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Abstract
We present a formalization of quasi-compact and quasi-separated schemes (qcqs-schemes) in the
Cubical Agda proof assistant. We follow Grothendieck’s functor of points approach, which defines
schemes, the quintessential notion of modern algebraic geometry, as certain well-behaved functors
from commutative rings to sets. This approach is often regarded as conceptually simpler than the
standard approach of defining schemes as locally ringed spaces, but to our knowledge it has not
yet been adopted in formalizations of algebraic geometry. We build upon a previous formalization
of the so-called Zariski lattice associated to a commutative ring in order to define the notion of
compact open subfunctor. This allows for a concise definition of qcqs-schemes, streamlining the
usual presentation as e.g. given in the standard textbook of Demazure and Gabriel. It also lets us
obtain a fully constructive proof that compact open subfunctors of affine schemes are qcqs-schemes.
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1 Introduction

Algebraic geometry developed as the study of solutions to systems of polynomial equations.
Objects of interest would e.g. be “affine complex varieties”, subsets of Cn that can be
described as the common roots of a finite system of polynomials p1, ..., pm ∈ C[x1, ..., xn].
The discipline underwent a fundamental transformation during the latter half of the 20th
century with the introduction of schemes. This development was spear-headed by Alexendre
Grothendieck and led to many incredible achievements in geometry and number theory.
Schemes can be seen as a generalization of varieties in several ways, but their standard
presentation as “locally ringed spaces with an affine cover” somewhat blurs the connection to
classical algebraic geometry, which can make it hard for students learning algebraic geometry
to see in what sense schemes are “geometric” objects at all.
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There is, however, a different angle for generalization, where the original motivation of
studying solutions to polynomials keeps a more prominent place. Take a polynomial with
integer coefficients like xn + yn − zn ∈ Z[x, y, z]. Fermats last theorem tells us that this
polynomial only has the trivial solution x = y = z = 0 for n > 2. This does of course only
hold for solutions in the integers. We might interpret the same polynomial as living in a
polynomial ring A[x, y, z], where A is now any commutative ring (e.g. C), and ask about
solutions in A. The corresponding set of solutions is given by

Vxn+yn−zn(A) = { (a1, a2, a3) ∈ A3 | an1 + an2 = an3 }

Moreover, given a morphism of rings φ ∈ Hom(A,B), we can map a solution in A,
(a1, a2, a3) ∈ Vxn+yn−zn(A), to a solution (φ(a1), φ(a2), φ(a3)) ∈ Vxn+yn−zn(B) in B. In
categorical terms, our polynomial defines a functor from the category of commutative rings
to the category of sets, mapping a ring A to the set Vxn+yn−zn(A) of solutions in A.

This functor Vxn+yn−zn(_) : CommRing → Set turns out to be a very familiar categorical
object. For a ring A, homomorphisms Hom(Z[x, y, z], A) are in bijection with A3 (every
morphism is determined by its values on x, y and z) and this induces a bijection of morphisms
Hom(Z[x,y,z]/⟨xn+yn−zn⟩, A) with Vxn+yn−zn(A). Now, a functor from CommRing to Set is
nothing but a presheaf on the opposite category CommRingop. In this presheaf category we can
look at the Yoneda embedding or representable of the quotient ring R = Z[x,y,z]/⟨xn+yn−zn⟩,
which we will denote by Sp(R). By the above argument, we get a natural isomorphism of
presheaves Sp(R) = Hom(R,_) ∼= Vxn+yn−zn(_).

In the category of functors from commutative rings to sets we can thus study solu-
tions of systems of integer polynomials by looking at representable functors of quotients
Z[x1,...,xn]/⟨p1,...,pm⟩. Algebraic geometers call these representables absolute affine algebraic
spaces [16], which we can generalize to schemes (schemes over Z or absolute schemes to be
more precise). Affine schemes are readily defined as representables of arbitrary commutative
rings. From these we can build general schemes as presheaves on CommRingop that are “local”
and have an “open cover” by affine schemes in some appropriate sense.

Among the proponents of using the functor of points approach as the primary definition
of schemes was Grothendieck himself [16], because, in the terms of Lawvere [22], it does not
require “the baggage of prime ideals and the spectral space, sheaves of local rings, coverings
and patchings, etc.” Yet, most standard sources [13, 15, 17, 33] for students learning algebraic
geometry start with precisely this “baggage”. To our knowledge, the same can be said for
existing formalizations of schemes [3, 4, 5, 7, 39]. We want to close this gap and present a
first formalization of the functor of points approach.

Admittedly, part of the appeal of schemes as locally ringed spaces as a formalization
target for proof assistants is that they are such a layered, involved notion, while at the
same time being a point of departure for formalizing a plethora of interesting research
level mathematics. The first full formalization of schemes in Lean’s mathlib by Buzzard
et. al. [4] revealed certain bottlenecks that occur when defining schemes this way. As these
bottlenecks might be addressed very differently in different proof assistants, schemes have
become somewhat of a benchmark problem, inspiring a formalization in Isabelle/HOL [3],
and partial formalizations in Coq’s UniMath library [5] and Cubical Agda [39].

It is worth noting that, except for the Cubical Agda-formalization [39], all of the above
formalizations are non-constructive as they follow the presentation of Hartshorne’s standard
“Algebraic Geometry” [17]. In [39], the authors manage to stay constructive by using “ringed
lattices” [8] instead of locally ringed spaces, but the formalization only includes affine
schemes. The functor of points approach is often taken to be more amenable for constructive
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mathematics.1 Indeed, to our knowledge we present the first fully constructive formalization
of quasi-compact and quasi-separated schemes (qcqs-schemes), an important subclass of
schemes that is sufficient for a large portion of modern algebraic geometry.2

Nowadays there exist extensive algebra and category theory libraries for many of the
major proof assistants, providing a lot of the necessary tools to formally define schemes using
the functor of points approach. The bottlenecks of defining schemes as locally ringed spaces,
disappear when following the functor of points approach. One problem that occurs, however,
is that the category of functors from rings to sets is not locally small, since arrows between
two such functors are natural transformations, i.e. families of functions indexed by the “big”
type of all rings in a given universe. As a result, one has to address size issues. Dealing
with size issues in a predicative type theory like Cubical Agda’s, one is led to make certain
finiteness assumptions, resulting in the aforementioned restriction to qcqs-schemes.

Our work is completely formalized in Cubical Agda and all results are integrated in the
agda/cubical library.3 We will comment on our usage of Cubical Agda in Section 2.1, but we
want to stress that the formalization does not rely on cubical features. It should be possible to
more or less directly translate the formalization into a system implementing Homotopy Type
Theory and Univalent Foundations of the HoTT book [32] or into UniMath [35]. Our work
can be understood as being in line with the goals of Voevodsky’s Foundations library [38]:
Developing a library of constructive set-level mathematics based on Univalent Foundations.

As a result of working fully constructive and predicative, our presentation deviates from
the standard “Introduction to Algebraic Geometry and Algebraic Groups” by Demazure and
Gabriel [12]. Our main contributions and design choices can be summarized as follows:

In Section 3 we define the category of Z-functors, differing slightly from Demazure and
Gabriel. This is because Agda’s universes are not cumulative and we chose to work with
a fully-faithful spectrum functor with the caveat that it only has a relative adjoint.
In Section 4 we define the notion of coverage and sheaf wrt. a coverage. We define the
Zariski coverage on CommRingop. Restricting from Z-functors to Zariski sheaves can be
seen as introducing a locality condition, akin to restricting from ringed to locally ringed
spaces. We show that affine schemes are local, i.e. that representable presheaves are
sheaves wrt. the Zariski coverage. For this one can reuse some key algebraic lemmas, first
formalized in [39] to show the sheaf property of the structure sheaf of an affine scheme.
In Section 5 we define the notions of compact open subfunctor, cover of compact opens
and finally qcqs-scheme. It is in this section that we deviate substantially from the
standard sources. We argue that the above notions are most conveniently defined by
using an appropriate classifier in the topos theoretic sense. Since we have a small Zariski

1 See e.g. the discussion where the functor of points approach was first suggested as a formalization target
for the agda/cubical-library: https://github.com/agda/cubical/issues/657

2 In particular, every noetherian scheme is qcqs. When applying scheme theory to the classic motivating
problems of algebraic geometry, Hartshorne notes that “practically all the schemes encountered in this
way are noetherian” [17, p. 100]. Deligne’s presentation of étale cohomology [10], a crucial tool for his
proof of the Weil conjectures, assumes schemes to be qcqs throughout: “We consider only schemes that
are quasi-compact (= finite union of open affines) and quasi-separated (= such that the intersection of
two open affines is quasi-compact), and we simply call them schemes.” [11, p. 1].

3 The formalization is summarized in:
https://github.com/agda/cubical/blob/60f18987bb1819a15fccc325343ef7b469bb2eeb/Cubical/
Papers/FunctorialQcQsSchemes.agda
This is a permalink to the library at the time of writing, which type-checks with Agda version 2.6.4.1.
A clickable rendered version that might be subject to change can be found here:
https://agda.github.io/cubical/Cubical.Papers.FunctorialQcQsSchemes.html
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lattice but no small type of radical ideals in Cubical Agda, we can only classify compact
opens. So far, these only appear in the literature on synthetic algebraic geometry ([2, Def.
19.15] and [6, Def. 4.2.1]), but they turn out to be very useful for our purposes as well.
In Section 6 we prove that compact open subfunctors of affine schemes are qcqs-schemes.
We give a point-free proof that the classifier for compact opens is separated, only using
the universal property of the Zariski lattice. This gives us that compact opens of affine
schemes are sheaves. The fact that compact opens of affines have an affine cover essentially
follows from the Yoneda lemma.

2 Background

We begin by giving some helpful background. First, we discuss the Cubical Agda proof
assistant and how it is used in the formalization. We then briefly present two algebraic
constructions from the agda/cubical library, first formalized and described by Zeuner and
Mörtberg in [39], that play a key role in this paper as well: localizations of commutative
rings and the Zariski lattice.

2.1 Univalent type theory in Cubical Agda

For understanding the details of our formalization, it is worth knowing about certain
particularities of the Cubical Agda proof assistant and its library. We will restrict ourselves
to the features that are relevant for this paper. Readers familiar with Cubical Agda or
Homotopy Type Theory and Univalent Foundations (HoTT/UF) can safely skim this section.
Readers interested in more details are referred to [34].

Cubical Agda is a rather recent extension of the Agda proof assistant with fully construc-
tive support of the univalence principle and higher inductive types (HITs). The notation
used in this paper is inspired by Agda’s syntax and the conventions of the agda/cubical
library but we have taken the liberty to simplify the syntax and omit projections whenever
possible in order to increase readability. For example we will write CommRing to denote
both the type and the category of commutative rings and an element R : CommRing will
denote both the ring with its structure and the carrier-type of R, i.e. we write f : R for its
elements. For the universe at level ℓ we write Type ℓ or Typeℓ, and similarly CommRingℓ for
commutative rings whose carrier type lives in Typeℓ. For a family B : A → Type ℓ, we denote
the dependent pair type over this family as Σ[ x ∈ A ] B(x).

For definitional equalities we use =, while propositional equalities are written using ≡.
Note that Cubical Agda does not use Martin-Löf’s inductive identity type [25] for expressing
propositional equalities, but rather so-called path types. These path types are defined in
terms of a primitive interval type I, which allows one to conveniently define dependent path
types. In this formalization we will not make direct use of the interval or dependent path
types. However, path types do entail function extensionality, the right behavior of equalities
of dependent pairs and other useful principles, which we will use freely.4

Cubical Agda does not come with a designated universe of propositions and in fact we
cannot generally expect propositional equality types, or rather path types, to be propositions
in any sensible way. This is because Cubical Agda proves univalence and thus disproves
Uniqueness of Identity Proofs (UIP), also known as Streicher’s axiom K [31]. We can, however,

4 These principles also follow from univalence albeit with a slightly different computational behavior.
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internally define (proof-relevant) propositions as subsingleton types and sets as types whose
equalities are propositions, i.e. as types satisfying UIP:

isProp : Type ℓ → Type ℓ

isProp A = (x y : A) → x ≡ y
isSet : Type ℓ → Type ℓ

isSet A = (x y : A) → isProp (x ≡ y)

The type (universe) of propositions at level ℓ is defined as hProp ℓ = Σ[ A ∈ Type ℓ ] (isProp A),
A subset of A, where isSet A, is a function S : A → hProp ℓ. With some abuse of notation
we will identify a subset S with the corresponding Σ-type Σ[ a ∈ A ] (a ∈ S), where a ∈ S is
the proposition (type of proofs) that a is actually in S. We thus write a : S for elements of
S when the proof of a : A belonging to S can be ignored.

Univalence implies that there are types, which are neither propositions nor sets. These
types are said to have a higher h-level (homotopy level [36]) than sets. One can use the
so-called structure identity principle [32, Sec. 9.8] to prove that this holds true for types of
algebraic or categorical structures like commutative rings or Z-functors.5 However, we want
to stress that this does not affect the formalization presented in this paper.

We do make extensive use higher inductive types (HITs), the other main addition of
HoTT/UF to dependent type theory alongside univalence. In particular, we require two HITs:
set-quotients and propositional truncations. Set-quotients are needed to define localizations
of rings and the Zariski lattice, which we will describe in Section 2.2. We will not go into
details on how set-quotients are defined. It suffices to know that as long as we quotient sets
by proposition-valued equivalence relations and only consider maps from those quotients
into other sets, everything works as one would expect from quotients. The other HIT,
propositional truncation, turns any type into a proposition:

data ∥_∥ (A : Type ℓ) : Type ℓ where
|_| : A → ∥ A ∥
squash : isProp ∥ A ∥

This is needed in HoTT/UF to express existential quantification, as using Σ-types is often
too strong. We follow the convention and say “there merely exists x : A such that P (x)”, if
we have an inhabitant of

∃[ x ∈ A ] P (x) = ∥ Σ[ x ∈ A ] P (x) ∥

Note that in general this does not let us extract a witness x : A, satisfying P (X). We will
discuss an example showcasing the proper use of propositional truncation in Remark 18.

2.2 Localizations and the Zariski lattice
Our formalization builds on a lot of commutative algebra and category theory formalized
in the agda/cubical library that we will presuppose in this paper. In particular, we will
assume familiarity with presheaves, the Yoneda lemma and basic ideal theory of rings and
we will not comment on their implementation in the agda/cubical library. There are two
particular constructions, first described in [39], that are of special importance to this project
and we will briefly describe them here.

5 The implementation of the structure identity principle in the agda/cubical-library is described in [1].
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The first, localizations of commutative rings, are a way of making elements invertible by
adding fractions. In this paper we only need the special case of inverting a single element.
For a ring R and f : R the localization of R away from f is the ring R[1/f] of fractions r/fn

where the denominator is a power of f . Equality of two fractions is slightly different than for
fractions of integers and can be stated as:6

r/fn ≡ r′
/fm iff ∃[ k ∈ N ] (rfk+m ≡ r′fk+n)

Localizations satisfy a universal property and in our special case it can be stated as: R[1/f]
is the initial R-algebra where f becomes invertible. This means that for any ring A with a
homomorphism φ : Hom(R,A) such that φ(f) ∈ A× (i.e. φ(f) is a unit/invertible), there is
a unique ψ : Hom(R[1/f], A) making the following diagram commute

R

R[1/f] A

_/1 φ

∃! ψ

where _/1 : Hom(R,R[1/f]) is the canonical morphism mapping r : R to the fraction r/1. As
shown in [39], formalizing localizations with the help of set-quotients is straightforward.

The second construction, the Zariski lattice associated to a ring is slightly more delicate.
By a standard argument in classical algebraic geometry there is a one-to-one correspondence
between Zariski open sets of Spec(R) and radical ideals of R. An ideal I ⊆ R is radical if
I =

√
I = {x ∈ R | ∃n > 0 : xn ∈ I }. Furthermore, the compact open subsets of Spec(R)

correspond radicals of finitely generated ideals. This correspondence is in fact an isomorphism
of lattices. Set-theoretic union and intersection of compact opens correspond to addition and
multiplication of finitely generated ideals.

This means that we can define this so-called Zariski lattice LR without having to define
Spec(R) and its topology first: Elements of LR are generators f1, ..., fn : R quotiented by the
relation that relates another list of generators g1, ..., gm : R if

√
⟨f1, . . . , fn⟩ ≡

√
⟨g1, . . . , gm⟩.

The equivalence class of the generators f1, ..., fn : R is denoted by D(f1, ..., fn) : LR and
the join on LR is given by D(f1, ..., fn) ∨D(g1, ..., gm) = D(f1, ..., fn, g1, ..., gm). The “basic
open” D(f) is the equivalence class corresponding to the radical of the principle ideal

√
⟨f⟩,

with D(1) being the top element of LR corresponding to the 1-ideal. The basic opens form a
basis of LR, as D(f1, ..., fn) =

∨n
i=1 D(fi).

This definition is due to Español [14], but it has the disadvantage that it uses equality of
ideals to define the quotienting relation. In the predicative type theory of Cubical Agda the
type of ideals of R lives in the universe above R an so does the equality type between two
ideals. This can be avoided by slightly rewriting the equivalence relation, as shown in [39],
giving us LR : DistLatticeℓ for R : CommRingℓ.

Joyal [20] observed that the Zariski lattice has a certain universal property that can be
stated in terms of supports. A map d : R → L from R into a (bounded) distributive lattice L
is called a support if it satisfies:

d(1) ≡ ⊤ and d(0) ≡ ⊥ (1)
∀(f g : R) → d(fg) ≡ d(f) ∧ d(g) (2)
∀(f g : R) → d(f + g) ≤ d(f) ∨ d(g) (3)

6 This is to account for zero-divisors and the case where f is nilpotent.
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The map D : R → LR sending f : R to the equivalence class D(f) satisfies conditions (1)-(3)
and it is a universal support in the sense for any other support d : R → L there is a unique
lattice homomorphism φ : LR → L such that the following commutes

R

LR L

D d

∃! φ

The partial order defined on the Zariski lattice is connected to localizations as for f, g : R

D(g) ≤ D(f) ⇔
√

⟨g⟩ ⊆
√

⟨f⟩ ⇔ g ∈
√

⟨f⟩ ⇔ f/1 ∈ R[1/g]×

In the special case where g = 1, this gives us D(1) ≡ D(f) iff f ∈ R×. We will utilize this
fact in order to interpret the basic opens as affine subschemes in Definition 22. A slight
generalization of this fact that we will use in Section 5 to informally justify that Definition 14
is sensible is that for f1, ..., fn : R

D(1) ≡ D(f1, ..., fn) ⇔ 1 ∈ ⟨f1, ..., fn⟩

This concludes our discussion of the preliminaries required to formalize qcqs-schemes following
the functor of points approach.

3 Z-Functors

Let us turn to our goal of defining qcqs-schemes as well-behaved functors from rings to sets.
As size issues are unavoidable in the functor of points approach, we will be rather explicit
about universe levels in this paper. For the remainder we will fix a universe level ℓ and work
over commutative rings in the corresponding universe CommRingℓ.

▶ Definition 1. The category of Z-functors, denoted ZFunctorℓ, is the category of functors
from CommRingℓ to Setℓ. We write Sp : CommRingopℓ → ZFunctorℓ for the Yoneda embedding
and A1 : ZFunctorℓ for the forgetful functor from commutative rings to sets. We say that
X : ZFunctorℓ is an affine scheme if there merely exists R : CommRingℓ such that X ∼= Sp(R).

▶ Remark 2. It is worth noticing that most modern algebraic geometry sources (see e.g.
[13, 15, 26, 33]) usually omit any reference to universes when discussing the functor of points
approach. The choice of taking functors from rings to sets in the same universe seems
perhaps most natural, but actually differs from the standard reference on the functor of
points approach by Demazure and Gabriel [12]. They essentially take Z-functors to be
functors from CommRingℓ to Setℓ+1.7 Their “big spectrum functor” Sp : CommRingopℓ+1 →
(CommRingℓ → Setℓ+1) is defined much like the Yoneda embedding as Sp(R) = Hom(R,_),
but because of the universe level mismatch it is not fully faithful. However, this functor has
a left adjoint, namely the functor that we will define in Definition 3. We decided to differ in
our definition of Z-functors since Agda’s non-cumulative universes would otherwise require
explicit universe lifts in a lot of places, massively cluttering the code, and it seemed more
convenient to use the fully-faithful Yoneda embedding as our Sp.

7 They actually assume two Grothendieck universes U ⊆ V. As type theoretic universes are usually “lifted”
from Grothendieck universes in presheaf models [18], our translation only seems natural.

ITP 2024
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▶ Definition 3. Let X : ZFunctorℓ, the ring of functions O(X) is the type of natural
transformations X ⇒ A1 equipped with the canonical point-wise operations, i.e. for R :
CommRingℓ and x : X(R), addition and multiplication of α, β : X ⇒ A1 are given by

(α+ β)R(x) = αR(x) + βR(x) (α · β)R(x) = αR(x) · βR(x)

This defines a functor O : ZFunctorℓ → CommRingopℓ+1, whose action on morphisms (natural
transformations) is given by precomposition.

The universal property of schemes is often stated to be: The global sections functor Γ is left
adjoint to Spec and the counit of this adjunction is an isomorphism. However, this is already
true for locally ringed spaces. In a similar fashion we would like to have an adjunction
O ⊣ Sp, but unfortunately we run into a universe level mismatch. We still get something that
looks a lot like an adjunction. The proof of the following proposition is straightforward.

▶ Proposition 4. For R : CommRingℓ and X : ZFunctorℓ there is an isomorphism of types

Hom
(
R,O(X)

) ∼=
(
X ⇒ Sp(R)

)
which is natural in both R and X. Moreover, the induced “counit” εR : Hom

(
R,O(Sp(R))

)
,

which is obtained by applying the inverse of above isomorphism to the identity transformation
Sp(R) ⇒ Sp(R), is an isomorphisms of rings for all R : CommRingℓ.

▶ Remark 5. Proposition 4 type-checks because the type of ring homomorphisms is universe
polymorphic, meaning it can take rings living in different universes as arguments. The same
holds for the type of isomorphisms/equivalences between two types. From a categorical
perspective, we get a so-called relative coadjunction [29], written O ⊣ i Sp, with respect to
the inclusion, or lift functor i : CommRingopℓ → CommRingopℓ+1. This is why we only get a
counit, but no unit.

4 Local Z-functors

Functorial (qcqs-) schemes are sheaves with respect to the Zariski coverage. The notion
of coverage (also called a Grothendieck pre-topology) generalizes point-set topologies to
arbitrary categories. Roughly speaking, a coverage on a category C associates to each object
U : C a family Cov(U) of covers. A cover (Ui → U)i:I : Cov(U) is a family of maps into
U . These families Cov(U) should satisfy certain closure properties. If C has pullbacks then
covers should be closed under pullbacks and a presheaf F : Cop → Set can be defined to be a
sheaf if for any (Ui → U)i:I : Cov(U) we get and equalizer diagram

F(U) →
∏
i:I

F(Ui) ⇒
∏
i,j:I

F(Ui ×U Uj)

In the case where C is Open(X), the poset of open subsets of a topological space X, we get a
canonical coverage: A family of opens (Ui ⊆ U)i∈I is in Cov(U) if and only if

⋃
i∈I Ui = U .

Pullbacks in Open(X) are given by set-theoretic intersection ∩ and we recover the usual
definition of when a presheaf F : Open(X)op → Set is a sheaf.

The formalization of coverages and sheaves in the agda/cubical library follows the
nLab [27] and Johnstone’s classic “Sketches of an elephant” [19, C2]. The advantage of this
approach is that it even works for categories without pullbacks. As it turns out, it also lets
us conveniently define the Zariski coverage and prove that representables are Zariski sheaves.
For now, let us fix an arbitrary category C.
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▶ Definition 6. A cover on an object c : C consists of an index type I and for each i : I
an element in the slice category C/c, i.e. an arrow fi : C(ci, c). A coverage on C consist of a
family of covers for each c : C satisfying pullback stability: Given a cover { fi : C(ci, c) }i:I of
c and arrow f : C(d, c), there merely exists a cover { gj : C(dj , d) }j:J of d such that for each
index j : J there merely exists an index i : I and an arrow hij : C(dj , ci) with fi ◦ hij ≡ f ◦ gj .

Pullback stability can also be stated as: Given an arrow f : C(d, c) and a cover on c, we can
take the sieve generated by this cover and pull it back to a sieve on d. Then there exists a
cover on d refining the pulled back sieve on d. Since sieves are not required for the remainder
of the paper, we decided to unfold the definition of pullback stability and state it without
recourse to sieves. We refer the interested reader to the formalization. We now define what
it means to be sheaf with respect to a fixed coverage on C. For a presheaf P on C and arrow
f : C(c, d) we write _↾f : P (d) → P (c) for the restriction map, i.e. the action of P on f .

▶ Definition 7. Let P be a presheaf on C. Let c : C and { fi : C(ci, c) }i:I be a cover. A
compatible family or matching family [28] is a dependent function x : (i : I) → P (ci), i.e. a
family of elements xi : P (ci), such that for each pair of indices i, j : I and arrows gi : C(d, ci)
and gj : C(d, cj) with fjgj ≡ figi, we have xj↾gj

≡ xi↾gi
(in P (d)). We denote the type of

compatible families over a cover { fi : C(ci, c) }i:I by CompatibleFamP
(
{ fi : C(ci, c) }i:I

)
.

For an element x : P (c) we get an induced compatible family by taking the restrictions
xi = x↾fi

for i : I. The compatibility follows directly from the presheaf property of P . This
construction gives us a map σP : P (c) → CompatibleFamP

(
{ fi : C(ci, c) }i:I

)
. We can now

conveniently define sheaves in terms of the map σ.

▶ Definition 8. A presheaf P is a sheaf if for all c : C and covers { fi : C(ci, c) }i:I , the
canonical map σP is an isomorphism.

▶ Definition 9. A coverage on C is called subcanonical if for all c : C the Yoneda embedding
of c is a sheaf with respect to the coverage.

In this paper we are interested in a particular example of a coverage on the opposite category
of commutative rings. Covers of a ring R will come from finite lists of generators of the
1-ideal. Classically, this corresponds to the fact that any open cover of an affine scheme is
of the form Spec(R) =

⋃n
i=1 D(fi) with 1 ∈ ⟨f1, ..., fn⟩ (because Spec(R) is quasi-compact).

We call a finite list of elements f1, ..., fn : R such that 1 ∈ ⟨f1, ..., fn⟩ a unimodular vector.

▶ Definition 10. The Zariski coverage on C = CommRingopℓ is given by:
For each R : CommRingℓ, covers are indexed by the type of unimodular vectors over R.
For each unimodular vector f1, ..., fn : R, the associated cover of R is given by the reversed
canonical morphisms _/1 : R[1/fi] → R, indexed by i : Fin n, the finite n-element type.
For a unimodular vector f1, ..., fn : R the pullback along a morphism φ : Hom(R,A) is
the vector φ(f1), ..., φ(fn) : A, which is easily shown to be unimodular as well.

A presheaf X : ZFunctorℓ is called local if it is a sheaf wrt. the Zariski coverage.

▶ Lemma 11. The Zariski coverage is stable under pullbacks.

Proof. Let R,A : CommRingℓ, f1, ..., fn : R be a unimodular vector and φ : Hom(R,A). The
universal property of localization induces ring morphisms ψi : Hom

(
R[1/fi], A[1/φ(fi)]

)
such

that the following diagram commutes (in CommRingopℓ )

A[1/φ(fi)] R[1/fi]

A R

_/1 _/1

ψi

φ

◀
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The key result of this section uses an algebraic fact that can be found in many textbooks,
such as [23, p. 125], and was already formalized in Cubical Agda to prove [39, Lemma 15].

▶ Theorem 12. The Zariski coverage is subcanonical, i.e. Sp(A) is local for A : CommRingℓ.

Proof. Let R : CommRingℓ and f1, ..., fn : R a unimodular vector be given. For i, j in 1, ..., n,
we denote by χlij : R[1/fi] → R[1/fifj] and χrij : R[1/fj] → R[1/fifj] the canonical morphisms
given by the universal property of localization. We use without proof that the map

R → Σ[ x ∈ (i : Fin n) → R[1/fi] ] ∀ i j → χlij(xi) ≡ χrij(xj)

sending g : R to g/1 : R[1/fi] for i = 1, ..., n, is an isomorphism. Using this, one can construct
a chain of isomorphisms

Hom(A,R) ∼= Σ[ φ ∈ (i : Fin n) → Hom(A,R[1/fi]) ] ∀ i j → χlij ◦ φi ≡ χrij ◦ φj
∼= CompatibleFamSp(A)({ fi}i=1,...,n

)
which factors through the canonical map σSp(A). ◀

5 Compact opens and qcqs-schemes

The standard way to define open subfunctors follows a two step process. First, one defines
them for representables using (radical) ideals. Then, one defines open subfunctors of general
Z-functors by pulling back to representables. Working predicatively in Cubical Agda, we need
to restrict ourselves to finitely generated ideals, which gives us compact open subfunctors. Let
us sketch the idea behind compact opens informally to see why this restriction is necessary:
For a f.g. ideal I ⊆ A, we get the affine compact open subfunctor Sp(A)I ↪→ Sp(A) given by

Sp(A)I(B) = {φ ∈ Hom(A,B) | φ∗I = B} ⊆ Sp(A)(B)

If I = ⟨f1, ..., fn⟩, then the “pullback” along φ ∈ Hom(A,B) is just φ∗I = ⟨φ(f1), ..., φ(fn)⟩.
With this, we can define a subfunctor U ↪→ X to be compact open if pulling back along an
A-valued point of X gives an affine compact open subfunctor of Sp(A), i.e. if for any ring A
and ϕ : Sp(A) ⇒ X there is a f.g. ideal I ⊆ A such that the following is a pullback square

Sp(A)I U

Sp(A) X

⌟

ϕ

Note that the ideal I is not uniquely determined in this case. Indeed, if I = ⟨f1, ..., fn⟩ and
J = ⟨g1, ..., gm⟩ are such that

√
I =

√
J , then for any φ ∈ Hom(A,B) we have

1 ∈ ⟨φ(f1), ..., φ(fn)⟩ iff 1 ∈ ⟨φ(g1), ..., φ(gm)⟩

and thus Sp(A)I ∼= Sp(A)J . In fact, one can prove that the converse also holds. This
means that the compact open U and the A-valued point ϕ : Sp(A) ⇒ X determine a finitely
generated ideal I = ⟨f1, ..., fn⟩ up to equality of radical ideals, i.e. an element D(f1, ..., fn)
of the Zariski lattice LA. Note that we can describe Sp(A)I purely in terms of D(f1, ..., fn),
as the B-valued points are given by

Sp(A)I(B) = {φ ∈ Hom(A,B) | 1 ∈ ⟨φ(f1), ..., φ(fn)⟩}
= {φ ∈ Hom(A,B) | D

(
φ(f1), ..., φ(fn)

)
= D(1)⟩}
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The pullback condition ensures that this mapping is natural in A. In other words, the compact
open subfunctors of X are in one-to-one correspondence with natural transformations from
X to the Z-functor L that sends a ring to its Zariski lattice. Note that we can define this
Z-functor L because of the “small” definition of Zariski lattice. If we drop the finiteness
assumption on ideals to get open subfunctors we cannot hope to define the classifier in
Cubical Agda.8 We will discuss possibilities to do so in other systems in Section 7.1.

For a topos theorist it might not constitute a particularly deep insight that the compact
open subfunctors (sub-objects) of a Z-functor are classified by the “internal Zariski lattice”
L. This means that the compact opens are precisely given by pullbacks of the form

U 1

X L

D(1)
⌟

where D(1) : 1 ⇒ L is the “constant” natural transformation, sending the point of the
terminal Z-functor 1 to the top element of the Zariski lattice. From a formal perspective
however, we found it significantly more convenient to work with natural transformations into
L and the induced subfunctors, as opposed to following the text-book strategy of defining
compact-openness as a property of subfunctors through the two step process outlined above.9
We will thus proceed to describe how compact opens can be formally defined as natural
transformations and how this gives a concise definition of qcqs-schemes.

▶ Definition 13. Let L : ZFunctorℓ be the Z-functor mapping a ring R : CommRingℓ to the
underlying set of the Zariski lattice LR. The action on morphisms is induced by the universal
property of the Zariski lattice, i.e. for φ : Hom(A,B) we take the morphism φL induced by
the support D ◦ φ:

A

LA LB

D D◦φ

∃! φL

▶ Definition 14. Let X : ZFunctorℓ, a compact open of X is a natural transformation
U : X ⇒ L. The realization JU Kco : ZFunctorℓ of a compact open U of X, is given by

JU Kco (R) = Σ[ x ∈ X(R) ] U(x) ≡ D(1)

A compact open U is called affine, if its realization is affine, i.e. if there merely exists
R : CommRingℓ such that JU Kco ∼= Sp(R).

The reader may verify that for U : X ⇒ L, R : CommRingℓ and x : X(R) such that
U(x) = D(f1, ..., fn), we have

Sp(R)⟨f1,...,fn⟩ JU Kco 1

Sp(R) X L

D(1)

U

⌟⌟

ϕx

8 In fact, having such a classifier would imply propositional resizing. By a result of De Jong and Escardó
[9, Cor. 28], the existence of a single ring R : CommRingℓ, such that the frame of radical ideals of R (i.e.
Zariski opens) is ℓ-small, would suffice to prove resizing for hPropℓ.

9 A rare exception to following the standard definition is a blog-post by Madore [24].
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where ϕx corresponds to the R-valued point x by the Yoneda lemma.
Since L is a presheaf that takes values in distributive lattices and its restriction maps are

lattice morphisms, it is an internal lattice in the presheaf topos of Z-functors.10 As such, it
endows the compact opens with a distributive lattice structure.

▶ Definition 15. Let X : ZFunctorℓ, the lattice of compact opens of X, CompOpen(X), is
the type X ⇒ L equipped with the canonical point-wise operations, i.e. for R : CommRingℓ
and x : X(R), top, bottom, join and meet are given by

⊤R(x) = D(1), ⊥R(x) = D(0)
(U ∧ V )R(x) = UR(x) ∧ VR(x)
(U ∨ V )R(x) = UR(x) ∨ VR(x)

This defines a functor CompOpen : ZFunctorℓ → DistLatticeopℓ+1. With the action on mor-
phisms given by pre-composition.

▶ Definition 16. X : ZFunctorℓ is a qcqs-scheme if it is a local Z-functor and has an affine
cover by compact opens. That is, there merely exist compact opens U1, ..., Un : X ⇒ L such
that each Ui is affine and ⊤ ≡

∨n
i=1 Ui in the lattice CompOpen(X).

As an immediate sanity check we get that affine schemes are qcqs-schemes:

▶ Proposition 17. Sp(R) is a qcqs-scheme, for R : CommRingℓ.

Proof. Sp(R) is local by Theorem 12. The top element ⊤ : CompOpen(Sp(R)) is the
“constant” natural transformation, sending everything to D(1), which by the Yoneda lemma
corresponds to D(1) : LR. It thus constitutes a trivial affine cover with J ⊤ Kco ∼= Sp(R). ◀

▶ Remark 18. Of course, a qcqs-scheme X can and will have multiple different covers.
Definition 16 suggests that “having an affine cover” should be expressed using nested
mere existential quantification. In practice, it is more convenient to define the record-type
AffineCover, of all affine covers of X, consisting of a finite list or vector of compact opens and
proofs that these compact opens are affine and cover X. The property of having an affine
cover is then defined as the truncation of this record type:

record AffineCover (X : ZFunctor ℓ)
: Type (ℓ-suc ℓ) where

field
n : N
U : FinVec (CompactOpen X) n
covers : isCompactOpenCover X U
isAffineU : ∀ i → isAffineCompactOpen (U i)

hasAffineCover : ZFunctor ℓ → Type (ℓ-suc ℓ)
hasAffineCover X = ∥ AffineCover X ∥

If we want to prove a proposition about a qcqs-scheme X, we can assume we have a witness
of type AffineCover(X). If we want to map from X into a set by using that X has an affine
cover, we have to show that the mapping is independent of the choice of cover.11 This is
very much in line with informal mathematical practice.

10 It is even an internal lattice the big Zariski topos, i.e. in local Z-functors. However for our purposes, we
do not need that L is a Zariski sheaf.

11 This holds by the general elimination principle of the propositional truncation due to Kraus [21]. When
mapping into types that are not sets, things get complicated very quickly.
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▶ Remark 19. One big advantage of using the internal lattice L to classify compact opens is
that we get the notion of cover for free from the induced lattice operations in Definition 15.
In textbooks, a cover by open subfunctors is usually defined directly using addition of ideals
[12, 26] or by taking the set-theoretic union at field-valued points [13]. The latter is not
an option for our purposes, as the notion of field is not well-behaved constructively. In the
Cubical Agda library, the join _ ∨ _ : LA → LA → LA is also defined in terms of ideal
addition, but we can upstream the necessary constructions and do not have to concern
ourselves with pullbacks of Z-functors.

6 Open subschemes

The benchmark for a workable formal definition of schemes as locally ringed spaces, as in
[3, 4], usually consists of a proof of the “universal property”, i.e. an adjunction Γ ⊣ Spec where
the counit is an isomorphism. Proposition 4, the functorial analogue is rather straightforward
to prove. Instead, we give a proof that compact opens of affine schemes are qcqs-schemes.
This can be seen as a constructive special case of the standard classical result that “open
subfunctors of schemes are themselves schemes” [12, Ch. I, §1, 3.11]. We start by showing
that compact opens of Zariski sheaves are Zariski sheaves. Essentially, this holds because
compact opens are classified by L, which is itself a Zariski sheaf. As it turns out, however, it
is sufficient to prove something weaker.

For the remainder of the paper we adopt the following notation: For a ring R and elements
f : R and u : LR, we write u↾R[1/f]: LR[1/f] for the result of applying L(_/1), the L-action on
the canonical morphism. In particular we have D(g1, ..., gm)↾R[1/f]= D(g1/1, ..., gm/1).

▶ Lemma 20. L is Zariski-separated, i.e. for R : CommRingℓ and f1, ..., fn : R unimodular
the following holds: given u, v : LR, if u↾R[1/fi] ≡ v↾R[1/fi] for all i = 1, ..., n, then u ≡ v.

Proof. Let R : CommRingℓ and f1, ..., fn : R unimodular be given together with u, v : LR
satisfying u↾R[1/fi] ≡ v↾R[1/fi] for all i = 1, ..., n. Recall that for i = 1, ..., n, the restriction
_↾R[1/fi]: LR → LR[1/fi] is induced by the support D(_/1) : R → LR[1/fi]. Now let us fix an
i = 1, ..., n. Much like in classical algebraic geometry, we can identify LR[1/fi] with ↓ D(fi),
the lattice of elements of LR smaller than D(fi).12 The map d : R[1/fi] → ↓ D(fi) given by
d(r/fn

i ) = D(r)∧D(fi) defines a support and thus induces a morphism φ : LR[1/fi] → ↓ D(fi).
Now, consider the map _ ∧ D(fi) : LR → ↓ D(fi). We claim that _ ∧ D(fi) factors

through φ. By the universal property of LR, there is a unique ψ : LR → ↓ D(fi), such that
ψ ◦D ≡ d(_/1). Both _ ∧D(fi) and φ(_↾R[1/fi]) satisfy the same commutativity condition
as ψ, which implies _ ∧D(fi) ≡ ψ ≡ φ(_↾R[1/fi]). Pictorially, this amounts to observing
that the following diagram commutes

R R[1/fi]

LR LR[1/fi] ↓ D(fi)

d

_↾R[1/fi] φ

_∧D(fi)

D

_/1

D

From our assumption it thus follows that

u ∧D(fi) ≡ φ(u↾R[1/fi]) ≡ φ(v↾R[1/fi]) ≡ v ∧D(fi)

12 Showing that Spec(R[1/f]) is homeomorphic to D(f) is a standard exercise in algebraic geometry.
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for all i = 1, ..., n. Since the fi’s are unimodular, we get D(1) ≡
∨
iD(fi) and hence

u ≡ u ∧D(1) ≡
n∨
i=1

(u ∧D(fi)) ≡
n∨
i=1

(v ∧D(fi)) ≡ v ∧D(1) ≡ v ◀

▶ Lemma 21. If X : ZFunctorℓ is local, then for any compact open U : X ⇒ L its realization
JU Kco : ZFunctorℓ is local.

Proof. Let R : CommRingℓ and f1, ..., fn : R be unimodular. We need to construct an inverse
to the map

σU : Σ[ x ∈ X(R) ] U(x) ≡ D(1) → CompatibleFamJU Kco(
{fi}i=1,...,n

)
For x : X(R) with U(x) ≡ D(1), σU (x) is the family of elements x↾R[1/fi]. It is essentially
the same map as the corresponding

σX : X(R) → CompatibleFamX
(
{fi}i=1,...,n

)
but it keeps track of the fact that for each i = 1, ..., n one has U(x↾R[1/fi]) ≡ D(1).

Now, any compatible family of elements xi : X(R[1/fi]) with U(xi) ≡ D(1) can be seen
as a compatible family on X by forgetting that U(xi) ≡ D(1). To this family we apply the
inverse map

σ−1
X : CompatibleFamX

(
{fi}i=1,...,n

)
→ X(R)

that exists since X was assumed local. We claim that U(σ−1
X ({xi}i=1,...,n)) ≡ D(1), thus

allowing us to set σ−1
U ({xi}i=1,...,n) = σ−1

X ({xi}i=1,...,n). From this it also follows immediately
that σU and σ−1

U are mutually inverse. To prove the claim we use Lemma 20 and the fact
that for each i = 1, ..., n:

U
(
σ−1
X ({xi}i=1,...,n)

)
↾R[1/fi] ≡ U

(
σ−1
X ({xi}i=1,...,n)↾R[1/fi]

)
≡ U

(
σX

(
σ−1
X ({xi}i=1,...,n)

)
i

)
≡ U(xi) ≡ D(1) ◀

It remains to prove that compact opens of affine schemes (merely) have an affine cover.
Before treating arbitrary compact opens, we introduce the standard or basic opens of a
representable Z-functor with fair bit of abuse of notation.

▶ Definition 22. Let R : CommRingℓ and f : R, the standard open D(f) : Sp(R) ⇒ L is
given by applying the Yoneda lemma to the basic open D(f) : LR.

▶ Proposition 23. For R : CommRingℓ and f : R, the standard open D(f) is affine. In
particular one has a natural isomorphism JD(f) Kco ∼= Sp

(
R[1/f]

)
.

Proof. The universal properties of localization and Zariski lattice give us for A-valued points

Sp
(
R[1/f]

)
(A) = Hom(R[1/f], A)

∼= Σ[ φ ∈ Hom(R,A) ] φ(f) ∈ A×

∼= Σ[ φ ∈ Hom(R,A) ] D(φ(f)) ≡ D(1)
= JD(f) Kco(A)

We omit the proof that this is natural in A. ◀

▶ Theorem 24. The realization JU Kco of a compact open U : Sp(R) ⇒ L is a qcqs-scheme.
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Proof. We get that JU Kco is local from Lemma 21 and Theorem 12, the subcanonicity of
the Zariski coverage. It remains to show that JU Kco (merely) has an affine cover. By the
Yoneda lemma, the compact open U corresponds to an element u : LR. Every element of LR
can (merely) be expressed as a join of basic opens, i.e. we can assume u ≡

∨
iD(fi) for some

f1, ..., fn : R. Since the Yoneda lemma actually gives us an isomorphism of lattices between
LR and CompOpen(Sp(R)), we get a cover of compact opens U ≡

∨
iD(fi) which is affine

by Proposition 23. Note that this is an equality in the lattice CompactOpen(X). But since
D(fi) ≤ U in CompactOpen(X) for i = 1, ..., n, we may regard the D(fi) as affine compact
opens of JU Kco covering of the top element of CompactOpen

(
JU Kco)

. ◀

7 Conclusion

In this paper we presented a formalization of qcqs-schemes as a full subcategory of the
category of Z-functors. We defined the Zariski coverage on CommRingopℓ and proved it
subcanonical. This let us define locality of Z-functors and conclude that affine schemes, i.e.
representable Z-functors, are local. When formalizing the notion of an open covering, we
introduced compact open subfunctors. We argued that compact opens can conveniently be
classified by the Z-functor that maps a ring to its Zariski lattice. We leveraged this fact to
automatically obtain a notion of covering by compact opens and thus a formal definition
of qcqs-schemes. Finally, we gave a fully constructive proof that compact opens of affine
schemes are qcqs-schemes using only point-free methods.

As mentioned before, our formalization should be regarded as a univalent rather than a
cubical formalization. We do not depend on cubical features of Cubical Agda such as the
interval. However, we are adopting the univalent approach of distinguishing propositions,
sets etc. internally and we do require the propositional truncation and the set-quotient HITs.
Univalence is only used in the guise of its useful consequences like function extensionality.

7.1 Going classical

Cubical Agda’s type theory is fully constructive and predicative. Using set-quotients, we can
define the Zariski lattice over a ring living in the same universe as the base ring, as shown in
[39]. This predicative definition is essential for defining the classifier L : ZFunctorℓ of compact
opens and thus plays a key role in our definition of functorial qcqs-schemes. This makes our
approach easily extensible with the using additional logical assumptions. If one would want
to formalize not only qcqs- but general schemes using the functor of points approach, this
should be directly possible by using a classifier for opens, not only compact opens, instead.

Assuming impredicativity, e.g. in the form of Voevodsky’s resizing axioms [37], one could
define the classifier for open subfunctors as the Z-functor sending a ring R to the frame
of radical ideals of R.13 Alternatively, assuming classical logic, one could use the frame of
Zariski-open subsets of Spec(R) as the classifier. This also induces a notion of cover (not
necessarily finite this time) and hence a notion of general functorial schemes. We expect that
in this situation one can closely follow the approach of Section 6 to get a corresponding proof
that open subfunctors of affine schemes are schemes. The only difference being perhaps the
proof of Lemma 20, the fact that the classifier is separated wrt. the Zariski coverage.

13 Impredicativity is needed to ensure that the type of ideals of a ring R lives in the same universe as R.
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We decided to stick to qcqs-schemes not only because crucial tools like the Zariski lattice
were already available in the agda/cubical library. We hope that the paper contains valuable
insights for constructive mathematicians interested in the foundations of algebraic geometry,
while still being usable as a blue-print for formalizing the functor of points approach in other
(possibly classical) proof assistants.

7.2 Synthetic algebraic geometry
The functor of points approach allows one to develop algebraic geometry synthetically. Here,
the word synthetic means “working in the internal language of a suitable topos”. In our case
this topos is the big Zariski topos, i.e. the sheaf topos of local Z-functors. From the internal
point of view, Zariski sheaves look like simple sets, which can make reasoning about them
easier. The PhD thesis of Blechschmidt [2] contains an excellent introduction to synthetic
algebraic geometry for interested readers familiar with classical algebraic geometry.

This approach can even be axiomatized. Recently, Cherubini, Coquand and Hutzler [6]
have combined the axiomatic approach to synthetic algebraic geometry with HoTT/UF. By
adding the axioms of synthetic algebraic geometry to a dependent type theory with univalence
and HITs one can even study the cohomology of schemes synthetically. They give a model
construction in a “higher” Zariski topos, where they restrict themselves to functors from
finitely presented algebras to sets in order to avoid size issues. Finitely presented algebras over
a ring R are of the form R[x1,...,xn]/⟨p1,...,pm⟩. For a fixed R, the category of f.p. R-algebras
is small and one can thus use it to develop functorial algebraic geometry without having
to worry about universe levels. Repeating the steps outlined in this paper for f.p. algebras
should give rise to a truly predicative formalization of schemes of finite presentation over R.

7.3 A constructive comparison theorem
For algebraic geometers, using the functor of points approach can sometimes be advantageous,
but ultimately one wants to switch seamlessly between schemes as Z-functors and schemes
as locally ringed spaces. This is made possible by the so-called comparison theorem [12, p.
23], giving an adjunction between Z-functors and locally ringed spaces, which becomes an
equivalence of categories when restricted to the respective full subcategories of schemes.

Coquand, Lombardi and Schuster [8] give a point-free reconstruction of geometric qcqs-
schemes that is suitable for constructive study. Instead of using locally ringed spaces, their
“spectral schemes” are given as distributive lattices with a sheaf of rings. The affine scheme
associated to a ring R is just the Zariski lattice LR equipped with the usual structure sheaf.
Classically, these spectral schemes are equivalent to conventional qcqs-schemes because the
topology of a qcqs-scheme is coherent or spectral.14

Our definition of qcqs-scheme can be seen as the functorial counterpart to the lattice-based
definition of spectral scheme due to Coquand, Lombardi and Schuster. One would hope that
these turn out to be equivalent by a constructive comparison theorem à la Demazure and
Gabriel. Proving such a theorem requires a decent amount of novel constructive mathematics
to be developed first. One needs to introduce a point-free notion of locally ringed distributive
lattices that contain spectral schemes as a full subcategory and construct a suitable adjunction
with Z-functors. In our setting, one would only get a relative coadjunction as in Remark 5.
This could be a particularly interesting problem in a univalent setting.

14 Stone’s representation theorem for distributive lattices [30], tells us that all topological information of a
coherent space is encoded in its lattice of compact open subsets.
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