), from the case where it does not (not shown in Figure 5). The
first situation (described in the rule for inhole_pat) means that context C is not simply
a hole, and th is an actual proper sub-term of t: i.e., th <subt t. Also, note that the
decomposition is proved interpreting (initially) the non-terminals from pc with production
from the arbitrary grammar G’ ((pc)G’). And the proof of the matching between th and ph

is done interpreting the non-terminals of this last pattern with productions from the original
grammar G ((pc)G). On the contrary, when the decomposition step does not consume some
input (pattern pc matches against a hole, and the resulting term th is exactly t), the proof
of the matching between th and ph is done considering the arbitrary grammar G’.

3.2.5 Specification of decomposition
The final part of the specification concerns the decomposition judgment required for the
inhole_pat pattern. We already mentioned what it does and how it is generalized; we
proceed to explain the relevant rules listed in Figure 6.

The first rule explains the decomposition of a list of terms cons_term_c thd ttl, between
a context that matches a list of patterns cons_pat_c phd ptl, and some sub-term. In the
particular case of the first rule, the hole of the resulting context is pointing to somewhere
in the head of the list of terms. This information is indicated by the constructor of the
resulting context: hd_contxt C ttl, where C is some context that must match pattern phd,
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Definition binding := var ∗ term.
Inductive decom_ev : term → Set :=

| empty_d_ev : forall (t : term), decom_ev t
| nonempty_d_ev : forall t (c : contxt) subt,

{subt = t ∧ c = hole_contxt_c} + {subterm_rel subt t} → decom_ev t.
Inductive mtch_ev : term → Set :=

mtch_pair : forall t, decom_ev t → list binding → mtch_ev t.

Figure 7 Mechanization of decomposition and matching results.

as indicated in the premise of the inference rule. Note that the whole premise is stating that
the decomposition occurs in the head of the list of terms (thd), and the resulting sub-term
is t’hd. Then, the side-condition from the inference rule states that the tail of the original
input term, ttl, must match the tail of the list of patterns ptl. Finally, note that in the
decomposition through sub-pattern phd, and the matching sub-pattern ptl, the non-terminals
of these patterns are interpreted in terms of productions from the original grammar, G .

With respect to the remaining rule, the case of the inhole_pat pattern, it handles
the matching of pattern inhole_pat (inhole_pat pc ph) ph′ with some term t. The
semantics of this case involves a first step of decomposition of t between some context that
matches sub-pattern inhole_pat pc ph, and some sub-term that matches sub-pattern ph′ .
In the rule shown in Figure 6, we are describing what it means, in this situations, that
first step of decomposing t in terms of a context that matches pattern inhole_pat pc ph.
Since the whole pattern must match some context, it means that, both, pc and ph, are
patterns describing contexts. Note that we distinguish the case where pc produces an empty
context, from the case where it does not (not shown in Figure 6). This distinction allows us
to recognize whether we should interpret non-terminals from patterns through the original
grammar G or the arbitrary grammar G’.

The last piece of complexity of the rule for the inhole_pat pattern resides in the actual
context that results from the decomposition. Here, the authors of RedexK, expressed this
context as the result of plugging one of the obtained contexts within the other, denoted
with the expression Cc + + Ch: this represents the context obtained by plugging context Ch

within the hole of context C c, following the information contained in the constructor of this
last context to find its actual hole. For reasons of space we elide this definition, though it
presents no surprises.

3.2.6 Matching and decomposition algorithm

We close this section presenting a simplified description of the matching and decomposition
algorithm adapted for its mechanization in Coq. We remind the reader that this algorithm
is just a modification of the one proposed for RedexK [4].

The previous specification of the algorithm cannot be used directly to derive an actual
effective procedure to compute matching and decomposition. In particular, the rules for
decomposition of lists of terms (second and third rules from Figure 6) do not suggest effective
meanings to determine whether to decompose on the head, and match on the tail, or vice
versa. To solve this issue and the complexity problem that could arise from trying to naively
perform both kinds of decomposition simultaneously, the algorithm developed for RedexK
performs matching and decomposition simultaneously, sharing intermediate results.
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Supporting Data-Structures

In Figure 7 we show some of the implemented data-structures used to represent the results
returned by RedexK’s algorithm. The result of a matching/decomposition of a term t (with
some given pattern) will be represented through a value of type mtch_ev t. Making the type
dependent on t is done for soundness checking.

For reasons of brevity, when presenting the algorithm we will avoid the actual concrete
syntax from our mechanization. A value of type mtch_ev t will be denoted as (d , b), where
d is a value of type decom_ev t (explained below), and b is a list of bindings (also shown
in Figure 7). For a value of the list type mtch_powset_ev t, we will denote it decorating it
with its dependence on the value t: [(d , b), ...]t

Values inhabiting type decom_ev t represent a decomposition of a given term t, between
a context and a sub-term. We include in the value some evidence of the soundness of the
decomposition: a sub-term subt extracted in the decomposition is either t itself, or a proper
sub-term of t .

Since a value of type mtch_ev t could represent a single match or a single decomposition,
following [4] we distinguish an actual match using an empty decomposition empty_d_ev t.
Otherwise, a decomposition is represented through the value nonempty_d_ev t C subt ev , for
context C , sub-term subt and soundness evidence ev . We denote such values as (C , subt)ev

t .

Matching and Decomposition Algorithm as a Least-Fixed-Point

We capture the intended matching/decomposition algorithm as the least fixed-point of a
generator function or functional of the following type:

forall (g1 : grammar) (tpg1 : (term ∗ pat ∗ grammar)),
(forall tpg2 : (term ∗ pat ∗ grammar),

matching_tuple_order g1 tpg2 tpg1 → list (mtch_ev (fst tpg2)))
→ list (mtch_ev (fst tpg1))

The family of generator functions Mev_gen of this type is parameterized over grammars
and tuples of terms and patterns. Also, these functions receive a candidate of matching/-
decomposition that they will improve: they will construct the result by optionally calling
the candidate over tuples that are provably smaller than the given tuple tpg1, according to
the well-founded order (matching_tuple_order g1 tpg2 tpg1, see §3.2.1). Hence, Mev_gen
will build a function that performs the matching indicated in tpg1, using, if necessary, a
candidate function that performs matching for tuples smaller than tpg1.

Figure 8 shows 2 of the equations that capture Mev_gen. The first equation explains
the matching and/or decomposition of a list of terms (cons thd ttl) with a list of patterns
(cons phd ptl). We describe by comprehension the list of results. Note that, to explain this
case, we need to consider the approximation function Map that Mev_gen receives as its last
parameter. We begin by using Map to compute matching and decomposition for smaller
tuples: tphd = (thd, phd, g1) and tptl = (ttl, ptl, g1). Note that, given that these tuples
represent a matching/decomposition over a proper sub-term of the input term, we consider
the original grammar g1 (first parameter of Mev_gen). In order to be able to fully evaluate
Map, we need to build proofs lthd and lttl of type tphd <

g1
t×p×g tpcons and tptl <

g1
t×p×g tpcons,

respectively, where tpcons is the original tuple over which we evaluate Mev_gen. Then, for
each value of type mtch_ev thd and mtch_ev ttl of the results obtained from evaluating Map,
the algorithm queries if they are decompositions or not, and if it is possible to combine these
results, using the helper function select.
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Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d ∈ select(thd, dhd, ttl, d tl, t, sub),
sub : subterms t thd ttl, b = bhd ⊔ btl,

(dhd, bhd)thd
∈ Map(tphd, lthd), (d tl, btl)ttl

∈ Map(tptl, lttl),
lthd : tphd <

g1
t×p×g tpcons, lttl : tptl <

g1
t×p×g tpcons,

tpcons = (t, p, g2), tphd = (thd, phd, g1), tptl = (ttl, ptl, g1)]t
with t = cons thd ttl p = cons phd ptl

Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d = combine (t, C , tc, ev , dh),
b = bc ⊔ bh, (dh, bh)tc ∈ Map(tph, lth),
lth : tph <

g1
t×p×g tpinhole, tph = (tc, ph, gh),

gh according to Figure 5,

((C , tc)ev
t , bc)t ∈ Map(tpc, ltc), ltc : tpc <

g1
t×p×g tpinhole,

tpinhole = (t, p, g2), tpc = (t, pc, g2)]t
with p = in-hole pc ph

Figure 8 Generator function for the matching and decomposition algorithm.

The original select helper function from RedexK receives as parameters thd, dhd, ttl and
d tl. It analyses dhd and d tl: if none of them represent actual decompositions, then the whole
operation will be considered just a matching of the original list of terms and select must build
an empty decomposition of the proper type to represent this. If only dhd is a decomposition,
then the whole operation is interpreted as a decomposition of the original list of terms on
the head of the list. In that case, select builds a value of type decom_ev (cons thd ttl).

The remaining equation, that of the in-hole pattern, can be understood on the same
basis as the previous one, requiring only some explanation for the auxiliary function combine:
it helps in deciding if the result is a decomposition against pattern in-hole, or if it is just a
match against said pattern, depending on whether dh is a decomposition or not.

Finally, we define the desired matching/decomposition algorithm, Mev, as the least
fixed-point of the previous generator function. For reasons of space, we do not show its
definition, but it presents no surprises. The resulting implementation can be seen on file
./match_impl.v.

3.3 Semantics for Context-Sensitive Reduction Rules

The last component of RedexK consists in a semantics for context-sensitive reduction rules,
with which we define semantics relations in Redex. The proposed semantics makes use of
the introduced notion of matching, to define a new formal system that explains what it
means for a given term to be reduced, following a given semantics rule. We have mechanized
the previous formal system, though, for reasons of space, we do not introduce it here in
detail. The reader is invited to look at the mechanization of this formal system, in module
./reduction.v.
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Theorem completeness_Mev : ∀ G1 G2 p t sub_t b C,
(G1 |− t : p, G2 | b → In (mtch_pair t (empty_d_ev t) b) (M_ev G1 (t, (p, G2))))
∧
(G1 |− t1 = C [ t2 ] : p , G2 | b → ∃ (ev_decom : {sub_t = t} + {subterm_rel sub_t t}),

In (mtch_pair t (nonempty_d_ev t C sub_t ev_decom) b) (M_ev G1 (t, (p, G2)))).

Theorem from_orig : ∀ G t p b,
non_left_recursive_grammar →
G |− t : p | b → G |− t : p, G | b

with from_orig_decomp : ∀ G C t1 t2 p b,
non_left_recursive_grammar →
G |− t1 = C [ t2 ] : p | b → G |− t1 = C [ t2 ] : p , G | b.

Figure 9 The statement of completeness of Mev and completeness of our formal systems, in Coq.

3.4 Extra Material

In the README.md file of the repository the interested reader will find the correspondence
between the source code and this paper. Additionally, besides from the results shown here,
we included a mechanization of a lambda-calculus with normal-order reduction similar to
the one presented in §2. It serves mainly to showcase the actual capabilities of Redex that
are mechanized in the present version of the tool, and how to invoke them to implement
a reduction-semantics model. We note that the performance of our implementation of
the matching/decomposition algorithm is subpar. In particular, the resources in time and
space consumed for matching grow too fast to be able to test even some simple patterns.
The amount of information built and carried within the algorithm to guarantee soundness
properties could be playing some part, and it could be addressed by code extraction, or by
the implementation within Coq of a simpler pattern-matching engine, in correspondence with
the verified version. Though, it is an issue we plan to better study and tackle in a future
iteration of the tool. We note that this is not a problem observed in Redex itself.

4 Soundness and Completeness of Matching

In the original paper of RedexK the authors prove the correspondence between the
algorithm and its specification. In our mechanization we reproduced this result, for the
least-fixed-point of Mev_gen g (t, p, g’) and our extended definition of matching (§3.2.4).
In what follows, Mev g (t, p, g’) represents the least-fixed-point of Mev_gen g (t, p, g’).
Naturally, for a given grammar g , the original intention of matching and decomposition
corresponds to Mev g (t, p, g). We show the statement of completeness of the algorithm in
Figure 9. Note that we represent and manipulate results returned from Mev through Coq’s
standard library implementation of lists. Also, the shape of the tuples of terms, patterns
and grammars, is the result of the way in which we build our lexicographic product: the
product between a relation with domain term, and a relation with domain pat × grammar.
Completeness can be proved by rule induction on the evidences of match and decomposition.

The converse, the soundness property, is not shown, but it is the expected converse of
the completeness statement. The proof presents no surprises: since we have a well-founded
recursion over the tuples from term × pat × grammar, we also have an induction principle
to reason over them.
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We also verified the correspondence between our specifications and the original formal
systems from the paper. We can’t do it for the general case: we followed the proposal
of the authors of RedexK, explained in §3.2, and only consider those grammars that are
non-left-recursive. In Coq, we name this predicate non_left_recursive_grammar (see file
wf_rel.v).

We show in Figure 9 the completeness result mapping our formal systems with the original
ones from RedexK. Note the hypothesis non_left_recursive_grammar, which asks for every
grammar to be non-left-recursive. We do not parameterize this predicate over a specific
grammar, since, during the proofs, we may obtain several different grammars by removing
productions from the original grammar, and we still need to show that these “intermediate”
grammars are non-left-recursive. A more elegant solution could be, first, to prove that by
removing a production from a non-left-recursive grammar, we still get a non-left-recursive
grammar; and, second, to parameterize non_left_recursive_grammar over G. We left this
as a future work.

For the converse, soundness, we need to restrict the result to those grammars G’ (over which
we begin interpreting the non-terminals) which are smaller or equal (gleq) to the original
one G: that is, every production in G’ is also in G (see ./verification/match_spec_equiv.v
for more details).

5 Related Work

Redex-Plus [19] is, to the best of our knowledge, the only tool proposed to export Redex
models to proof assistants. The approach followed involves translating a given model, first,
into an intermediate representation where some elements of the model are described through
types. For example, non-terminals of a grammar are captured as types, and the right-hand-
side of each production is captured as a constructor of the corresponding type. Having
an intermediate representation of a Redex model allows Redex-Plus to export to several
different targets: Agda, Coq, Beluga and SMT-LIB. It can handle definitions of languages,
meta-functions and formal systems.

The downside of Redex-Plus approach is that it limits the scope of Redex patterns that
can be supported, and restricts the structure of the grammars that are allowed. From its
reference manual: “In general, only patterns that can be represented in proof assistants
are supported”. In particular, it is not possible to have overlapping non-terminals: that is,
different non-terminals that can generate the same phrases (for example, a syntactic category
value as a sub-category of terms). The reason is that, since each non-terminal is represented
through a type, a given “phrase” (value) cannot inhabit such two different non-terminals
(types).

In our case, every pattern inhabits the same “pattern” type, and everything about their
semantics (pattern matching) is mechanized within Coq itself. This approach does not limit
the kind of Redex patterns or structure of grammars that can be represented within Coq.
Nonetheless, the technique employed by Redex-Plus is an interesting take at representing
elements of a Redex model into a proof assistant, that should be able to better leverage the
type system of the target proof assistant.

Another difference with Redex-Plus is that its translation and representation of patterns
in the target proof assistant involves an informal Racket implementation. The implementation
is not verified against some formal specification of the semantics of patterns. In [19] it is
argued that the patterns supported in the current version have a well-understood semantics,
and that it should be possible to accurately translate them into proof assistants. This seems
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to hold for the subset of patterns currently supported by Redex-Plus, though it remains to
be seen what would happen when more complex features are added. In our case, we follow
the concerns raised in [4] and we offer a pattern-matching algorithm mechanically verified
against its specification. And, since we implement Redex itself within Coq, the translation
between a Redex pattern and its representation within Coq is a straightforward process.

CoLoR [2] is a mechanization in Coq of the theory of well-founded rewriting relations over
the set of first-order terms, applied to the automatic verification of termination certificates.
It presents a formalization of several fundamental concepts of rewriting theory, and the
mechanization of several results and techniques used by termination provers. Its notion of
terms includes first-order terms with symbols of fixed and varyadic arity, strings, and simply
typed lambda terms. CoLoR does not implement a language of patterns offering support for
context-sensitive restrictions, something that is ubiquitous in a Redex mechanization. Also,
Redex is not focused just on well-founded rewriting relations.

Sieczkowski et. al present in [13] a verified implementation in Coq of the technique of
refocusing, with which it is possible to extract abstract machines from a specification of a
reduction semantics that satisfies certain characteristics. In order to characterize a reduction
semantics that can be automatically refocused, the authors provide an axiomatization cap-
turing the sufficient conditions. Hence, the focus is put in allowing the representation of a
certain class of reduction semantics rather than allowing for the mechanization of arbitrary
models, as is the case with Redex. Nonetheless, future development of our tool could take
advantage of this library, since testing of Redex’s models that are proved to be deterministic
could make use of an optimization as refocusing, to extract interpreters that run efficiently
in comparison with the expensive computation model of reduction semantics.

Matching logic is a formalism used to specify logical systems and their properties. It is
mechanized in Coq in [1], including its syntax, semantics, formal system and the corresponding
soundness result. At its heart, matching logic has a notion of patterns and pattern matching.
Redex could be explained as a matching logic, with formulas that represent Redex’s patterns
to capture languages and relations, and whose model refer to the terms (or structures
containing terms) that match against these patterns. While this representation could be of
interest for the purpose of studying the underlying semantics of Redex, this is not satisfactory
for the purpose of providing users with a direct explanation in Coq of their mechanization
in Redex.

6 Conclusion

We adapted RedexK [4] to be able to mechanize it into Coq. In particular, we obtained a
primitive recursive expression of its matching algorithm; we introduced modifications to its
language of terms and patterns, to better adapt it to the future inclusion of features of Redex
absent in RedexK; we reproduced the soundness results shown in [4], but adapted to our
mechanization, while also verifying the expected correspondence between our adapted formal
systems, that capture matching and decomposition, and the originals from the cited work.

A natural next step in our development could consist in the addition of automatic routines
to transpile a Redex model into an equivalent model in Coq. In order to be practical, we
also must extend the language with capabilities of Redex absent in RedexK.

Finally, the user can specify properties expressed using judgments about matching, or
in terms of the results of the matching algorithm. To prove these properties, the user have
some results at hand (for example, soundness and completeness of the algorithm, and of our
formal specification of matching with regard to the original specification), but a richer theory
is in order.
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